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Abstract

We introduce a new nonparametric clustering
model which combines the recently proposed
distance-dependent Chinese restaurant pro-
cess (dd-CRP) and non-linear, spectral meth-
ods for dimensionality reduction. Our model
retains the ability of nonparametric methods
to learn the number of clusters from data.
At the same time it addresses two key limi-
tations of nonparametric Bayesian methods:
modeling data that are not exchangeable
and have many correlated features. Spec-
tral methods use the similarity between doc-
uments to map them into a low-dimensional
spectral space where we then compare sev-
eral clustering methods. Our experiments
on handwritten digits and text documents
show that nonparametric methods such as
the CRP or dd-CRP can perform as well as
or better than k-means and also recover the
true number of clusters. We improve the per-
formance of the dd-CRP in spectral space by
incorporating the original similarity matrix
in its prior. This simple modification results
in better performance than all other meth-
ods we compared to. We offer a new formu-
lation and first experimental evaluation of a
general Gibbs sampler for mixture modeling
with distance-dependent CRPs.

1 Introduction

Spectral clustering methods have the benefit of al-
lowing us to include arbitrary features for represent-
ing data. They assume that the data lie on a low-
dimensional manifold but are represented in a high-
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dimensional feature space. In order to recover the un-
derlying cluster structure they perform the following
steps. First, the features of each observation are used
to compute a pairwise similarity matrix. This ma-
trix is then used to map the observations from this
implicit representation into a lower dimensional Eu-
clidean space. In this space most methods apply k-
means, fixing the number of clusters by hand [11]. In
this paper, we argue that spectral methods can benefit
from running nonparametric clustering methods in the
reduced dimensional space.

Nonparametric Bayesian clustering methods such as
the infinite Gaussian mixture model [17] or the hier-
archical Dirichlet process [22] are appealing because
they can infer the number of clusters from data. How-
ever, they have two fundamental restrictions. The first
stems from the requirement to generate each observa-
tion from a well-defined distribution. For instance,
in latent Dirichlet allocation [3], each word of a text
document is sampled from a multinomial distribution
of a corresponding topic. If we want to incorporate
features such as the author of a document [18], then
the model has to be changed and the inference proce-
dure modified. The second restriction stems from the
assumption that observations are exchangeable. Ex-
changeability refers to the invariance of a sequence
of random variables to permutations of their indices.
While exchangeability is often considered an advanta-
geous property, much data in text, image and audio
domains are not exchangeable. For example, image
regions depicting the sky are not exchangeable since
their position is important [19]. Topics change over
time and future documents cannot influence past doc-
uments [23]. Lifting these restrictions is hard and of-
ten leads to models that are either specific to a certain
modality or very complex.

We introduce a method to cluster non-exchangeable
data that combines the advantages of nonparamet-
ric and spectral methods. Fig. 1 gives a high-level
overview of our method. The input to our method
can be a corpus of any modality such as text doc-
uments, handwritten digits or images. Similar to
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Figure 1: Overview of spectral-nonparametric clustering with the sd-CRP and other methods.

other spectral clustering methods, we first compute
the similarity matrix from the features of the docu-
ments and then use this matrix to map documents
into a low-dimensional Euclidean space. Instead of us-
ing k-means to cluster points based on their distances
in this spectral space, we use nonparametric methods.
This is also distinct from standard nonparametric clus-
tering as we cluster in spectral space and not in the
original data representation.

We first experiment with a Dirichlet Process mixture
model [17]. To investigate other nonparametric clus-
tering methods in spectral space, we implement the
distance-dependent Chinese restaurant process (dd-
CRP), a flexible class of distributions over partitions
which was recently introduced by [2]. Previously, the
dd-CRP had only been applied to temporal (sequen-
tial) data. We provide the combinatorial details of a
Gibbs sampling algorithm for mizture modeling with
the dd-CRP in the case of arbitrary covariates. In
this setting, which we call the spatial or non-sequential
case, cycles of seating assignments are possible. Lastly,
we introduce the similarity dependent CRP (sd-CRP),
which improves upon the dd-CRP by incorporating the
original similarity matrix in the prior while still rely-
ing on the distances in spectral space for the likelihood.
Our experiments show that the sd-CRP outperforms
other methods on most criteria when clustering text
documents and handwritten digits.

2 Distance-Dependent Chinese
Restaurant Processes

In this section, we briefly cover the basics of both the
CRP and dd-CRP to underline their differences and
to help understanding the proposed Gibbs sampler of
Sec.3.3 which learns dd-CRP based infinite mixture
models. For more information on the CRP and its
connection to the Dirichlet process (DP), see [16, 6].

The Chinese restaurant process defines the following
procedure. Imagine a restaurant with an infinite num-
ber of tables. The first customer sits down at a table.
The ith customer sits down at a table with a proba-
bility that is proportional to the number of people al-
ready sitting at that table or she opens up a new table

with a probability proportional to the hyperparame-
ter a. Because of exchangeability, the order in which
customers sit down is irrelevant and we can draw each
customer’s table assignment z; by pretending they are
the last person to sit down. Let K be the number of
tables and let nj be the number of people sitting at
each table. For the ith customer, we define a multino-
mial distribution over table assignments conditioned
on z_;, i.e. all other table assignments except the ith:

1
a ifk=K-+1. (1)

p(zi = klz_;,a) x {

Given the cluster assignment each data point is con-
ditionally independent of the other ones. The ex-
changeability assumption in this process holds for
some datasets but not in others. While several spe-
cial models for spatial and temporal dependencies have
been proposed, the distance-dependent CRP offers an
elegant general method to modeling additional fea-
tures and non-exchangeability.

The main difference between the dd-CRP and the stan-
dard CRP is that in the dd-CRP customers sit down
with other customers instead of directly at tables.
Connected groups of customers sit together at a ta-
ble only implicitly. Using a similar culinary metaphor,
imagine a restaurant full of people. The ith customer
sits with some other customer j (denoted as ¢; = j)
with a probability proportional to a decreasing func-
tion of the distance between the two: f(d;;), or by her-
self with a probability proportional to . Hence, the
larger your distance, the less likely you are to sit with
somebody. This leads to the following multinomial
over customer assignments conditioned on distances
D € RVXN where N is the number of customers and
the decay function f : Rt — RT needs to be non-
increasing and have f(c0) =0,

plei = j|D,a) {i(dij)

The distance function is usually parameterized, e.g.
for exponential decay, we have the parameter a:
fa(d) = exp(—d/a). Notice that this seating prior is

if i # j
if i = j.

(2)
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Figure 2: Illustration of the distance-dependent Chi-
nese restaurant process. Customers sit behind other
customers. Each group of linked customers implicitly
sits at a table. Only the distance to a customer deter-
mines seating, not the order. Hence, 5 may choose to
sit with 6 (and therefore at a table with 11). Cycles
implicitly form tables. A customer who decides to sit
with somebody in a cycle joins that table, like 7 who
joined the cycle of 8,9,10.

not conditioned on c_;, the seating of other customers.
Note also that customers may sit in cycles. Each con-
nected component (of which cycles are a special case)
forms its own table which may be joined by other cus-
tomers who sit with a member of that component. Fig-
ure 2 illustrates a possible seating assignment.

Dd-CRPs are not marginally invariant, meaning that
if we integrate out one observation we would not get
the same probability distribution as if that observation
was not part of the model. Furthermore, dd-CRPs are
not exchangeable and therefore have the freedom to
model spatial and temporal correlations. For instance,
news articles are much more likely to cluster together
if they appear nearby in time.

Distance dependent CRPs are also related to the re-
cent effort to introduce more complex features into
directed graphical models [13, 5, 21]. The dd-CRP
can be embedded into graphical models and could pro-
vide an alternative to Dirichlet Process mixture mod-
els. Several other methods can use distances or feature
similarities for clustering, e.g. kernel k-means [4].

3 Nonparametric Clustering in
Spectral Space

The general spectral clustering procedure is as follows:
Inputs: Similarity matrix S € RV*N and hyperpa-
rameters.

Outputs: Number of clusters K; their parameters
and cluster assignments.

1. Map data into M-dimensional spectral space us-
ing similarity matrix S (Alg. 1).

2. Cluster data points in the M-dimensional space.

We now briefly describe step 1, which is the same
for all the clustering methods. We then provide an
overview of clustering alternatives including the dd-
CRP, its modification and related mixture model.

Algorithm 1 Spectral Dimensionality Reduction

Input: Similarity matrix S

Output: Points (z1,...,zn)

Compute diagonal degree matrix:

Dii =301, Sy

Compute unnormalized graph Laplacian:
L=D-S5

Compute normalized Laplacian:

Lsym _ D—l/QLD—l/Q

Compute its first M eigenvectors: ui,...,un
Define: U € RV*M

Normalize rows of U to norm 1

Define rows of U as new observations:

x; = Ul(i,:)

3.1 Spectral Dimensionality Reduction

Spectral dimensionality reduction methods try to pre-
serve local distances when mapping data to a low di-
mensional space. They are often based on the eigen-
decomposition of the transformed similarity matrix S
which can be interpreted as a weighted adjacency ma-
trix of a graph. They reduce the dimensions of the
observations and their features to an M-dimensional
space. M is manually set to a low number of about 2
to 20, often close to the number of assumed clusters,
we provide sensitivity analysis to this choice in the ex-
periment section. An advantage of manifold learning
methods is that they can be used even if no vectorial
representation is available. They can purely rely on
a similarity function between observations. The algo-
rithm we use follows [15] except that we do not use
k-means clustering at the end. It is given for com-
pleteness in Alg. 1.

To the best of our knowledge this is the first work
which combines sophisticated non-linear dimensional-
ity reduction methods with nonparametric clustering.
Wood et al. [24] used PCA and therefore rely on the
data lying on a linear manifold in a higher dimensional
space. However, if the data lies on a lower dimen-
sional manifold with a highly nonlinear structure, lin-
ear methods such as PCA fail to to correctly map the
data into a lower dimensional space. For an in-depth
tutorial on non-linear dimensionality reduction meth-
ods see [11].

3.2 Learning the Number and Parameters of
Clusters in Spectral Space

We compare several alternatives to k-means that do
not fix the number of clusters.

Model based clustering learns several Gaussian
mixture models with varying geometric properties and
numbers of clusters [7]. The models are selected using
the Bayesian Information Criterion.
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The infinite Gaussian mixture model (IGMM)
assumes a Gaussian distribution for each cluster and
-instead of manually setting the number of clusters -
automatically determines the number of clusters and
their parameters from the data. IGMMs may be based
on Dirichlet Process mixture models [17].

The distance-dependent Chinese restaurant
process (dd-CRP) provides another nonparametric
alternative to the IGMM for learning infinite mixture
models [2]. In Sec. 2 we described the dd-CRP prior
over partitions using the analogy of seating assign-
ments of customers with other customers. Similar to
the Dirichlet process mixture model, we can define a
mixture model with a base distribution Gy and use
the dd-CRP as a prior over cluster assignments. The
decay function f is applied to the pairwise distances
in matrix D. In our case, D represents the distances
of points in the reduced-dimensional spectral space.
Given the scaling parameter o, we get the following
generative process for observation z; € RM:

1. For each observation ¢ € [1, N] draw seating as-
signment ¢; ~ dd-CRP(e, f, D).

2. For each cluster k € [1, K], induced by separate
seating groups, draw parameters 0 ~ G

3. For each observation ¢ € [1,N], draw x; ~
F(ek(z))7

where the function k(¢) returns the cluster number
of the ith customer. F(f;)) may for instance be
a Gaussian distribution and 6 = (i, ). Similar to
IGMMs based on the CRP, the dd-CRP clusters the
points based on their spatial layout in the reduced M-
dimensional spectral space.

Since the spectral dimensionality reduction method is
purely unsupervised it may throw away low variance
variations which might be important for finding the
correct groups [1]. Furthermore, one usually chooses
a low number of reduced dimensions and therefore ap-
proximates the true spatial layout.! Hence, allowing
the original similarity matrix to influence the cluster-
ing in spectral space might improve performance.

The similarity-dependent CRP (sd-CRP) is a
modified version of the dd-CRP for clustering in spec-
tral space. Unlike the authors in [2] who assume that
the distances are ’'innate properties of the customers’,
we reformulate the decayed distances between cus-
tomers as similarities and as such, a modeling choice.
This allows us to define arbitrary similarities instead

"We will explore the dependence of our method on the
number of dimensions in the reduced spectral space in the
experiments section.

of having to focus only on the spatial layout or time
stamps of observations.

We modify the dd-CRP by computing the prior with
the original similarity matrix S which was used to com-
pute the spectral mapping instead of the decayed dis-
tances in spectral space. The combination of spec-
tral dimensionality reduction and dd-CRP could be
seen as a simple pipeline approach with a sophisti-
cated pre-processing step. In contrast, the sd-CRP
goes beyond such a pipeline by re-using the similarity
information and essentially introducing a dual-view of
observations. Each observation’s prior holds the de-
tailed, local similarities to all other observation while
its likelihood is computed from the layout of the points
in the spectral, reduced dimensional space. This space
takes into consideration the global layout of points on
a possibly non-linear manifold.

While this constitutes a redundant use of these sim-
ilarities, it helps to exploit high variance variations
in the prior and still use the spatial layout of points
in the spectral space for the likelihood computation.
It also removes another parameter for the distance
function. The difference to the above procedure is:
¢; ~ dd-CRP(a, I,S), where I is simply the identity
function (and can therefore be ignored).

As we will see in the experiments section, this sim-
ple change results in an improved performance on sev-
eral metrics. It could be argued that it is not surpris-
ing that more information improves clustering perfor-
mance. However, such re-use has not been attempted
before in the spectral clustering literatureWe note that
the generative nature of the model is - in its current
formulation - not preserved.

3.3 Posterior Inference via Gibbs Sampling

The goal of inference in dd-CRP and sd-CRP based
models is to compute the posterior distribution over
partitions given the observations in the lower dimen-
sional space. As in most other mixture models this is
intractable and we resort to sampling techniques. The
sampling part of the outlined procedure is the same
for both models, only the input to the prior changes.

Blei and Frazier [2] provide a general Gibbs sampler
for the dd-CRP together with the algorithmic details
for language modeling and the sequential case where
customers can only sit with past customers. This re-
sults in a seating assignment in the form of a DAG. We
introduce the details of a Gibbs sampler for the gen-
eral case of mixture modeling where cycles are possible
(see Fig. 2 for an illustration). While in principle it is
the same sampler, one has to pay special attention to
cycles which can start new tables even in cases where
customers do not sit by themselves.
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Let us first introduce some notation. The func-
tion sitBehind(i), returns the set of all customers
that sit behind i, including i itself.? This function
is recursive. As examples based on the seating of
Fig. 2: sitBehind(1) = {1,2,3,4}, sitBehind(2) =
{2,3}, sitBehind(3) = {3}. Note that in a cycle,
everybody sits behind each other: sitBehind(10) =
sitBehind(8) = {7, 8,9, 10}.

During sampling, we want to compute the proba-
bility of each customer 7 to sit with any customer
J: ples = jle—i,x1.n, S, a, Ao, O1.k), where O1.x =
(k, Xk )r=1.5c are the table/cluster parameters, xi.n
are the observations and c_; are other customers’ seat-
ing assignments. The two hyperparameters are « (see
Eq. 2) and Ay, the prior on the covariance of the
Gaussian components. In general, we have that

p(ci = jle—i, x1:n,-) x p(e; = j|)p(xin|ei = j,c—i)

3)

For the dd-CRP in spectral space, we have p(¢; =
jla, f, D) and for sd-CRP, we have p(c; = j|a, S), both
are defined by Eq. 2. It is left to show the conditional
likelihoods that can arise from the seating choice ¢;.
There are two main cases: either customer i implic-
itly creates a new table with her seating choice, or she
connects to an existing table.

New tables can be created in two ways: Either the
customer sits by herself or she sits with somebody be-
hind her (and has not previously done so). The latter
case creates a cycle. This is captured by the boolean
predicate newTable:

newTable(c;) is true iff (4)
(ci € sitBehind(i) A <Y ¢ sitBehind(z')) .

The likelihood computation has some resemblance to
Gibbs sampling for Dirichlet process mixture models
[14]. The difference is that we compute the likelihood
for all the customers that sit behind ¢, denoted X; =
XsitBehind(7)- Lhis can be seen as a sort of blocked
sample. Note that we can ignore all other customers
as their likelihood is not affected. In the case of a new
table, we integrate over the normal-inverse Wishart
base distribution Gy = NW™1:

If newTable(c;), p(x1.n5]c; = j,c—i) (5)
Nl SN Sl o, o) ).

2For notational convenience that will become apparent
soon, each customer sits behind herself. Intuitively, this
is the set of customers that point to ¢, including ¢ but
excluding c¢;, (the customer that ¢ sits with). If ¢ and ¢;
are in a cycle they are both in each other’s sitBehind set.

Since, we use a conjugate prior, the above integral
has a closed form solution in a form of a multivariate
Student-t distribution. We approximate this distribu-
tion by a moment-matched Gaussian [20]. We sam-
ple a new cluster covariance matrix from the inverse-
Wishart prior (with hyperparameters Ag which is fixed
and vg = M) and a mean which depends on pg = 0
and this covariance matrix as described in [20],

Sk41 ~ W 1, M), i1 ~ N (o, Sx+1)  (6)

and then computing the likelihood for all | €
sitBehind (i) given this Gaussian distribution. Al-
ternatively, one could just work directly with the t-
distribution using a scale mixture.

In the case of i sitting with customer j and at its table
k(j), we compute the likelihood of all the customers
behind 7, given that table’s parameters.

If —\neWTable(ci),p(xlzN|ci = j, C_i) X N(Xi|ﬂk(j)7 Zk(j))

(7)
As we noted above, the dd-CRP needs to take into
account the current and all connected customers since
it is not marginally invariant. While this results in a
higher computational cost for computing each step, it
allows for larger steps through the state space® and
therefore faster convergence than Gibbs sampling in a
CRP mixture. Note also that unless seating assign-
ments actually change, we can use cached likelihood
computations of previous iterations.

After each iteration of sampling the seating assign-
ments, we need to update the table parameters given
the new table members. Since our N'W-prior is conju-
gate, we can sample the new table parameters from the
posterior density in the same family [8]. Let z1,...,x,
be the customers at a table,  the sample mean and we
define @ = Y"1 | (z; — 7)(z; — 7)T; then the posterior
is NW(pin, bin, Vn, An) with the following parameters
(kn = Ko + N,V = Vo +n):

- R0 + n 7
Hn = Ko + nNJO Ko +n )
KRomn _ _ T
A = A+Q+ (@ — po)(@ — po)” - (8)

Ko +n

Algorithm 2 summarizes the complete inference pro-
cedure for dd-CRPs and sd-CRPs in spectral space.

Typically, in such conjugate models, one could sim-
ply integrate out the parameters and only sample the
assignments of observations to clusters. In our exper-
iments this worked very well on synthetic data that

3Larger steps through the state space are a result of the

seating assignments. When customer ¢ moves to a different
table, all customers who recursively sit behind her also
move to that table. As a special case, if one customer of a
cycle moves, all of them move.
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Algorithm 2 Inference for dd-&sd-CRP

Input: Similarity matrix S, hyperparameters (c, Ao)
Output: Clustering and cluster parameters.
SpectralMapping(S) = (z1,...,z,) (Alg.1)
Initialize random clustering of points
for iterations do
Sample random permutation 7 of 1,..., N
for i € (7(1),...,7(N)) do
Remove ¢;, the outgoing link of customer 4
Sample ¢; ~ p(-|c—;,-) (Egs. 3)
if newTable(c;) (Eq. 4) then
K =K+1
Sample new parameters (ux,Xx) (Eq. 6)
Add them to ©1.x
end if
Move sitBehind(i) to ¢;’s table.
end for
Re-sample table parameters (Eq. 8)
Sample « using a Metropolis step
end for

we sampled from true Gaussian mixture distributions.
However, in experiments on real data we achieved
higher performance when explicitly sampling the clus-
ter parameters.

4 Experiments

The goal of our experiments is to demonstrate the
main advantages of the sd-CRP. It can (i) use the same
model for different tasks and modalities, (ii) it can ex-
ploit powerful features that represent documents; and
(iii) it more robustly recovers the clusters than most
other methods we try on most metrics. We compare
the sd-CRP to the other clustering algorithms men-
tioned in the previous section on handwritten digits
[10] and newsgroup articles.* All methods we compare
cluster the data in spectral space.

The 20 newsgroups dataset consists of 20 classes, di-
vided into six main topics. The approximate main
topics and number of subgroups are computers(5),
sports(4), science(4), sale(1), politics(3) and reli-
gions(3). The main topics can be quite diverse, for
instance auto and hockey are both in the sports cat-
egory. Hence, we only evaluate on the 20 subclasses.
Matlab code for the complete inference procedure can
be downloaded at http://uponAcceptance.

We use the same hyperparameter Ag for all experi-
ments on digits 1-4, digits 0-9 and main topics of news-
groups and expect to recover the main clusters. This is
possible because the spectral dimensionality reduction
method maps all data into a similar range, allowing us
to set the covariance prior to Ag = 0.005-diag(1) for all
CRPs. We set an initial a = 1076 for all experiments.
The dd-CRP uses the exponential decay function with
a = 0.01: f(d) = exp(—d/a). Unless otherwise stated

‘http://kdd.ics.uci.edu/databases/20newsgroups/

Method mutl | randl | Vol K

Oracle 1.38 1 0 4)
N-Oracle | 0.98 | 0.90 | 1.13 | (4)
k-means 093 | 0.88 | 1.29 | (4)
MBC 0.96 0.86 1.50 5

CRP 0.72 0.82 148 | 4.2
dd-CRP 0.98 0.86 1.65 | 6.0
sd-CRP 0.98 | 0.89 | 1.22 | 44

Table 1: Digits 1-4. Comparison of k-means, model
based clustering, CRP, dd-CRP and sd-CRP on a 4
digits subset of MNIST. The N-Oracle uses the ground
truth to compute the Gaussian mixture and then clus-
ters with these Gaussians, providing an upper bound of
what methods based on Gaussians can achieve. Met-
rics are mutual information (mutl, higher is better),
rand Index (randl, higher is better) and variation of
information (Vol, lower is better). K is the average
number of found clusters.

the number of dimensions in the embedding space is
set to the number of clusters. We explore the impor-
tance of the dimensionality of the embedding space in
the last experiment.

In all our experiments, k-means has an unfair ad-
vantage since it is given the true number of clusters.
Model based clustering and the CRP-based methods
recover the true number of clusters and still outper-
form the ubiquitous k-means algorithm in several set-
tings.

4.1 Digits 1-4 and Clustering Visualization

We first show results on a subset of the MNIST digits
dataset. We cluster 400 digits of the classes 1 to 4.
This setup allows us to use only two eigenvectors in
the lower dimensional space and to visualize some of
the differences between clustering methods.

Since one of our goals is to show that we can exploit
powerful features we use deep features [9] which are
among the best performing features for handwritten
digit classification and clustering. In all following digit
experiments we first compute a linear kernel of deep
learned features. The features are the top layer activa-
tions of a deep belief network trained in a completely
unsupervised fashion as described in [9] and simply
using their accompanied code. Using the similarity
matrix we map the digits to a lower dimensional space
and all cluster methods are compared in that space.

In table 1, we compare the sd-CRP to k-means, model
based clustering [7], the original CRPand the dd-CRP
(which uses the Euclidean distance in spectral space).
As clustering metrics we use mutual information, rand
index and variation of information [12]. The first two
are higher if the clustering is better whereas the last
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Figure 3: Clustering of 100 randomly sampled digits from 1 to 4 in spectral space. Model based clustering is
abbreviated as MBC. Markers are based on the ground truth, colors are based on the method’s clustering. The
sd-CRP uses the original similarity matrix when computing the seating prior. This allows points far away from
the mean to still join a cluster and influence its parameters. Hence, the sd-CRP correctly recovers the elongated

structure of the blue cluster.

one is better if it’s close to zero. Table 1 shows the
results. All CRPs are averaged over 5 runs and model
based clustering was run for K =1,...,20 clusters.

Fig. 3 shows the clustering result of these five meth-
ods. Table 1 demonstrates that the dd-CRP with a
prior based on Euclidean distances in spectral space
does not perform as well as the sd-CRP which uses
the original similarity matrix S for the seating prior.
This is apparent in the blue cluster of Fig. 3 whose
elongated structure of nearby points is only captured
by the sd-CRP.

4.2 Digits 0-9 and Hyperparameter
Sensitivity Analysis

In this experiments we cluster 1000 digits from all
classes 0,1,...,9. Table 2 (left) lists the results. CRP
and sd-CRP show a similar performance on the vari-
ation of information criterion, while the sd-CRP is on
par with model based clustering on mutual informa-
tion and rand index. Overall, the sd-CRP performs
best across all three metrics and is closest to the true
number of clusters.

The importance of the initial prior over seating as-
signments « is reduced since we sample it after each
iteration using a Metropolis Hastings step (in both the
CRP and sd-CRP). A sensitivity analysis shows that
the number of clusters can be learned robustly even
when the initial o varies several orders of magnitude.
Fig. 4 shows a sensitivity analysis of the variation of
information metric and the number of clusters given
different values of the hyperparameter a. For values
of « = 107%,...,0.1, the number of clusters robustly
varies between 8 to 12, i.e., around the true number
10.

12
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26 27 28 29 30 31
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1e-06 ' 0001 001 01
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Figure 4: Sensitivity Analysis of sd-CRP on the
number of clusters and variation of information (lower
is better) given different initial values of the hyperpa-
rameter «. Even if o changes several orders of magni-

tude, the number of clusters stays around the ground
truth of 10.

4.3 Newsgroups

We sample 1000 newsgroup articles uniformly from the
full set of 18,846. The similarity matrix is again com-
puted with a linear kernel of deep features of the news-
group articles similar to the procedure of [9]. When
using the same hyperparameters as in the digit exper-
iments, sd-CRP finds 8 clusters (compared to 11 in
MBC and 10.6 for CRP). Since the newsgroup dataset
is hierarchical (with 6 main classes and 20 subclasses),
no clustering algorithm can automatically determine
the preferred granularity of the clusters. We show that
by using a slightly smaller value for the covariance
prior, Ag = 0.001 - diag(1), the sd-CRP can recover
the 20 classes more accurately than other methods.
Table 2 shows that sd-CRP achieves the best score on
the variation of information metric and is most accu-
rate in its estimate of the number of clusters. Only
k-means, which was given the true number of clusters
outperforms it by 0.01 on the other 2 metrics.



Spectral Chinese Restaurant Processes

Digits 0-9 Newsgroups

Method mutl randl Vol K mutl randl Vol K
Oracle 2.30 1.00 0.00 (10) 2.98 1.00 0.00 (20)
N-Oracle 1.58 0.95 2.05 (10) 1.41 0.91 4.29 (20)
k-means 1.23 0.88 2.98 (10) 1.06 0.88 5.12 (20)
MBC 1.27 0.89 3.22 13 0.93 0.87 4.96 11
CRP 1.11+0.09 | 0.85+0.02 | 2.73+0.09 | 8.0+1.15 1.014+0.07 | 0.88+0.01 | 4.8940.07 | 15.0+1.9
dd-CRP 1.09+£0.04 | 0.85+0.01 | 2.984+0.10 | 8.0£0.78 || 0.98+0.05 | 0.82£0.03 | 5.15+0.06 | 22.84+1.5
sd-CRP 1.274+0.01 | 0.894+0.00 | 2.72+0.08 | 9.3+0.96 || 1.05+0.04 | 0.87+0.01 | 4.78+0.05 | 17.8+1.1

Table 2: Left: Digits 0-9. Comparison on a 10 digits subset of MNIST, including standard deviation. sd-CRP
in on par with the best methods on 2 metrics and outperforms others on Vol. It also most closely recovers the
true number of clusters. Right: Newsgroups. Comparison on the newsgroup dataset with 20 classes as ground
truth. The sd-CRP outperforms other methods on the variation of information criterion and is only 0.01 below
k-means in the other two metrics. However, k-means has an unfair advantage since it was given the true number

of clusters.

4.4 Influence of Dimensionality Reduction

The idea of combining spectral dimensionality reduc-
tion methods and nonparametric clustering has only
been explored briefly by Wood et al. [24] who use
PCA. They then discard completely the original data
(like all previous spectral clustering methods) and
cluster using only the first 2 eigenvectors. As we will
see, this throws away a lot of valuable information and
hurts clustering performance badly.

There are several factors playing into the choice of di-
mensionality for the reduced space. The lower it is,
the more the spectral method reduces the noise and
the faster the computations. However, choosing too
few eigenvectors also results in a loss of information.
Fig.5 shows results on the mutual information criterion
for the 1-4 digit dataset under different dimensionali-
ties of the embedding space. The bottom two horizon-
tal lines, k-means(O) and the CRP(O), are results in
the original feature space (the dd-CRP(O) performed
worse than .85 and is not show). While the results
vary, most methods perform best when using 5 or 6
eigenvectors and the sd-CRP achieves the highest per-
formance among all methods with only 5 eigenvectors.
Furthermore, the sd-CRP has the largest area under
the curve and is robust to the number of dimensions.
This experiment also shows that the dimensionality
reduction improves clustering in most settings.

5 Conclusion

We introduced a new nonparametric clustering tech-
nique based on the distance-dependent Chinese restau-
rant process and spectral dimensionality reduction.
Our method combines the advantages of both of these
methods and we hope it opens the door for further
research into such combined models. We showed that
nonparametric methods are a reasonable alternative to
the widely used k-means clustering in spectral space.
With the sd-CRP we introduce a simple but powerful

1.15
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w© 1.05 +k-means
% =MBC
e 1 +CRP
730 -+-dd-CRP
2 05 #sd-CRP
2 / —k-means (0O)
0.9 /
/ CRP (0)
0.85 b

3 5 6 7 9
Dimensionality of Embedding Space

Figure 5: Dependence of the clustering performance
(mutl) on the dimensionality of the embedding space
of the 4 digits dataset. The sd-CRP achieves the high-
est performance with only 5 dimensions underlining its
ability to exploit both the local information from its
similarity prior and the globally consistent likelihood
computed in spectral space.

modification to clustering with the dd-CRP in spectral
space. The sd-CRP does not simply use the spectral
dimensionality reduction as a pre-processing step. It
incorporates the original similarity matrix in its prior
instead of purely relying on the spatial layout in the
reduced dimensional space. We showed that the sd-
CRP is robust with respect to its hyperparameters and
outperforms other clustering methods on handwritten
digits and text documents. Our Gibbs sampler, pro-
vides the necessary combinatorial details needed when
using the dd-CRP in a non-sequential setting. A pos-
sible direction of future research could be to jointly
model and infer dimensionality reduction and cluster-
ing in one generative model.
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