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Preface

For Dan and Hayden, with even greater variances...

Unsupervised learning of hierarchical syntactic struefoom free-form natural language
text is an important and difficult problem, with implicat®for scientific goals, such as un-
derstanding human language acquisition, or engineeripticagions, including question
answering, machine translation and speech recognitionis s case with many unsu-
pervised settings in machine learning, grammar inductsually reduces to a non-convex
optimization problem. This dissertation proposes a noaelilfy of head-outward genera-
tive dependency parsing models and a curriculum learniagesty, co-designed to effec-
tively induce grammars despite local optima, by taking adiwvge of multiple views of data.
The dependency-and-boundary models are parameterizegltnteas much as possi-
ble, any observable state, such as words at sentence b@as)danich limits the prolif-
eration of optima that is ordinarily caused by presence tehlavariables. They are also
flexible in their modeling of overlapping subgrammars anasgieve to different kinds of
input types. These capabilities allow training data to Hé Bgo simpler text fragments,
in accordance with proposed parsing constraints, theratrgasing the numbers of visible
edges. An optimization strategy then gradually exposesmdes to more complex data.
The proposed suite of constraints on possible valid parsetstes, which can be ex-
tracted from unparsed surface text forms, helps guide kagglearners towards linguisti-
cally plausible syntactic constructions. These condisaane efficient, easy to implement
and applicable to a variety of naturally-occurring partiedcketings, including capitaliza-
tion changes, punctuation and web markup. Connectionsdeghiraditional syntax and
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HTML annotations, for instance, were not previously knoamg are one of several discov-
eries about statistical regularities in text that this thesntributes to the science linguistics.

Resulting grammar induction pipelines attain state-efdint performance not only on
a standard English dependency parsing test bed, but alsd@esd by constituent structure
metrics, in addition to a more comprehensive multilingueleation that spans disparate
language families. This work widens the scope and difficaftthe evaluation methodol-
ogy for unsupervised parsing, testing against nineteegulages (rather than just English),
evaluating on all (not just short) sentence lengths, amipdisjoint (blind) training and test
data splits. The proposed methods also show that it is dedsikliminate commonly used
supervision signals, including biased initializers, mahutuned training subsets, custom
termination criteria and knowledge of part-of-speech tagsl still improve performance.

Empirical evidence presented in this dissertation stypagbgests that complex learn-
ing tasks like grammar induction can cope with non-conyeaitd discover more correct
syntactic structures by pursuing learning strategieslibgtn with simple data and basic
models and progress to more complex data instances and rpressive model parameter-
izations. A contribution to artificial intelligence moredadly is thus a collection of search
techniques that make expectation-maximization and othiemazation algorithms less sen-
sitive to local optima. The proposed tools include multjeaiive approaches for avoiding
or escaping fixed points, iterative model recombination ‘atarting small” strategies that
gradually improve candidate solutions, and a generic freonle for transforming these
and other already-found locally optimal models. Such fi@mnsations make for informed,
intelligent, non-random restarts, enabling the desigmoofgrehensive search networks that
are capable of exploring combinatorial parameter spaces rapidly and more thoroughly
than conventional optimization methods.

Vi



Dedicated to my loving family.

Vii



Acknowledgements

| must thank many people who have contributed to the suadessipletion of this thesis,
starting with the oral examination committee members: mysaa, Daniel S. Jurafsky, for
his patience, encouragement and wisdom; Hayden Shaw, veiuelea a close collaborator
at Google Research and a de facto mentor; Christopher D. iMgrnom whom | learned
NLP and IR; Serafim Batzoglou, with whom | coauthored my eatlacademic paper; and
Arthur B. Owen, who became my first guide into the world of Stats. | am also grateful
to others — professors, coauthors, coworkers, labmathsy obllaborators, anonymous
reviewers, recommendation letter writers, graduate pwogcoordinators, friends, well-
wishers, as well as the numerous dance, martial arts, anal ipggructors who helped to
keep me (relatively) sane throughit all. Any attempt to naveryone is doomed to failure.

Here are the results of one such effort: Omri Abend, EnekerdgLauren Anas, Kelly
Ariagno, Michael Bachmann, Prachi Balaji, Edna Barr, Aldarski, John Bauer, Steven
Bethard, Yonatan Bisk, Anna Botelho, Stephen P. Boyd, TtharBrants, Helen Buendi-
cho, Jerry Cain, Luz Castineiras, Daniel Cer, Nathanaei®ieas, Cynthia Chan, Angel X.
Chang, Helen Chang, Ming Chang, Pi-Chuan Chang, Jean Chaxxigvig Che, Johnny
Chen, Renate & Ron Chestnut, Rich Chin, Yejin Choi, Danialn€l, John Clark, Ralph L.
Cohen, Glenn Corteza, Chris Cosner, Luke Dahl, Maria Dakidir Dembo, Persi Dia-
conis, Kathi DiTommaso, Lynda K. Dunnigan, Jason Eisneng3eeng, Jenny R. Finkel,
Susan Fox, Michael Genesereth, Suvan Gerlach, Kevin GjrApdly Golding, Leslie Gor-
don, Bill Graham, Spence Green, Sonal Gupta, David L.W.,Halissi Harwell, Cynthia
Hayashi, Julia Hockenmaier, John F. Holzrichter, Anna Késeva, Carla Murray Ken-
worthy, Steven P. Kerckhoff, Sadri Khalessi, Jam Kiattinaonald E. Knuth, Daphne
Koller, Mikhail Kozhevnikov, Linda Kubiak, Polina Kuzneiga, Cristina N. & Homer G.

viii



Ladas, Diego Lanau, Leo Landa, Beth Levin, Eisar Lipkou@lgudia Lissette, Ting Liu,
Sherman Lo, Gabby Magana, Kim Marinucci, Marie-CatheriaeMthrneffe, Felipe Mar-
tinez, Andrea McBride, David McClosky, Ryan McDonald, Rm#s Milgram, Elizabeth
Morin, Rajeev Motwani, Andrew Y. Ng, Natasha Ng, Barbarahdis, Peter Norvig, In-
gram Olkin, Jennifer Olson, Nick Parlante, Marius Pasesn&ndo Pereira, Lisette Perelle,
Daniel Peters, Leslie Miller Peters, Slav Petrov, Ann M&dtigrew, Keyko Pintz, Daniel
Pipes, Igor Polkovnikov, Elias Ponvert, Zuby Pradhan, &gmka Purves, Bala Rajarat-
nam, Daniel Ramage, Julian Miller Ramil, Marta Recaseng, Rachart, David Ro-
gosa, Joseph P. Romano, Mendel Rosenblum, Vicente RubjoSBlowartz, Xiaolin Shi,
David O. Siegmund, Noah A. Smith, Richard Socher, Alfredc$@e Yun-Hsuan Sung,
Mihai Surdeanu, Julie Tibshirani, Ravi Vakil, Raja VelugPMoulkos, Mengqiu Wang,
Tsachy Weissman, Jennifer Widom, Verna L. Wong, AdrianrshKiama & Bruce Wonna-
cott, Lowell Wood, Wei Xu, Eric Yeh, Ayano Yoneda, Alexand@ayliger, Nancy R. Zhang,
and many others of Stanford’s Natural Language Processioggithe Computer Science,
Electrical Engineering, Linguistics, Mathematics, andtiStics Departments, Aikido and
Argentine Tango Clubs, as well as the Fannie & John Hertz &ation and Google Inc.
Portions of the work presented in this dissertation werg@sttpd, in part, by research
grants from the National Science Foundation (award nuniBe®0811974) and the Defense
Advanced Research Projects Agency’s Air Force Researcbrh#dry (contract numbers
FA8750-09-C-0181 and FA8750-13-2-0040), as well as by dugate Fellowship from the
Fannie & John Hertz Foundation. | am grateful to these omgditins, and to the organizers
of TAC, NAACL, LREC, ICGI, EMNLP, CoNLL and ACL conferenceshd workshops.
Last but certainly not least, | thank Jayanthi Subramamahe Ph.D. Program Office and
Ron L. Racilis at the Office of the University Registrar, whaysng into action when, at
the last moment, one of the doctoral dissertation readingneittee members left the state
before conferring his approval with a physical signatut's.deen an exciting ride until the
very end. | am grateful to (and for) all those who stood by memife threw us curves.



Contents

Preface

Acknowledgements

1 Introduction

2 Background

2.1
2.2
2.3
2.4
2.5

The Dependency Model withValence . . . ... ... ... ......
Evaluation Metrics . . . . . . . . . . ... .. .
EnglishData. . . .. .. ... .. .. . .. . . . . . .. ... ...

MultilingualData . . . . . . . .. . . ... . ..

A Note on Initialization Strategies . . . . . ... ... ... ......

|  Optimization

3 Baby Steps

3.1
3.2
3.3
3.4

Introduction . . . . . . . ...

Intuition . . . . . . ..

Related Work . . . . . . . . . . . . . . . .
New Algorithms for the ClassicModel . . . . . ... ... ... ....

3.4.1 Algorithm #0: Ad-Hot
— A Variation on Original Ad-Hoc Initialization . . . . . .. ..

X

viii



— An Initialization-Independent Scaffolding . . . . . ... . .. 26
3.4.3 Algorithm #2: Less is More
— Ad-Hoc* where Baby Steps Flatlines . . . . ... ... ... .. 26
3.4.4 Algorithm #3: Leapfrog
— A Practical and Efficient Hybrid Mixture . . . . . . .. .. ... 26
3.4.5 Reference Algorithms
— Baselines, a Skyline and Published Art . . . . ... ... .... 28
3.5 ExperimentalResults . . . . ... ... .. .. ... 28
3.5.1 Result#l:BabySteps . .. ... ... ... ... .. .. ... 28
3.5.2 Result#2:LessisMore . .. .. ... ... ... .. 29
3.5.3 Result#3:Leapfrog . .. ... ... .. .. .. ... .. 31
3.5.4 Result#4: Generalization . . .. ... .. ... ......... 13
3.6 Conclusion . . . . . ... 32
Viterbi Training 34
4.1 Introduction . . . . . . . . . 34
4.2 Viterbi Training and Evaluation withthe DMV . . . . . . .. .... . .. 35
4.3 Experimental SetupandResults . . ... ... ... ... ... ... 36
4.3.1 Result#1: Viterbi-Trained Models . . . . . . .. .. ... ... 36
4.3.2 Result#2: SmoothedModels . . . . ... ... .. ... ... ... 38
4.3.3 Result #3: State-of-the-ArtModels . . .. ... ........ 38
4.4 Discussion of ExperimentalResults . . . ... ... ............ 40
4.5 Related Work on Improper Objectives . . . . .. ... ......... 41
4.6 Proofs (by Construction) . . . . . . .. .. ... .. ... 41
4.6.1 The Three Likelihood Objectives . . . . . .. ... ... .... 42
4.6.2 AWarm-Up Case: Accuracy Ve 2 6% . . . . . . . o oo ... 43
4.6.3 A Subtler Casel* = 0spVS. Ouns VS. Our « o v v e e 44
4.7 Discussion of Theoretical Results . . . . .. ... ... ... .. ... 48
4.8 Conclusion . . . . .. e 48

3.4.2 Algorithm #1: Baby Steps



5 Lateen EM 50

5.1
5.2

5.3
5.4
5.5

5.6

5.7
5.8

5.9
5.10

Introduction . . . . . . .. 50
The Lateen Family of Algorithms . . . . . . ... .. .. ... ..... 52
5.2.1 Algorithm #1: Simple LateenEM . . . . .. ... ... ... ... 52
5.2.2 Algorithm #2: Shallow LateenEM . . . . . . ... ... ... ... 25
5.2.3 Algorithm #3: Early-Stopping LateenEM . . . . . . . ... .. 53
5.2.4 Algorithm #4: Early-Switching LateenEM . . .. .. ... .. 53
5.2.5 Algorithm #5: Partly-Switching LateenEM . . . . . ... .. . 53
The Taskand Study #1 . . . . . . . . . ... .. . . . . .. 53
MethodologyforStudy#2 . . ... .................... 45
Experiments . . . . . . .. 55
55.1 BaselineModels . . ... ... ... ... ... ... . ... ... 55
55.2 LateenModels . . . . . .. ... 56
Results. . . . . . . . 56
5.6.1 Aly,—SimplelLateenEM . . . ... ... 0L 57
5.6.2 A2y —ShallowlLateenEM . . . ... ... 57
5.6.3 A3y, — Early-Stopping LateenEM . . . ... ... L 58
5.6.4 A4y, — Early-Switching LateenEM . . . . . ... ... L. 58
5.6.5 A5y, — Partly-Switching LateenEM . . . . .. ... ... ... 58
DISCUSSION . . . . . . . o e e 58
Related Work . . . . . . . . . . 59
5.8.1 Avoiding and/or Escaping Local Attractors . . . .. ... ... 59
5.8.2 Terminating Early, Before Convergence . . .. ... .. ...... 60
5.8.3 Training with Multiple Views . . . . . .. .. ... ... ..... 16
Conclusionsand FutureWork . . . . . . ... ... .. ... ...... 61
Appendix on Experimental Design . . . . . . . .. ... . e 62
5.10.1 DependentVariables . . .. ... ... ... ... ......... 62
5.10.2 Independent Predictors . . . . . . .. ... .. ... ...... 63
5.10.3 Statistical Significance . . . . . . ... ... L L. 64
5.10.4 Interpretation . . . . . . . . . .. ... 65
5.10.5 Moreon ViterbiTraining . . . . . . .. ... ... ... ...... 76

Xii



[l Constraints 68

6 Markup 69
6.1 Introduction . . . . . . . . . e 69
6.2 Intuition and MotivatingExamples . . . . . .. . ... ... .. .... 70
6.3 High-Level Outline of the Approach . . . . . .. ... ... ... ... 71
6.4 Data Sets for Evaluationand Training . . . ... ... ........... 72

6.4.1 A News-Style Blog: DanielPipes . . . . ... .......... 27
6.4.2 Scaled uQuantity The (EnglishyWeb . . . . .. ... .. .. .. 74
6.4.3 Scaled uQuality. (EnglishyWebNews . . . .. ... ... .... 74
6.5 Linguistic Analysisof Markup . . . . . ... ... ... .. ... .. 74
6.5.1 Surface Text Statistics . . . .. ... ... ... ... ...... 6 7
6.5.2 Common Syntactic Subtrees . . . . . .. ... ... ... ..., 76
6.5.3 Proposed Parsing Constraints . . . . . ... ... ....... 78.
6.6 Experimental MethodsandMetrics. . . . . ... .. ... ... .... 80
6.7 Discussion of ExperimentalResults . . . . ... .............. 81
6.7.1 WSJBaselines . ... .. ... .. .. ... 83
6.7.2 Blog. . . . . . . e 84
6.7.3 News . . . . . .. 85
6.7.4 Web . . . . ... 85
6.7.5 The StateoftheArt. . . . . . . . ... . ... . L 86
6.8 RelatedWork . . . . . . . . ... 87
6.9 Conclusion . . .. .. .. 88

7 Punctuation 90
7.1 Introduction . . . . . . . . 90
7.2 Definitions, Analyses and Constraints . . . ... ... ... ........ 91

7.2.1 AlLinguisticAnalysis . . . ... .. ... ... 92
7.2.2 FiveParsingConstraints . . . . . ... ... .. ... ...... 4 9
7.2.3 ComparisonwithMarkup . . . .. ... ... ... .. ...... 97
7.3 Methods . . . . . . . e 98
7.3.1 ABasicSystem . .. .. ... ... 98



7.3.2 ForgivingScoring. . . . . . . ...
7.3.3 BaselineSystems . . . . ... ... ... ... ...
7.4 Experiment #1: Default Constraints
7.5 Experiment#2: Optimal Settings . . . . . . ... ... ... ... ...

7.6 More Advanced Methods . . . . . . . . . ... ...,

7.7 Experiment#3: State-of-the-Art . . . .. ... ... ... ... ..
7.8 Experiment#4: Multilingual Testing . . . . . . .. ... ... ......
7.9 RelatedWork . . . . . . .. ..
7.10 Conclusionsand FutureWork . . . . . . .. ... ... ... ... ...

Capitalization

8.1 Introduction . . . . . . . .. ...
8.2 English Capitalization from a Treebank

8.3 Analytical Experiments withGold Trees . . . . . .. ... .. .....

8.4 Pilot Experiments on SupervisedParsing . . . . . . . ... ... ...

8.5 Multi-Lingual Grammar Induction . . . . . .. .. ... ... .. ...

8.6 Capitalizing on Punctuation in Inference . . . . . . ... ... . ...

8.7 Discussion and A Few Post-Hoc Analyses . . . . ... ... .. ...
8.7.1 Constraint Accuracies Across Languages . . . . . ... ...
8.7.2 Immediate Impact from Capitalization . . . . . . ... ... ..

87.3 OddsandEnds ... ... ... .. . . . .. ...

8.8 Conclusion . . . . . . . ..

Models

Unsupervised Word Categories

9.1 Introduction . . . . . . . . . .

9.2 Methodology . . ... .. ... . . ...

9.3 Motivation and Ablative Analyses . . . .. ... ... ... ... ...
9.3.1 Experiment#1: Human-AnnotatedTags . . . . .. .. ... .
9.3.2 Experiment #2: Lexicalization Baselines

Xiv



9.4 Grammars over InducedWordClusters. . . . . ... ... ... ...122

9.4.1 Experiment#3: A Flat Word Clustering . . . .. .. ...... 123
9.4.2 Experiment #4: A Hierarchical Clustering . . . . . .. .. .. .125
9.4.3 FurtherEvaluation . . . . ... ... ... ... .. ... .. ... 126
9.5 State-of-the-ArtwithoutGoldTags . . . . . . ... ... ... ..... 126
9.5.1 Experiment#5: A Monosemous Clustering . . . ... ... ... 127
9.5.2 Experiment #6: A Polysemous Clustering . . . . ... .. .....127
9.6 RelatedWork . . . . . . . . ... 129
9.7 Discussionand Conclusions . . . . ... .. .. ... .. ... ... 130
10 Dependency-and-Boundary Models 133
10.1 Introduction . . . . . . . .. 33
10.2 The Dependency and Boundary Models . . . . ... .. ... .. .. 134
10.2.1 Dependency and Boundary ModelOne . . . ... .. .. ... 35. 1
10.2.2 Dependency and Boundary Model Two . . . . . .. .. .. .. 371
10.2.3 Dependency and Boundary Model Three . . . . ... .. .. 137.
10.2.4 Summary of DBMs and Related Models . . . . . .. ... ... 381
10.3 Experimental Set-Up and Methodology . . .. ... ... .. ...... .138
10.4 Dependency and Boundary ModelOne . . . . .. ... ... ... .. 139
10.4.1 Analytical Motivation . . . . ... .. .. ... ... ...... 40
10.4.2 ExperimentalResults . . . ... ... ... ...........421
10.5 Dependency and Boundary Model Two . . . . .. ... ... ... .. 142
10.5.1 Analytical Motivation . . . .. ... ... ... ......... 42
10.5.2 ExperimentalResults . . . . . ... ... ... ......... 441
10.6 Dependency and Boundary Model Three . . . . . .. ... ... ...145
10.6.1 Analytical Motivation . . . . ... .. ... ... .. ... ... 43
10.6.2 Experimental Results Postponed . . . . . ... ... ... .. 146
10.7 A Curriculum StrategyforDBMs . . . . . . . ... ... .. 146
10.7.1 Scaffolding Stage #1: DBM-1 . . . . . . . .. ... . ... ... 461
10.7.2 Scaffolding Stage #2: DBM2 DBM-1 . . . .. ... ... ... 147
10.7.3 Scaffolding Stage #3: DBM<3DBM-2 . . . . . ... ... ... 148

XV



10.8 Discussion and the State-of-the-Art. . . . . . . . . . . . ... . ... 148

10.8.1 Monolingual POS-Agnostic Inducers . . . . . .. .. .. ...149
10.8.2 Monolingual POS-Identified Inducers . . . ... ... .....150
10.8.3 Multilingual Semi-Supervised Parsers . . . . .. .. ...... .. 150
10.8.4 Miscellaneous Systems on Short Sentences . . . . . ........ 150
10.9 Conclusion . . . . . .. 151
11 Reduced Models 152
11.1 Introduction . . . . . . . .. 521
11.2 Methodology . . . . . . . . . . 153
11.3 Experiment #1 (DBM-2):
Learning from FragmentedData . . . . .. .. ... ... ........ 515
11.4 Experiment #2 (DBM):
Learningwitha Coarse Model . . . . ... .. ... ... ......... 156
11.5 Experiment #3 (DBM-0):
Learning with an Ablated Model . . . . . . ... ... ... ... ..... 715
11.6 Conclusion . . . . . . . e 157
11.7 AppendixonPartialDBMs . . . . .. .. ... ... ... ... ..., 158
IV  Complete System 160
12 An Integrated Training Strategy 161
12.1 Introduction . . . . . . . .. 611
12.2 AbstractOperators . . . . . . . . . . e 162
12.2.1 Transforms(Unary). . . . . . . . . . . . . . .. ... .. ... 316
12.2.2 Joins(BInary) . . . . . . . e 163
12.3 The Task and Methodology . . . . . . . .. . ... ... ... ..... 164
12.3.1 ModelsandData . . . ... ... ... .. ... ... 164
12.3.2 Smoothing and Lexicalization . . . . ... ... ... ... .. 166
12.3.3 Optimization and Viterbi Decoding . . . ... ... ... ... 166
12.4 Concrete Operators . . . . . . . . . o i it 166



12.4.1 Transform #1: ASimpleFilter . . . . . . .. .. ... ..... 167

12.4.2 Transform #2: A Symmetrizer . . . . . . .. .. .. ... .. .. 671
12.4.3 Join: ACombiner. . . . . . . ... 168
12.5 Basic Networks . . . . . . . . . . . .. 816
1251 Fork/doin (FJ) . . . . . . . . . e 169
12.5.2 lterated Fork/Join (IFJ) . . . . . . . . . . . ... ... ..... 170
12.5.3 Grounded Iterated Fork/Join (GIFJ) . . ... .. .. .. ...... 170
12.6 Performance of Basic Networks . . . . .. ... ... ......... 171
12.6.1 Fork/doin (FJ) . . . . . . . . . e 171
12.6.2 lterated Fork/Join (IFJ) . . . . . . . . . . .. ... ... .... 172
12.6.3 Grounded Iterated Fork/Join (GIFJ) . . . ... ... .. ...... 172
12.7 Enhanced Subnetworks . . . . .. ... ... ... . oL, 173
12.7.1 Anlterative Combiner(IC) . . . . . . . .. .. .. ... .... 173
12.7.2 A Grammar Transformer (GT) . . . . . . .. .. .. .. ... .. 417
12.8 Full Training and System Combination. . . . .. ... ... ......174
12.9 Multilingual Evaluation . . . . . . . .. ... ... ... ... .. ... 176
12.10DISCUSSION . . . . . . o e e e 781
12.11Related Work . . . . . . . . . 817
12.12Conclusion . . . . . . 018
13 Conclusions 182
Bibliography 187

XVii



List of Tables

2.1

3.1

3.2

4.1

5.1

5.2

5.3

Sizes of all 2006/7 CoNLL training and evaluation datase . . . . . . . 16

Directed (and undirected) accuracies on Section 23 aP%W$/SJ100 and
Brown100 for Ad-Ho¢, Baby Steps and Leapfrog, trained at WSJ15 (left)
and WSJA5. . . . .. e 31

Directed accuracies on Section 23 of WBJ20,> } for several baselines
and previous state-of-the-artsystems. . . ... .. ... ... ... . 32

Accuracies on Section 23 of WE8J, 20,> } and Brown100 for three pre-
vious state-of-the-art systems, this chapter’s initealiand smoothed Viterbi-
trained runs that employ different initializationstrateg . . . . . . . . .. 40

Directed dependency accuracies (DDA) on Section 23 of \(é8 sen-
tences) for contemporary state-of-the-art systems anéxperiments (one
unlexicalized and one lexicalized) with a single altermiatf lateen EM. . 54

Estimated additive changes in directed dependencyanc(\a) and mul-
tiplicative changes in the number of iterations before teating (A7) for

all baseline models and lateen algorithms, relative todsteth training:

soft EM (left) and hard EM (right). Bold entries are statstly differ-

ent (p < 0.01) from zero, forAa, and one, forA; (details in Table 5.4 and
Appendix). . ... e 56
Directed dependency accuracies (DDA) and iteratiomisolor the 10 (of

23) train/test splits affected by early termination (s®fti soft EM’s pri-

mary objective, trained using shorter sentences and adhit@tization). . 59

XViii



5.4

5.5

5.6

6.1

6.2

6.3

6.4
6.5

6.6

Regressions for accuracies and natural-log-itersitiesing 86 binary pre-
dictors (all p-values jointly adjusted for simultaneous hypothesisinigst
{langyeas indicators not shown). Accuracies’ estimated coefficiehts
that are statistically different from 0 — and iteration ctBJmnuItipIierSeB
significantly different from 1 — are showninbold. .. ... .. .. .. 63

Performance (directed dependency accuracies meaagaguaist all sen-
tences in the evaluation sets) and efficiency (numbersratitas) for stan-
dard training (soft and hard EM), early-stopping lateen EM)(and sim-
ple lateen EM with hard EM’s primary objectivel (), for all 23 train/test
splits, withadhocandsweetsettingson. . . . . . ... .. .. ... .... 65

Performance (directed dependency accuracies meaagasuast all sen-
tences in the evaluation sets) and efficiency (numbersratitas) for stan-
dard training (soft and hard EM), early-stopping lateen EA3)(and sim-
ple lateen EM with hard EM’s primary objectivel (), for all 23 train/test
splits, with settingadhocoff andsweeton. . . . . . . .. .. .. ... ... 66

Sizes of corpora derived from WSJ and Brown and thoseateli from
theweb. . . . . . . e 72

Counts of sentences, tokens and (unique) bracketings.f0G,, restricted
to only those sentences having at least one bracketing rrteshioan the

length cutoff (but shorter than the sentence). . . . . . ... ... ... 73
Top 50% of marked POS tag sequences. . . . . .. .. ... ...... 75
Top 99% of dominating non-terminals. . . . . ... ... ... ..... 75

Top 15 marked productions, viewed as constituents kbtengs are under-
lined). . . . . . . e 76

Top 15 marked productions, viewed as dependencies rattersively ex-
panding any internal nodes that did not align with braclggifunderlined).
Tabulated dependencies were collapsed, dropping any deptrthat fell
entirely in the same region as their parent (i.e., both m#n@ bracketing,
both to its left or both to its right), keeping only crossirttpghments. . . . 77

XiX



6.7

6.8

6.9

7.1

7.2

7.3

7.4

7.5

7.6

7.7

8.1
8.2

Directed accuracies on Section 23 of WBJ> } for previous state-of-the-

art systems and the best new runs (as judged against WSJAH WS and
BLOG; (more detailsinTable6.9). . . . . ... ... ... .........
Counts of sentences, tokens and (unique) bracketimgsefio-based data
sets; trimmed versions, restricted to only those sentehaesg at least

one multi-token bracketing, are indicated by aprime.(. . . . .. .. .. 83
Accuracies on Section 23 of W8J, 20,> } and Brown100 for three re-
cent state-of-the-art systems, our default run, and ourrbas (judged by
accuracy on WSJ45) for each of four trainingsets. . . . . . . ...... .. 87

Top 15 fragments of POS tag sequencesinWSJ. . . . . ... ........ 91
Top 99% of the lowest dominating non-terminals derivéogplete inter-
punctuation fragmentsinWSJ. . . . . ... ... .o oL 2
Top 15 productions yielding punctuation-induced fragts in WSJ, viewed

as constituents, after recursively expanding any intemodes that do not
align with the associated fragmentation (underlined). ...... . .. ... 93
Top 15 productions yielding punctuation-induced fragts in WSJ, viewed

as dependencies, after dropping all daughters that fetegntn the same
region as their mother (i.e., both inside a fragment, botitstéeft or both

to its right), keeping only crossing attachments (justone). . . . . . . . 94
Directed accuracies on Section 23 of WSdnd WSJ10 for the super-
vised DMV, several baseline systems and the punctuatios (alhusing

the weighted initializer). . . . . .. ... ... ... ... ... ... 100
Accuracies on the out-of-domain Brown100 set and Se@Bof WSJ°

and WSJ10, for the lexicalized punctuation run and otheremecent
state-of-the-artsystems. . . . . . .. . ... ... .. ... .. .. 102
Multilingual evaluation for CoNLL sets, measured atthliee stages of
training, with and without constraints. . . . . . . . ... ... ... .. 103

Top 10 fragments of POS tag sequencesinWSJ. . . . . ... ... . ... 108
Several sources of fragments’ end-points and %-caresstof their de-
rived constraints (for English). . . . ... ... .. ... ...... .. 109

XX



8.3

8.4

8.5

8.6

8.7

9.1

9.2

9.3

Supervised (directed) accuracy on Section 23 of WS@usipitalization-
induced constraints (vertical) jointly with punctuatidro(izontal) in Viterbi-
decoding. . . . . . . .. 109
Parsing performance for grammar inducers trained \aitalization-based
initial constraints, tested against 14 held-out sets fro0627 CoNLL shared
tasks, and ordered by number of multi-token fragments initrg data. . . 110
Unsupervised parsing with both capitalization- andgwation-induced
constraints in inference, tested against the 14 held-datfeem 2006/7
CoNLL shared tasks, and state-of-the-art results (allesem lengths) for
systems that: (i) are also POS-agnostic and monolingudtding L (La-

teen EM, Tables 5.5-5.6) and P (Punctuation, Ch. 7); ande{if)on gold
POS-tag identities to (a) discourage noun roots [202, ME],gncour-

age verbs [259, RF], or (c) transfer delexicalized pars2@6,[ S] from
resource-rich languages with parallel translations [2BH]. . . . . . .. 112

Accuracies for capitalization- and punctuation-iretliconstraints on all

(full) 2006/7 CoNLL trainingsets. . . . . . . . . . . .. ... ... . 113
Unsupervised accuracies for uniform-at-random ptivjeparse trees (init),

also after a step of Viterbi EM, and supervised performanitie iwduced
constraints, on 2006/7 CoNLL evaluation sets (sentencedsrutv5 tokens). 115

Directed accuracies for the “less is more” DMV, trainedWwSJ15 (after

40 steps of EM) and evaluated also against WSJ15, usingusaléxical
categories in place of gold part-of-speech tags. For eaghkdy its effec-

tive number of (non-empty) categories in WSJ15 and the erskylines
(supervised performance) are alsoreported. . . . .. . ... ... .. 120
Example most frequent class, most frequent pair andnualioreassign-
ments for tokeng, theandgains . . . . . . .. ... ... ... ... .. 121
Representative members for two of the flat word groupicgsster #173

(left) contains adjectives, especially ones that take @atjve (or other)
complements; cluster #188 comprises bare-stem verbsi{ivdirstems).

(Of course, many of the words have other syntacticuses.) . . . . . . . 123

XXi



9.4 Directed accuracies on Section 23 of WSJ (all senterioe$)vo experi-
ments with the base system. . . . . . ... ... ... oL 125

9.5 Directed accuracies on Section 23 of WSJ (all sentericeskperiments
with the state-of-the-artsystem. . . . . .. ... ... ... ... ... 126

10.1 Parameterizations of the split-head-outward geivernatocess used by DBMs
andinpreviousmodels. . . . . .. ... 138

10.2 Directed dependency accuracies, averaged over b/ 2@oNLL eval-
uation sets (all sentences), for the DMV and two new dependand-
boundary grammar inducers (DBM-1 and 2) — using two terniomegtrate-
JIBS. .« o e 139

10.3 Coefficients of determinatio®f) and Akaike information criteria (AIC),
both adjusted for the number of parameters, for severalesimgedictor
logistic models of non-adjacent stops, given direcor ¢, is the class
of the head;n is its number of descendants (so far) to that side, @and
represents the farthest descendant (theedge). . ... .. ........ .. 140

10.4 Empirical distributions for non-punctuation POS tag¥VSJ, ordered by
overall frequency, as well as distributions for sentenagnolaries and for
the roots of complete and incomplete sentences. (A unifastmiloution
would havel /36 = 2.7% foralltags.) . . ... ... ... ... ...... 141

10.5 A distance matrix for all pairs of probability distriibans over POS-tags
shown in Table 10.4 and the uniform distribution; the BC- li®llinger)
distance [28, 235] between discrete distributipnand ¢ (over z ¢ X)
ranges from zero (ifp = ¢) to one (iffp - ¢ = 0, i.e., when they do not
overlapatall). . . . . ... ... ... 142

10.6 A contingency table for clausal sentences and tragingctuation in WSJ;
the mean square contingency coefficiensignifies a low degree of corre-
lation. (For two binary variables,; is equivalent to Karl Pearson’s better-
known product-moment correlation coefficiept) . . . ... ... . ... 144

XXii



10.7 Contingency tables fan right-attachingiD, among closest ordered pairs
of these tokens in WSJ sentences with punctuation, verauprésence of
intervening punctuation; and (b) presence of intermediatels. . . . . . . 145
10.8 Average accuracies over CoNLL evaluation sets (altesees), for the
DMV baseline, DBM1-3 trained with a curriculum strategydastate-of-
the-art results for systems that: (i) are also POS-agnastit monolin-
gual, including L (Lateen EM, Tables 5.5-5.6) and P (PurtainaCh. 7);
(ii) rely on gold tag identities to discourage noun rootsZ2MZ] or to
encourage verbs [259, RF]; and (iii) transfer delexicaliparsers [296,
S] from resource-rich languages with translations [213HyIDMV and
DBM-1 were trained on simple sentences, starting from (dmey parse
trees chosen uniformly-at-random; DBM-2 and 3 were tramechost sen-
tences, starting from DBM-1 and 2’s output, respectivelinferenceis
DBM-3 with punctuation constraints. . . . . . . ... ... .. ... .. 147

11.1 Directed dependency and exact tree accuracies (DDAfbr#he baseline,
experiments with split data, and previous state-of-thearSection 23 of

11.2 Feature-sets parametrizing dependency-and-bounuadels three, two,
1 and zero: ifcomp is false, then so areomp,... and both ofcompg;,;
otherwise comp,..; is true for unsplit inputsgompy;, for prefixes (ifdir =
L) and suffixes (whedir =R). . . . . . . . . ... 157

12.1 Sentence string and parse tree cross-entropies Jirmbgtaccuracies (DDA),
on inter-punctuation fragments up to length 15 (\@\Zm and its subset of
simple, complete sentences (V\ilfgr}, with exact tree accuracies — TA). . . 172
12.2 Directed dependency accuracies (DDA) on Section 23 80 \(&ll sen-
tences and up to length ten) for recent systems, our full ordsv(IFJ and
GT), and three-way combination (CS) with the previous stdtthe-art. . . 175
12.3 Harmonic meani;) of precision (P) and recall (R) for unlabeled con-
stituent bracketings on Section 23 of WSJ (sentences umgHet0) for
the combined system (CS), recent state-of-the-art andabelines. . . . . 176

xXXxiii



12.4 Blind evaluation on 2006/7 CoNLL test sets (all sengshdor the full
networks (IFJ and GT), previous state-of-the-art systehiareCek and
Zabokrtsky [203]Mz, and DBMs (from Ch. 10)sAJ, and three-way com-
bination of IFJ, GT an¢AJ(CS, including results up to length ten). . . . . 177

XXiV



List of Figures

11

2.1

2.2

2.3
2.4

2.5

A syntactic annotation of the running example sentanciyding (i) indi-
vidual word tokens’ parts-of-speech (POS), which can berdahers PT),
adjectives {J), nouns {iN), prepositions{l), verbs {BZ), etc.; (ii) a brack-
eting that shows how words are arranged into coherent chumksthe
noun {{P), prepositional {P) and verb phrased’¥), which culminate in a
simple declarative clausg)(that spans the input text in its entirety; and
(iif) lexical head words of the constituents, i.e., the maouns, preposi-
tion and verb of the corresponding phrases, as well as the Vexd (s)

that derives the fullsentence. . . . . . . . . . ... ... . ... ... 1

Paskin’s “grammatical bigrams” as head-outward autaifiar head words

Klein and Manning's dependency model with valence (DM)head-
outward automata (for head words of clags A similar diagram could
depict Headden et al.'s [133] extended valence grammar (ERY5uUsing

a separate set of parametes} instead of{~}, for the word-word attach-
ment probabilities in the self-loops of non-adjacentstate . . . . . . .. 11
A dependency structure and its probability, as factbsethe DMV. . . . . 12
A dependency structure that interprets determinersasdof noun phrases.
Four of the six arcs in the parse tree are wrong (in red), tieguin a di-
rected score of 2/6 or 33.3%. But two of the incorrect depeoigs con-

nect the right pairs of words, determiners and nouns, in tio@agvdirection.
Undirected scoring grants partial credit: 4/6 or 66.7%. ...... . . . ... 13
Sizes of WS{L, ..., 45,100}, Section 23 of WS3 and Brown100. . ... 14

XXV



2.6

3.1

3.2

3.3

3.4

4.1

Estimates of the binned log-normals’ parametéfs, and {5}, for arc
lengths of CoNLL languages cluster around the standareh&ogial’'sy =
0 ando = 1. Outliers (in red) are Italiani¢) and Germandg), with very
short and very long arcs, respectively. . . . ... ... ........... 18

Cross-entropy on WSJ45 after each baby step, a pieeehwesar fit, and

an estimated region fortheknee. . . . . . .. ... ... ... 27
Directed and undirected accuracy scores attained ly¥hé when trained

and tested on the same gradation of WSJ, for several diferiéialization
strategies. Green circles mark Klein and Manning’s pubklisbcores; red,

violet and blue curves represent the supervised (maxiniketiHood ora-

cle) initialization, Baby Steps, and the uninformed umfoprior. Dotted

curves reflect starting performance, solid curves regis¢éeformance at

EM'’s convergence, and the arrows connecting them emphtmzenpact
oflearning. . . . . . . . . .. 29
Directed accuracies for Ad-Ho¢shown in green) and Leapfrog (in gold);
allelseasinFigure3.2]. . . . .. .. .. . ... .. .. .. ... 30
Directed accuracies attained by the DMV, when trainedaaibus gra-
dations of WSJ, smoothed, then tested against fixed evafuagts —
WSJX10,40}; graphs for WS{20, 30}, not shown, are qualitatively sim-

Harto WSJ40. . . . . . . . e 31

Directed dependency accuracies attained by the DMVnwiesned on
WSX, smoothed, then tested against a fixed evaluation set, W$0
three different initialization strategies. Red, green bhee graphs repre-

sent the supervised (maximume-likelihood oracle) inigation, a linguistically-
biased initializer (Ad-Hot) and the uninformed (uniform) prior. Panel (b)
shows results obtained with Viterbi training instead otsla EM — Panel (a),
butis otherwise identical (in both, each of the 45 vertitiaks captures five

new experimental results and arrows connect starting peeice with fi-

nal accuracy, emphasizing the impact of learning). Pacgsnd (d) show

the corresponding numbers of iterations until EM’s coneere. . . . . . . 37

XXVi



4.2

4.3

5.1

5.2

9.1

Directed accuracies for DMV models traingith Laplace smoothing (brightly-
colored curves), superimposed over Figure 4.1(a,b); W nle/es represent
Baby Steps. . . . . .. 39

Sentence-level cross-entropy for Ad-Hadtializers of WSJ1,...,45}. . 40

A triangular sail atop a traditional Arab sailing vessbe dhow (right).
Older square sails permitted sailing only before the wingt tBe efficient
lateensail worked like a wing (with high pressure on one side andposs-
sure on the other), allowing a ship to go almost directly imtoeadwind.
By tacking in a zig-zag pattern, it became possible to sail in any direc
tion, provided there was some wind at all (left). For cersiseafarers ex-
pertly combined both sails to traverse extensive distgrgreatly increas-
ing the reach of medieval navigation. (Partially adaptesnfihttp://
www.britannica.com/EBchecked/topic/331395, http://allitera.
tive.org/archives/004922.html andhttp://landscapedvd.com/
desktops/images/ship1280x1024.3pg.) . . . . . .« o . oo 51

Cross-entropies for Italian '07, initialized unifolyrdéind trained on sen-

tences up to length 45. The two curves are primary and secpotigec-

tives (soft EM’s lies below, as sentence yields are at lemBkealy as parse

trees): shaded regions indicate iterations of hard EM (@ry)n and an-

notated values are measurements upon each optimizer'srgamece (soft

EM’s are parenthesized). . . . . .. .. ... ... L oo 57

Parsing performance (accuracy on WSJ15) as a “functbittie number

of syntactic categories, for all prefix lengthsk< {1, ...,18} — of a hi-
erarchical [41] clustering, connected by solid lines (def@cy grammar
induction in blue; supervised oracle skylines in red, aboveagless lex-
icalized modelsf(ll, partial andnong connected by dashed lines. Mod-
els based omgold part-of-speech tags, and derived monosemous clusters
(mfq mfpandua), shown as vertices of gold polygons. Models based on a
flat[61] clustering indicated by squares. . . . . . .. ... ... .. .. 124

XXV



10.1 The running example — a simple sentence and its unklkelpendency
parse structure’s probability, as factored by DBM-1; highted comments

specify heads associated to non-adjacent stopping pidpdsctors. . . . 136
10.2 Histograms of lengths (in tokens) for 2,261 non-clélsagments (red) and
other sentences (blue) inWSJ. . . . .. ... ... ... ........ 43 1

11.1 Three types of input: (a) fragments lacking senter@d-fiunctuation are
always considered incomplete; (b) sentences with trathaigno internal
punctuation are considered complete though unsplittaiole;(c) text that
can be split on punctuation yields several smaller incotepiigments,
e.g.,Bach’s Air andfollowed In modeling stopping decisionBach’sis
still considered left-complete — arfdllowedright-complete — since the
original input sentence was complete. . . . .. .. ... ... .. ... 156

XXViii



Chapter 1
Introduction

Parsing free-form text is a core task in natural languagegqssing. Written sentences and
speech-transcribed utterances are usually stored in autengomemory as character se-
guences. However, this simple representation belies¢hdinguistic structure that perme-
ates language. Correctly identifying hierarchical sulngtires, from the parts-of-speech of
individual words to phrasal and clausal bracketings of rwattrd spans (see Figure 1.1),
is indispensable for many applications of computationajuistics. Coreference resolu-
tion [139, 184], semantic role labeling [116, 328] and rielaextraction [135, 221] are just
a few of the important problems that depend on the informaitiosyntactic parse trees.
Unfortunately high quality parsers are not available forstnanguages, since manually

D.T N‘N V].BZ \ D.T NN
's[vwe The  check [vpis in [we the mail|]].
Su‘t;ject Ot;j,ect

Figure 1.1: A syntactic annotation of the running exampleesece, including (i) individ-
ual word tokens’ parts-of-speech (POS), which can be detens O0T), adjectives {3),
nouns {IN), prepositions V), verbs {{BZ), etc.; (ii) a bracketing that shows how words are
arranged into coherent chunks, i.e., the natw),(prepositional {P) and verb phrases¥),
which culminate in a simple declarative clausg that spans the input text in its entirety;
and (iii) lexical head words of the constituents, i.e., th@mmouns, preposition and verb
of the corresponding phrases, as well as the head 1&inét derives the full sentence.



2 CHAPTER 1. INTRODUCTION

specifying comprehensive parsing rules, or constructangd reference treebanks from
which valid grammatical productions could be extractetigtaally, is an extremely time,
labor and money-intensive process. Even where modern\gapdrparsers are available
they tend not to generalize well out-of-domain, for exampden traditional news-style
data to biomedical text [210]. Nevertheless the ability tvge understudied and low-
resource languages, in addition to non-standard genresdilentific writing, legalese and
web text, is a crucial prerequisite to exploiting any higlexel NLP components, which
have come to rely on good quality parses for their succesthese important domains.
Partly because it may not be feasible to thoroughly annatateture for most genres of
most languages, fully-unsupervised parsing and gramndaiction [44, 82, 345] emerged
as active research areas, alongside more traditional sgpeirvised and domain adaptation
methods, but further distinguished by a possible connettituman language acquisition.
Many standard grammatical formalisms and parsing styles ha@en used as vehi-
cles for inducing syntactic structure, including congitay [245, 82, 171, 34], depen-
dency [44, 345, 244, 172, 133] and combinatory categoriamgnars [30, 31], or CCG,
for which reference treebanks already exist from the maanabtation efforts in the su-
pervised parsing settings, as well as tree-substitutiamgrars [33, 68] and other repre-
sentations [299, 283]. | chose to work within a simple degseg parsing framework,
where the task, given a sentence (elhe check is in the ma)l.is to identify its root
word (i.e.,is), along with the parents of all other (non-root) words (ialeckfor The is
for check is for in, mail for the andin for mail — see Figure 1.1). If we restrict atten-
tion only to well-formed parses, the task becomes equivdtefinding a spanning tree,
taking the input tokens as vertices of a graph [212]. Thigesgntation had become a
dominant paradigm for grammar induction following KleindaManning’s publication of
the dependency model with valence [172], or DMV, which | discin the next chap-
ter (see Ch. 2). Resulting unlabeled dependency edgesrgtgbdy, closer to semantics
and capturing meaning [10] than the output of many otheragitt formalisms, such as
unlabeled constituents. At the same time, dependency gaasnpresent a light-weight
framework that, although shallower than CCG, is also edsierduce and faster to parse.
This representation is therefore not only relevant to theengeneral problem of language
understanding but also strikes the correct balance foaicennportant applications that



motivate grammar induction in industry. Prime examplesude: (i) information retrieval
and web search [38, 125], where distances between wordpendency parse trees may
work as better indicators of proximity than their nominadsential positioning in surface
text [45, 181]; (ii) question answering [101], where (ongeia, dependency) parses of nat-
ural language questions [248] are transformed to matchtthetsre of corresponding hy-
pothetical sentences that may contain an answer; andy(fiitag-aware statistical machine
translation [340], in which one side of a parallel corpusasistimes “pre-ordered” to bet-
ter match the other side of a bitext [164], for example, frow $ubject-verb-object (SVO)
word order of English to subject-object-verb (SOV) in Jags) simply by pushing main
verbs to ends of sentences, or to object-subject-verb (@FWoda-speak,” by also re-
arranging the arguments of root worda:the mail the check isln situations where con-
stituent parses are preferred, the weak equivalence befglease and dependency struc-
tures [337] could be exploited to obtain the correspondimigheled bracketings, such as

[[The_check{is [in [the malil]]].

The DMV ushered a breakthrough in unsupervised dependearsyng performance,
for the first time beating both left- and right-branchingddases, which simply connect ad-
jacent words. Many of the state-of-the-art results thdbweed Klein and Manning’s semi-
nal publication were also based on their model [295, 65, 883117, 33]. For this reason, |
began by replicating the core DMV architecture, inheritimgny of its simplifying assump-
tions. These included: (i) using POS tags as word categ@dgsin place of actual words;
(i) imposing a projective parsing model to generate thekerts [7, 8, 2441, efficiently
learnable via inside-outside re-estimation [89, 243]; @idprocessing all sentences in-
dependently. The above simplifications are, of course, rheugistics and don’t always
hold. Lexical items will often contain important semantédrmation that could facilitate
parsing in a way that coarse syntactic categories cannotinarity of correct dependency
parse trees will be non-projective, with some dependercy@ossing, hence unattainable
by the DMV. Expectation-maximization (EM) algorithms [8B4] for grammar induction

In a projectiveparse structure, the yield of any syntactic head is requida continuous [176]: more
specifically, a dependency graph is projective preciselgmdin edge fron® to (2) implies the existence of
a directed path fron® also to all of the intervening words that lie between them seatence [211§1.3.1].
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will get stuck in local optima, requiring careful initiaiion and/or restarts. And the syn-
tactic roles played by words in nearby sentences will tengetoorrelated [270]. Despite
these clear deficiencies, the DMV has stood the test of tinaeralsust platform for getting
grammar inducers off the ground. Taking a cue from this ss&atory, the work pre-
sented in this thesis further strengthens independencenas®ns, for example splitting
sentences on punctuation and processing the resultinggpgaparately. Focusing on sim-
ple examples, such as short sentences and incompleteagridénts, helps guide unsuper-
vised learning, mirroring the well-known effect that bangthard examples has in super-
vised training [108]. And unlike in supervised parsing, whene popular trend has been
to introduce more complex models, with specialized priorpitevent overfitting [156],
the over-arching theme of this work on grammar inductiomisrhploy extremely simple
parsing models, but coupled with strong, hard constratotguard againstinderfitting
The research described in this dissertation followed aphase trajectory. In the first
phase, | took apart the DMV set-up, trying to understand tWwhieces worked, which didn’t
and why. In the second phase, | used the insights obtainedrfrg experience in the first
phase to improve the working components and to design mfaetige grammar induction
models and pipelines around them. Some of the known weaksioithe DMV set-up in-
clude its sensitivity to local optima and choice of initedr [113,56.2]. Part | of this thesis
therefore focuses on optimization strategies that eitbeftdequire initialization (Ch. 3)
or work well with uninformed, uniform-at-random initiakzs (Ch. 4), as well as strategies
for avoiding and escaping local optima (Ch. 5). The DMV’s-tamtc harmonic” initializer,
whose stated goal was “to point the model in the vague gedegatdtion of what linguistic
dependency structures should look like,” is only one of miangls of universal knowledge
that could be baked into a grammar inducer. In that vein, [$aniid Eisner [295] further
emphasized structural locality biases; Seginer [283, 2&t]e use of the facts that humans
process most sentences in linear time, that parse treesddredskewed, and that words
follow a Zipfian distribution; Gillenwater et al. [117] exgted the realized sparsity in the
guadratic space of possible word-word interactions; an@anly attempt to understand the
power laws of harmonic initializers yielded an additiomadyel observation: dependency
arc lengths are log-normally distributed (Ch. 2). Levenggsuch biases can be trouble-
some, however, since the exact parameters of soft universpérties have typically been



optimized for English or fitted to treebanks, rather thanrled from text. Part Il of this the-
sis therefore focuses on identifying reliable sources odl lkanstraints on parse trees that
can be mined for naturally-occurring partial bracketingd49], making explicit the con-
nection between linguistic structure and web markup (Cthéfirst work to explore such
a connection), punctuation (Ch. 7), and capitalization. @hto augment the projectivity
restrictions that are implicitly enforced by head-outwgesherative parsing models.

One of the biggest questions that this dissertation aimasgwaer is the extent to which
supervision is truly necessary for grammar induction. Te ¢imd, Part 11l begins by show-
ing how word categories based on gold parts-of-speech, achvthe entire dependency
grammar induction field had been relying for state-of-thtep@rformance since 204,
when the lexicalized system of Paskin [244] was revealeddoesbelow chance [172], can
be replaced by fully-unsupervised word clusters and stiirove results (Ch. $) Thisis a
key contribution, since assuming knowledge of parts-@&es is not only unrealistic from
the language acquisition perspective but also an inefticisa of the syntactic information
that these tags contain: at around the same time, in 2011 oh&lD et al. [213] showed
how universal part-of-speech categories [249] can be @epldo transfer delexicalized
parsers across languages, resulting in a stronger alterrsatiution to the unsupervised
parsing problem than grammar induction from gold tags. Emeainder of Part 11l covers
dependency-and-boundary models (DBMs), which heavilyaixpny available informa-
tion about structure that isot latent, for example at sentence boundaries — another key
contribution of this thesis. DBMs are novel head-outwardegative parsing models and
can be learned via simple curricula (Ch. 10) that don't regjkinowing manually tuned
training length cut-offs (e.g., “up to length ten” from the\I¥ set-up). They can also be
bootstrapped from inter-punctuation fragments (Ch. 1hjctvvastly increases the number
of visible edges being exploited, as well as the overall amofisimple text made available

2A notable exception is the work of Seginer [283, 284] whoseémental “common cover link” (CCL)
parser is trained from raw text, without discarding longteanes or punctuation. His contribution was
carefully analyzed by Ponvert et al. [253, 254], who deteerdithat the CCL parser is, in fact, an excellent
unsupervised chunker, and that better (constituent) macseild be constructed simply by hooking up the
lowest-level bracketings induced by CCL into a linear chaineir thorough analysis attributed CCL's success
at finding word clumps specifically to how punctuation manksiacorporated in its internal representations.

3It is important to mention here that, unlike most work thatdwed the DMV, which does not report
performance with unsupervised tags, Klein and Manning®428aper does include results that rely only on
word clusters, which are worse than their state-of-theelts with gold POS tags [172, Table 6: English].
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to the earliest phases of learning. Splitting sentencesuactpation is a natural next step
in the progression of hard constraints based on punctutbom Part I, which quantifies
the strength of correlations between punctuation markspdnase structure, and also in
the exploration of initialization strategies from Part lhieh first demonstrates the power
of starting from simpler and easier input data. Every chaptearts I-lll, chapters 3-11,
corresponds to a peer-reviewed publication. The final Pat, IV, consists of a single ad-
ditional chapter that integrates the majority of this ditsen’s contributions to the field
in a modular state-of-the-art grammar induction pipeli@b.(12); this tenth article, which
can be viewed as a culmination of the entire thesis, recavédabst paper” award at the
2013 Conference on Empirical Methods in Natural Languagedasing (EMNLP 2013).

My efforts, throughout the thesis, to minimize the amourprdr knowledge built into
grammar inducers boil it down to knowing about punctuatiod @rojectivity? Having
eliminated POS, | found that it can be useful to view sentemm only as sequences of
word categories [44, 172], which can be crucial in the estrliining phases, but also as
actual words [345, 244], which filters out any clusteringsecand further allows for simple
and precise system combination via mixture models (Ch. B2}.the lexicalized versus
unlexicalized distinction is just one dichotomy — a narraand in the rich spectrum of the
grammar induction typology. For instance, though it is camnrto use chart-based parsing
methods, as | had, it is also possible to induce grammars (lgttzto-right) incremen-
tal parsers [283, 79, 259]. In addition, the underlying medeemselves can be not only
simple, generative, projective and learned via EM, as mwhark, but also feature-rich, dis-
criminative, and non-projective [212, 238, 239], as in sujzed settings, learned via sam-
pling methods like MCMC [33, 227, 202] or gradient-basedropers like L-BFGS [24].
Rather than explore all such alternative possibilities elfy$ show (Chs. 5, 12) how the
existence of these and other views [32] of a learning proldambe exploited, again and
again, to systematically fight the challenges posed by mowexity of objective functions.

Part IV really introduces &rameworkfor designing comprehensive search networks
and may therefore be the biggest contribution of this diatien, as it applies not just to
grammar induction but any areas where non-convex optimizand local search problems

“4In addition to sentence and token boundaries, which cogithtielves have been induced from raw text,
along with the identities of the tokens that represent puatain marks, as part einsupervised tokenization



arise. Its primitive modules are the individual local optiers, system combination and
several other entirely generic methods for intelligentigling places to restart local search,
informed by already-discovered locally-optimal solugpauch as model ablation, data-set
filtering and self-training. The trouble with unsupervisearning in general [97, 219, 189],
and grammar induction in particular [245, 82, 119], is frexily having to optimize against
a likelihood objective that is not only plagued by local exia, which is enough to make
research frustrating and its replication inconvenient, dlso a poor proxy for extrinsic
performance, like parsing accuracy. This last fact is bapressing and liberating, for
it justifies, on occasion, ignoring the moves proposed bycalloptimizer, treating them
as mere suggestions, to help a non-convex optimizationeggomake progress. Part |
culminates in several “lateen EM” strategies (Ch. 5) thgtzag around local attractors, for
example by switching between ordinary “soft” and “hard” EM@&ithms. The basic idea
is simple: if one flavor of EM stalls, use the other to dig it,onta way that doesn’t undo all
previous work; a faster and more practical approach, whitkes to avoid getting close to
local optima in the first place, is to validate proposed mosegtiching when improving one
EM'’s objective would harm another’s. Lateen EM thus levesathe fact that two views
of data, as sentence strings (soft EM) or as their most ligalge trees (hard EM), yield
different equi-plausible unsupervised objective funasio Part IV formalizes the various
ways in which other views of data can be similarly exploitetbteak out of local optima.



Chapter 2
Background

This thesis continues a line of grammar induction resedratwas sparked by the famous
experiments of Carroll and Charniak [44, Footnote 1], whamldrMark Johnson for sharing
with them Martin Kay’s suggestion to uselapendencgchema. The idea was to bound the
number of possible valid productions that might particgoatthe derivation of a sentence
by restricting the set of non-terminal symbols to its workispractice, the space of gram-
matical rules had to be further reduced to a more manageiableby replacing words with
their parts-of-speech and emphasizing short sentenceb@dinote 2]. A resulting depen-
dency grammar was then cast as a one-bar-level X-bar [59 cba8tituency grammar, so
that its rules’ probabilities could be learned efficientl nside-outside re-estimation [14],
an instance of the EM algorithm [83], by locally maximizidgtlikelihood of a text corpus.

Subsequent research focusedpht-headdependency grammars (under various names),
which also allow for efficient implementations of the insioletside algorithm, due to Eis-
ner and Satta [9158]. These grammars correspond to a special case of the headrd
automata for producing dependency parse trees proposelsbhsvii [7, 6, 9]. Their gener-
ative stories begin by selecting a root word, eg(see Figure 1.1), with some probability.
Each generated word then recursively initiates a new cHginababilistic state transitions
in an automaton that simulates a head word spawning off digpes, i.e.is attachingcheck
to its left andin to its right, away from itself. If the automaton associateid tvere to spawn
off an additional dependent prior to entering a stoppintesthat dependent would have
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to lie either to the left otheckor to the right ofin; instead,s stops after just two depen-
dents,checkattaches onlyfhe in attaches onlynail, mail attaches onlyhe, and the two
determinersTheandthe stop without generating any children. Models equivalemtgad-
outward automata, restricted to the split-head éasayhich each head generates left- and
right-dependents separately, have been central to mamyagere parsing systems. One of
their earlier manifestations was in supervised “headeiriconstituent parsers [69, 71].
Among unsupervised models, a 2001 system [243, 244] wasrdtddilearn locally-
optimal probabilities from naturally occurring monolirajtiext (and did not rely on POS).
Paskin used a rudimentary grammar, in which root words wessen uniformly at random,
and whose equivalent split-head automata could be thodgistlmaving just two states (see
Figure 2.1), with an even chance of leaving the (split) stgrstates for a stopping state.
The only learned state transition parameters in this “gratigal bigrams” model are pair-
wise word-word probabilities,ys, } and{~;}, of spawning a particular dependefipon
taking a self-loop to stay in a generative state, conditicoeidentities of the head word
and side (left or right) of the path taken in its associateddmaton. Although the machine
learning behind the approach is sound, dependency paeseifiduced by Paskin’s system
were less accurate than random guessing [172]. Its majortding blocks were, most
likely, due to starting from specific wordsinstead of generalized word categories (see
Ch. 9) — and all sentences with soft EM instead of just thetshputs (see Ch. 3) or hard
EM (see Ch. 4) — andot because of the extremely simple parsing model (see Ch. 11).
The dependency model with valence operates over wiassesi.e., {c; }, instead of
raw lexical itemg{ h}, and is therefore more compact than “grammatical bigradrayving
on Carroll and Charniak’s [44] work from 1992. In additionaggregating the lexicalized
bigram parameter§y} according to POS tags, the DMV can be viewed as using slightly
larger, three-state automata (see Figure 2.2). Furthermdein and Manning introduced
explicit parameters (which | labeled &s} and{5} in the automata diagram) to capture the

lUnrestricted head-outward automata are strictly more plolvge.g., they recognize the languagiéeh™
in finite state) than the split-head variants, which can bedint of as processing one side before the other.
2Though several years prior, Yuret [345] had used mutuakinédion to guide greedy linkage of words;
and the head automaton models trained by Alshawi et al. [Pal$t estimated such probabilities, with two
sets of parameters being learned simultaneously, usiagtbjtin a fully-unsupervised fashion, from words.
SAlshawi et al. [9, 11] could get away with using actual wordstieir head-outward automata because
they were performingynchronougrammar induction, with the bitext constraining both léagproblems.
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START
Ieft-unseale(? lright-unsealed

notSTOR left-spawn wordi, C

. awn w O not STOR right-spawn wordi,
with probability~3,

with probability~y; >,

2 2
G}LD
left-sealed right-sealed

Figure 2.1: Paskin’s “grammatical bigrams” as head-outiveartomata (for head wordg.

linguistic notion ofvalency{319, 104]: “adjacent” stopping probabilities (binomiamm-
eters{a}) capture the likelihood that a word will not spawn any cleladyon a particular
side (left or right); and the “non-adjacent” probabilit{geometric parametefs’ }) encode
the tendency to stop after at least one child has been gederatthat side. With the extra
state, POS tags and a more fleshed out parameterization afitbenata, which | describe
in more traditional detail, including the required init@dr, in the next section, the DMV
could beat baseline performance for an important subcag@aofmar induction, motivated
by language acquisition in children: text corpora limitegéntences up to length ten.

Klein and Manning experimented with both gold part-of-sgfeags and unsupervised
English word clusters. Despite their finding that the unsuped tags performed signif-
icantly worse, much of the work that followed chose to adbgt\ersion of the task that
assumes knowledge of POS, perhaps expecting that impronemmeinduction from raw
words rather than gold tags would be orthogonal to other rmzb&in unsupervised de-
pendency parsing. Yet several research efforts focuseagifispdly on exploiting syntactic
information in the gold tags, e.g., by manually specifyimjversal parsing rules [228] or
statistically tying parameters of grammars across diffel@guages [66], shifting the fo-
cus away from grammar induction proper. One of the main e@a@ontributions of this
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START
Ieft-unseale%j Jright-unsealed

not STOR left-spawn adjacent word g not STOR right-spawn adjacent word
of classey, with probability~$ h of classc,, with probability~y,,

leqep

not left- not right-

adjacent ‘ ‘ adjacent

notSTOR left-spawn non-adjacent word [ not STOR right-spawn non-adjacent word
of classcq, with probability: of classcq, with probability~y; 2,

left-sealed right-sealed

Figure 2.2: Klein and Manning’s dependency model with veée(DMV) as head-outward
automata (for head words of clasg. A similar diagram could depict Headden et al.’s [133]
extended valence grammar (EVG), by using a separate setrafpters{d} instead of
{~}, for the word-word attachment probabilities in the selfgs of non-adjacent states.

dissertation to methodology, as already mentioned in teeipus chapter, is to show how
state-of-the-art results can be attained using fully uestiped word clusters. Other impor-
tant methodological contributions address the evaluatfamsupervised parsing systems.

Since the DMV did not include smoothing, Klein and Manningtéel their unsuper-
vised parsers on the training sets, i.e., sentences upgthlean in the input. Most work that
followed also evaluated on short data, which can be prokierfta many reasons, includ-
ing overfitting to simple grammatical structures, higheasw@ement noise due to smaller
evaluation sets, and overstated results, since shortrems@re easier to parse (left- and
right-branching baselines can be much more formidablegtenilength cutoffs [127, Fig-
ure 1]). Although a child may initially encounter only basitterances, an important goal
of language acquisition is to enable the comprehensionedi@usly unheard and complex
speech. The work in this dissertation therefore tests dm&lwirt and long sentence lengths
and uses held-out evaluation sets, such as the parsedrpoftibe Brown corpus [106],
when training on text from the Wall Street Journal [200]. tRermore, since children are
expected to be able to acquire arbitrary human languags#yiportant to make sure that a
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grammar inducer similarly generalizes, to avoid accidgnteer-engineering to a particu-

lar language and genre. Consequently, many of the systetis ithesis are also evaluated
against all 19 languages of the 2006/7 CoNLL test sets [4@], Z3sentially treating En-
glish WSJ as development data. Indeed, work presentedsmligertation is some of the

earliest to call for this kind of evaluatiomil languagesall sentences anlind test sets.

2.1 The Dependency Model with Valence

X X X X X X X X X |

AN
DT NN VBZ

\ \ \ \
The check is

0

——N—
(1 = Pgrgp(o | L; T))
(1 — Psrep( - | L; T,VBZ))
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Psrop( - | L; F,VBZ)
(1 — Pgrop( - | L; T,NN))?
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PSTOP( : | L; T, )
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Pgmp(
Psrop (<> | R;
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Figure 2.3: A dependency structure and its probabilityaasored by the DMV.

The DMV is a simple head automata model over lexical wordsdaéc,,} — POS

tags. Its generative story for a subtree rooted at a headd®$@,) rests on three types
of independent decisions: (i) initial directiatir € {L,R} (left or right) in which to at-
tach children, via probabilit¥aper (c1,); (ii) whether to seadlir, stopping with probability
Psrop(cp, dir, adj), conditioned ordj € {T,F} (true only when consideringir’s first, i.e.,

adjacent child); and (iii) attachment of a particular dependentdlaissc,), according to

Pyrracu(cn, dir, cq). This process produces only projective trees. By convarjéi], a root
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token<> generates the head of a sentence as its left (and only) éhgdre 2.3 displays an
example that ignores (sums olfkpez, fOr the short running example sentence.

The DMV was trained by re-estimating without smoothingstetg from an “ad-hoc
harmonic” completion: aiming for balanced trees, non-foedd words attached depen-
dents in inverse proportion to (a constant plus) their dstx> generated heads uniformly
at random. This non-distributional heuristic created fatte initial conditions that nudged
learners towards typical linguistic dependency structuhe practice, 40 iterations of EM
was usually deemed sufficient, as opposed to waiting fornmopétion to actually converge.

Although the DMV is described ashead-outwardmodel [172,§3], the probabilities
that it assigns to dependency parse trees are, in factjamvdao permutations of siblings
on the given side of a head word. Naturally, the same is algodf “grammatical bigrams”
and the EVG (see Figures 2.1-2.2). Dependency-and-bognuzdels that | introduce in
Part 11l (Chs. 10-11) will be more sensitive to the orderifigvords in input.

2.2 Evaluation Metrics

P e

D‘T N‘N V]%Z I‘N D‘T N‘N
The check is in the malil ‘

Figure 2.4: A dependency structure that interprets deteeraias heads of noun phrases.
Four of the six arcs in the parse tree are wrong (in red), tiesuih a directed score of 2/6 or
33.3%. But two of the incorrect dependencies connect the pigirs of words, determiners
and nouns, in the wrong direction. Undirected scoring graattial credit: 4/6 or 66.7%.

The standard way to judge a grammar inducer is by the qudiithe single “best”
parses that it chooses for each sentenakreztedscore is then simply the fraction of cor-
rectly guessed (unlabeled) dependencies; a more flattendgectedscore is also some-
times used (see Figure 2.4). Ignoring polarity of parerldaielations can partially obscure
effects of alternate analyses (systematic choices betmeelals and main verbs for heads
of sentences, determiners for noun phrases, etc.) anddseul comparisons of the DMV
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Corpus Sentences POS Tokens

WSJ1 159 159

WSJ2 499 839

WSJ3 876 1,970

WSJ4 1,394 4,042

WSJ5 2,008 7,112

WSJ6 2,745 11,534

WSJ7 3,623 17,680 45 | STULEEE 900
WsJ8 4,730 26536 4| |nousands <00
WSJ9 5,938 37,408 a5 | of Sentences 1 700
WSJ10 7,422 52,248 30| : 1 600
WSJ11 8,856 68,022

WSJ12 10,500 87,750 25 | 1 500
WSJ13 12,270 110,760 20 1 1 400
WSJ14 14,095 136,310 15| Thousandd 300
WsJ15_ | 15922| 163715 10§ ot Tokens | 2%
WSJ20 25,523 336,555 51 CLEERERT 100
WSJ25 34,431 540,895 A
WSJ30 41,227 730,099 WSX 5 10 15 20 25 30 35 40 45
WSJ35 45,191 860,053

WSJ40 47,385 942,801

WSJ45 48,418 986,830

"WSJ100 | 49,206 1,028,054

Section 23 2,353 48,201

Brown100 24,208 391,796

Figure 2.5: Sizes of W44, ..., 45,100}, Section 23 of WSJ and Brown100.

with prior work. Stylistic disagreements between validjlinstic theories complicate eval-
uation of unsupervised grammar inducers to this day, despiteral recent efforts to neu-
tralize the effects of differences in annotation [282, 32Z&]nce theory-neutral evaluation
of unsupervised dependency parsers is not yet a solvedgonolil13,$6.2], the primary

metric used in this dissertation is simple unlabeled de@dependency accuracies (DDA).

4As an additional alternative to intrinsic, supervised pagsgality metrics, unsupervised systems could
also be evaluated extrinsically, by using features of timeiuced parse structures in down-stream tasks [81].
Unfortunately, task-based evaluation would make it diffibtm compare to previous work: even concurrent
evaluation of grammar induction systems, for machine tagios, has proved impractical [113, Footnote 16].
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2.3 English Data

The DMV was both trained and tested on a customized subsed1®y®f Penn English
Treebank’s Wall Street Journal portion [200]. Its 49,208aated parse trees were pruned
down to 7,422 sentences of at most ten terminals, spanningigbe POS tags, by strip-
ping out all empty subtrees, punctuation and terminalsgédg and $) not pronounced
where they appear. Following standard practice, automiagiad-percolation” rules [70]
were used to convert remaining trees into dependencieswdhepresented in this thesis
makes use of generalizations WSJor £ € {1,...,45,100}, as well as Section 23 of
WSJ° (the entire WSJ) and the Brown100 data set (see Figure 2 &llfdata set sizes),
which is similarly derived from the parsed portion of the Brocorpus [106].

2.4 Multilingual Data

In addition to English WSJ, most of the work in this disseoiais also evaluated against
all 23 held-out test sets of the 2006/7 CoNLL data [42, 236%ming 19 languages from
several different language families (see Table 2.1 for thessof itsdisjoint training and
evaluation data, which were furnished by the CoNLL confeeenrganizers). As with
Section 23 of WSJ, here too | test all sentence lengths, with the small exception of
Arabic '07, from which | discarded the longest sentence (tbk&ns). When computing
macro-averages of directed dependency accuracies foruhdéimgual data, | down-weigh
the four languages that appear in both years (Arabic, ChiGzech and Turkish) by 50%.

2.5 A Note on Initialization Strategies

The exact form of Klein and Manning'’s initializer appearghe next chapter (Ch. 3), but
two salient facts are worth mentioning sooner. First, myippieary attempts to replicate
the DMV showed that it is extremely important to start frore thighest scoring trees for
each training input (i.e., a step of Viterbi EM), instead dioeest of all projective trees
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CoNLL Year Training Testing
& Language Sentences Tokens Sentences Tokens
(ar) Arabic 2006 1,460 52,752 146 5,215
7 2,912' 102,375 130 4,537
(ew) Basque 7 3,190 41,018 334 4,511
(bg) Bulgarian '6 12,823 162,985 398 5,032
(ca) Catalan 7 14,958 380,525 167 4,478
(zh) Chinese 6 56,957 337,162 867 5,012
7 56,957' 337,175 690 5,161
(cs) Czech '6 72,703 1,063,413 365 5,000
7 25,3641 368,624 286 4,029
(da) Danish '6 5190 80,743 322 4,978
(m1) Dutch '6 13,349 172,958 38p 4,989
(en) English 7 18,577 395,139 214 4,386
(de) German '6 39,216 605,337 357 4,886
(el) Greek 7 2,705 58,766 197 4,307
(hu) Hungarian '7 6,034 111,464 390 6,090
(it) Italian 7 3,110 60,653 249 4,360
(ja) Japanese "6 17,044 133,927 709 5,005
(pt) Portuguese 6 9,071 177,581 288 5,009
(s1) Slovenian 6 1,534 23,779 402 5,004
(es) Spanish '6 3,306 78,068 206 4,991
(sv) Swedish  '6 11,042 163,301 389 4,873
(tr) Turkish '6 4,997' 48,375 623 6,288
7 56351 54,761 300 3,983

Table 2.1: Sizes of all 2006/7 CoNLL training and evaluatiata sets.

weighed proportionally to their ad-hoc harmonic scoregsendi training steps are collo-

quially known to be a worthwhile tool in machine learnihgnd will be used extensively
in the final part of this dissertation (Ch. 12) to transfeiommfiation between differently-
factored models, initializing retraining. Although theoperties of Viterbi EM (Chs. 4-5)
are starting to receive theoretical treatment [67, 4], iy idp@ interesting to also zoom in on
the effects of the initial Viterbi step. For instance, Colaea Smith [67] showed the op-
timality of initializing Viterbi training from uniform disributions. Pilot experiments with

the DMV indicate that starting from parse trees chosen aumifpat random not only works

SPersonal communication with Jenny Finkel and Slav Petrov.
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even better with soft EM but also outperforms the ad-hoc lbaiminitializer, across many
languages, and especially when a favorable maximum lengtbfthas not been tuned.

Second, the harmonic part of Klein and Manning’s initializeggests a power law, with
probabilities of attachment inversely proportional totaices between heads and depen-
dents. However, a careful statistical analysis of arc lesgt the CoNLL data shows that
if they indeed followed a power law, with,rraci(d) o< |d|~", whered is the difference be-
tween connected words’ positions in a sentence, then thempowould have to be at least
two, and certainly not as low as one. It so happens that mapyriead phenomena are easy
to mistake for power law$ particularly if the underlying distribution is log-normga22].
The binned log-normal functional form

In |d| rn -1
Pyrracu(d) o [/ e (=) dt]
1

n(|d|—1)

NI

is a better fit for the data (see Figure 2.6 for estimatesds of the CoNLL languages).
But despite most languages clustering around the standgiddrmal (: = 0 ando = 1),
using this fact to bias selection of initial parse trees,jliotgxperiments, also proved worse
than starting from a uniform distribution, as with harmoimitializers. Better uses of uni-
versal properties, such as functional forms, might incoafethem into parsing models and
learn their parameters from data. The bulk of this dissertahus focuses on the training
aspects of grammar induction, aiming to eliminate depecelen tuned initializers.

6http ://vserverl.cscs.lsa.umich.edu/~crshalizi/weblog/491.html
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Figure 2.6: Estimates of the binned log-normals’ paranse{ér} and{s}, for arc lengths
of CoNLL languages cluster around the standard log-nospal- 0 ando = 1. Outliers
(in red) are Italian{t) and Germande), with very short and very long arcs, respectively.
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... the real challenge is to make simple things look bedutifu
— Glenn Corteza

Glenn and Aviv, fromThe Tango in Ink Galleryby Jordana del Feld.



Chapter 3
Baby Steps

The purpose of this chapter is to get an understanding of howstablished unsuper-
vised dependency parsing model responds to the limits cerses lengths that are con-
ventionally used to filter input data, as well as its senigjtito different initialization strate-
gies. Supporting peer-reviewed publicatiofriem Baby Steps to Leapfrog: How “Less is
More” in Unsupervised Dependency ParsimpNAACL 2010 [302].

3.1 Introduction

This chapter explores what can be achieved through judiaise of data and simple, scal-
able techniques. The first approach iterates over a seriggining sets that gradually
increase in size and complexity, forming an initializatiodependent scaffolding for learn-
ing a grammar. It works with Klein and Manning’s simple mo¢teke DMV) and training
algorithm (classic EM) but eliminates their crucial depemcke on manually-tuned priors.
The second technique is consistent with the intuition thatring is most successful within
a band of the size-complexity spectrum. Both could be aggtemore intricate models
and advanced learning algorithms. They are combined irrd, teificient hybrid method.

21
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3.2 Intuition

Focusing on simple examples helps guide unsupervisedieggiars blindly added confus-
ing data can easily mislead training. Unless it is increggsadually, unbridled, complexity
can overwhelm a system. How to grade an example’s difficulty® cardinality of its solu-
tion space presents a natural proxy. In the case of parsiagywtmber of possible syntactic
trees grows exponentially with sentence length. For lorsgaitences, the unsupervised
optimization problem becomes severely under-constraibdreas for shorter sentences,
learning is tightly reined in by data. In the extreme case sihgle-word sentence, there is
no choice but to parse it correctly. At two words, a raw 50%ndesof telling the head from
its dependent is still high, but as length increases, tharacy of even educated guessing
rapidly plummets. In model re-estimation, long senteneeplidy ambiguity and pollute
fractional counts with noise. At times, batch systems atiebeff using less data.

Baby StepsGlobal non-convex optimization is hard. But a meta-hdierisan take the
guesswork out of initializing local search. Beginning wath easy (convex) case, it is pos-
sibly to slowly extend it to the fully complex target task laking tiny steps in the problem
space, trying not to stray far from the relevant neighbodsoaf the solution space. A se-
ries of nested subsets of increasingly longer sentencesuhminates in the complete data
set offers a natural progression. Its base case — senteht@syth one — has a trivial
solution that requires neither initialization nor sear@t geveals something of sentence
heads. The next step — sentences of length one and two — rdfitias impressions
of heads, introduces dependents, and exposes their idsrdid relative positions. Al-
though not representative of the full grammar, short sex@gapture enough information
to paint most of the picture needed by slightly longer sezgsnThey set up an easier, in-
cremental subsequent learning task. Step1 augments training input to include lengths
1,2,...,k, k+ 1 of the full data set and executes local search starting flen{appropri-
ately smoothed) model estimated by sktefhis truly is grammar induction...

Less is More For standard batch training, just using simple, shortessrgs is not
enough. They are rare and do not reveal the full grammaredudstit is possible to find
a “sweet spot” — sentence lengths that are neither too loxgueing the truly daunting
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examples) nor too few (supplying enough accessible infaomp using Baby Steps’ learn-
ing curve as a guide. It makes sense to train where that reamirve flattens out, since
remaining sentences contribute little (incremental) etiooal valuet

Leapfrog An alternative to discarding data, and a better use of megguis to combine
the results of batch and iterative training up to the sweet dpta gradation, then iterate
with a large step size.

3.3 Related Work

Two types of scaffolding for guiding language learning debuin EIman’s [95] experi-
ments with “starting small”: data complexity (restrictimgput) and model complexity (re-
stricting memory). In both cases, gradually increasing @ewxity allowed artificial neural
networks to master a pseudo-natural grammar that theywiteefailed to learn. Initially-
limited capacity resembled maturational changes in wgrkiremory and attention span
that occur over time in children [163], in line with the “leissmore” proposal [230, 231].
Although Rohde and Plaut [267] failed to replicate thissult with simple recurrent net-
works, many machine learning techniques, for a variety glemge tasks, reliably benefit
from annealed model complexity. Brown et al. [40] used IBMdéts 1-4 as “stepping
stones” to training word-alignment Model 5. Other prominexamples include “coarse-
to-fine” approaches to parsing, translation, speech rettogrand unsupervised POS tag-
ging [53, 54, 250, 251, 261]. Initial models tend to be paitidy simple? and each refine-
ment towards a full model introduces only limited complgxsupporting incrementality.
Filtering complex data, the focus of this chapter, is unemtional in natural language
processing. Such scaffolding qualifies i®aping— a method of instruction (routinely

1This is akin to McClosky et al.’s [208] “Goldilocks effect.”

2Worse, they found that limiting inputinderedlanguage acquisition. And making the grammar more
English-like (by introducing and strengthening semantinstraints),ncreasedthe already significant ad-
vantage for “starting large!” With iterative training inkimg the optimizer multiple times, creating extra op-
portunities to converge, Rohde and Plaut suspected tharEmnsimulations simply did not allow networks
exposed exclusively to complex inputs sufficient trainimget Extremely generous, low termination thresh-
old for EM (see$3.4.1) address this concern, and the DMV’s purely synt®D®&S tag-based approach (see
§2.1) is, in a later chapter (s€&2.5.2), replaced with Baby Steps iterating over fullyidakized models.

3Brown et al.'s [40] Model 1 (and, similarly, the first babysjdas a global optimum that can be computed
exactly, so that no initial or subsequent parameters depetmitialization.
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exploited in animal training) in which the teacher decongsoa complete task into sub-
components, providing an easier path to learning. Whenrekif289] coined the term,
he described it as a “method of successive approximatiolteas that gradually make
a task more difficult have been explored in robotics (typycdbr navigation), with rein-
forcement learning [288, 275, 271, 86, 279, 280]. More rdgekrueger and Dayan [175]
showed that shaping speeds up language acquisition ansl tiedetter generalization in
abstract neural networks. Bengio et al. [22] confirmed tbisdeep deterministic and
stochastic networks, using simple multi-stagericulumstrategies. They conjectured that
a well-chosen sequence of training criteria — different sdtweights on the examples
— could act as a continuation method [5], helping find betteal optima for non-convex
objectives. Elman’s learners constrained the peaky swoligpace by focusing on just the
right data (simple sentences that introduced basic repiasenal categories) at just the
right time (early on, when their plasticity was greatesglf-Shaping, they simplified tasks
through deliberate omission (or misunderstanding). Agailsly, Baby Steps induces an
early structural locality bias [295], then relaxes it, aanhealing [292]. Its curriculum of
binary weights initially discards complex examples resole for “high-frequency noise,”
with earlier, “smoothed” objectives revealing more of thebal picture.

There are important differences between the work in thipteraand prior research. In
contrast to EIman, it relies on a large data set (WSJ) of ragligh. Unlike Bengio et al.
and Krueger and Dayan, it shapes a parser, not a language. rBatlg Steps is similar, in
spirit, to Smith and Eisner’s methods. Deterministic atinggDA) shares nice properties
with Baby Steps, but performs worse than EM for (constitypatsing; Baby Steps hand-
edly defeats standard training. Structural annealing war&ll, but requires a hand-tuned
annealing schedule and direct manipulation of the objedtimction; Baby Steps works
“out of the box,” its locality biases a natural consequenta complexity/data-guided
tour of optimization problems. Skewed DA incorporates adjimdtializer by interpolating
between two probability distributions, whereas the Leagfrybrid admits multiple initial-
izers by mixing structures instead. “Less is More” is novel aonfirms the tacit consensus
implicit in training on small data sets (e.g., WSJ10).
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3.4 New Algorithms for the Classic Model

Many seemingly small implementation details can have pnodiceffects on the final output
of a training procedure tasked with optimizing a non-conebjective. Contributing to

the chaos are handling of ties (e.g., in decoding), the ehoicandom number generator
and seed (e.g., if tie-breaking is randomized), whethebgidities are represented in log-
space, their numerical precision, and also the order inlwthiese floating point numbers
are added or multiplied, to say nothing of initializatiomg@atermination) conditions. For
these reasons, even the correct choices of tuned paranretBesnext section might not
resultin atraining run that would match Klein and Manniragsual execution of the DMV.

3.4.1 Algorithm #0: Ad-Hoc*
— A Variation on Original Ad-Hoc Initialization

Below are the ad-hoc harmonic scores (for all tokens otleer 4¥):
IfDORDER = 1/2§

Psrop = (ds + 5s)_1 = (ds + 3)_17 ds > 0;
Iﬁ)ATTACH = (da + 5(1)_1 = (da + 2)_17 da 2 1

Integersd, ., are distances from heads to stopping boundaries and degpisfideraining

is initialized by producing best-scoring parses of all inpentences and converting them
into proper probability distributionBsrgp andP,rracy Via maximume-likelihood estimation
(a single step of Viterbi training [40]). Since left and rigiildren are independeggpes

is dropped altogether, making “headedness” determiniBkie parser carefully randomizes
tie-breaking, so that all structures having the same satrargequal shot at being selected
(both during initialization and evaluation). EM is termiad when a successive change in
overall per-token cross-entropy drops befwi® bits.

4Constant§{s7a} come from personal communication. Note thais one higher than is strictly necessary
to avoid both division by zero and determinisi; could have been safely zeroed out, since the quantity
1 — Pyrrace IS never computed (see Figure 2.3).
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3.4.2 Algorithm #1: Baby Steps
— An Initialization-Independent Scaffolding

The need for initialization is eliminated by first training a trivial subset of the data —
WSJ1, this works, since there is only one (the correct) waatse a single-token sentence.
A resulting model is plugged into training on WSJ2 (sentenge to two tokens), and so
forth, building up to WSJ48. This algorithm is otherwise identical to Ad-Hgawith the
exception that it re-estimates each model using Laplace8nmg, so that earlier solutions
could be passed to next levels, which sometimes containqugy unseen POS tags.

3.4.3 Algorithm #2: Less is More
— Ad-Hoc* where Baby Steps Flatlines

Long, complex sentences are dropped, deploying Adtdaitializer for batch training
at WSJ*, an estimate of the sweet spot data gradation. To find it, Bxbps’ successive
models’ cross-entropies on the complete data set, WSJd%,aanked. An initial segment
of rapid improvement is separated from the final region ofveogence by &nee(points
of maximum curvature, see Figure 3.1). An improvédmethod [272] automatically lo-
cates this area of diminishing returns: the end-pdiatst*| are determined by minimizing
squared error, estimatirig = 7 andk* = 15. Training at WSJ15 just misses the plateau.

3.4.4 Algorithm #3: Leapfrog
— A Practical and Efficient Hybrid Mixture

Cherry-picking the best features of “Less is More” and BabgpsS, the hybrid begins by
combining their models at W$3J. Using one best parse from each, for every sentence in

Slts 48,418 sentences (see Figure 3.1) cover 94.4% of aktsees in WSJ;
the longest of the missing 790 has length 171.

SInstead of iteratively fitting a two-segment form and adag¥i discarding its tail, we usthreeline
segments, applying ordinary least squares to the first tutrdguiring the third to be horizontal and tangent
to a minimum. The result is batchoptimization routine that returns amterval for the knee, rather than a
point estimate (see Figure 3.1 for details).
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Figure 3.1: Cross-entropy on WSJ45 after each baby stegcavise linear fit, and an
estimated region for the knee.

WSJ*, the base case re-estimates a new model framxeureof twice the normal number

of trees; inductive steps leap overlengths, conveniently ending at WSJ45, and estimate
their initial models by applying a previous solution to a neput set. Both follow up the
single step of Viterbi training with at most five iterationsEM.

This hybrid makes use of two good (conditionally) indepentdieitialization strategies
and executes many iterations of EM where that is cheap — atestsentences (WSJ15 and
below). It then increases the step size, training just threee times (at WS15, 30, 45})
and allowing only a few (more expensive) iterations of EMréheEarly termination im-
proves efficiency and regularizes these final models.
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3.4.5 Reference Algorithms
— Baselines, a Skyline and Published Art

The working performance space can be carved out using tweregtinitialization strate-
gies: (i) the uninformed uniform prior, which serves as a faero-knowledge” baseline
for comparing uninitialized models; and (ii) the maximuikelihood “oracle” prior, com-
puted from reference parses, which yieldskaline(a reverse baseline) — how well any
algorithm that stumbled on the true solution would fare at€dbdnvergence.

Accuracies on Section 23 of WSJare compared to two state-of-the-art systems and
past baselines (see Table 3.2), in addition to Klein and Mays results. Headden et
al.'s [133] lexicalized EVG had the best previous resultsbart sentences, but its perfor-
mance is unreported for longer sentences, for which Cohe®anith’s [66] seem to be the
highest published scores; intermediate results that gegtparameter-tying — Bayesian
models with Dirichlet and log-normal priors, coupled witbtb Viterbi and minimum
Bayes-risk (MBR) decoding [65] — are also included.

3.5 Experimental Results

Thousands of empirical outcomes are packed into the spaewefal graphs (Figures 3.2, 3.3
and 3.4). The colors (also in Tables 3.1 and 3.2) correspmdifferent initialization strate-
gies — to a first approximation, the learning algorithm walsl ltenstant (seé2.1).

Figures 3.2 and 3.3 tell one part of our story. As data sete@se in size, training algo-
rithms gain access to more information; however, sinceiguthsupervised setting training
and test sets are the same, additional longer sentenceganakiestantially more challeng-
ing evaluation. To control for these dynamics, it is posstblapply Laplace smoothing to
all (otherwise unsmoothed) models and replot their peréoree, holding several test sets
fixed (see Figure 3.4). (Undirected accuracies are reppeszhthetically.)

3.5.1 Result #1: Baby Steps

Figure 3.2 traces out performance on the training set. KdethManning'’s published scores
appear as dots (Ad-Hoc) at WSJ10: 43.2% (63.7%). Baby Stedpewes 53.0% (65.7%)
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Figure 3.2: Directed and undirected accuracy scores attdiypthe DMV, when trained and
tested on the same gradation of WSJ, for several differetilination strategies. Green
circles mark Klein and Manning’s published scores; redletiand blue curves represent
the supervised (maximume-likelihood oracle) initializatj Baby Steps, and the uninformed
uniform prior. Dotted curves reflect starting performarsmdid curves register performance
at EM’s convergence, and the arrows connecting them engehts impact of learning.

by WSJ10; trained and tested on WSJ45, it gets 39.7% (54.8%ihformed, classic EM
learns little about directed dependencies: itimprovey shightly, e.g., from 17.3% (34.2%)
t0 19.1% (46.5%) on WSJ45 (learning some of the structureyidenced by its undirected
scores), but degrades with shorter sentences, wheretitd guessing rate is high. In the
case of oracle training, EM is expected to walk away from suiped solutions [97, 219,
189], but the extent of its drops is alarming, e.g., from tingesvised 69.8% (72.2%) to the
skyline’s 50.6% (59.5%) on WSJ45. By contrast, Baby Stepstess usually do not change
much from one step to the next, and where its impact of legrisibig (at WSJ4, 5, 14}),

it is invariably positive.

3.5.2 Result #2: Less is More

Ad-Hoc"'s curve (see Figure 3.3) suggests how Klein and Manning’dHad initializer
may have scaled with different gradations of WSJ. Strandkesyimplementation in this
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Figure 3.3: Directed accuracies for Ad-Hashown in green) and Leapfrog (in gold); all
else as in Figure 3.3J.

chapter performs significantly above their reported numlaerWwSJ10: 54.5% (68.3%)
is even slightly higher than Baby Steps; nevertheless,ngarugh data (from WSJ22
onwards), Baby Steps overtakes Ad-Howhose ability to learn takes a serious dive once
the inputs become sufficiently complex (at WSJ23), and neseovers. Note that Ad-
Hoc*’s biased prior peaks early (at WSJ6), eventually falls Wwetloe guessing rate (by
WSJ24), yet still remains well-positioned to climb, oufipeming uninformed learning.

Figure 3.4 shows that Baby Steps scales better with moregleodndata — its curves
do not trend downwards. However, a good initializer induaeswveet spot at WSJ15,
where the DMV is learned best using Ad-HocThis modeis “Less is More,” scoring
44.1% (58.9%) on WSJ45. Curiously, even oracle traininghatsha bump at WSJ15:
once sentences get long enough (at WSJ36), its performagcades below that of oracle
training with virtually no supervision (at the hardly repemtative WSJ3).
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Figure 3.4: Directed accuracies attained by the DMV, whaméd at various gradations
of WSJ, smoothed, then tested against fixed evaluation sef8S3 10, 40}; graphs for
WSJ20, 30}, not shown, are qualitatively similar to WSJ40.

3.5.3 Result #3: Leapfrog

Mixing Ad-Hoc* with Baby Steps at WSJ15 yields a model whose performandaliyi
falls between its two parents but surpasses both with a tiining (see Figure 3.3). Leap-
ing to WSJ45, via WSJ30, results in the strongest model:%4%38.4%) accuracy bridges
half of the gap between Baby Steps and the skyline, and ay &#ction of the cost.

Ad-Hoc | Baby Stepy Leapfrog Ad-Hoc | Baby Stepg Leapfrog

Section 23| 44.1(58.8 | 39.2(53.9 | 43.3(55.7) || 31.5(51.6) | 39.4(54.0 | 45.0(58.9)

WSJ100 | 43.8(58.6) | 39.2(53.9 | 43.3(55.9 || 31.3(51.5 | 39.4(54.1) | 44.7(58.])

Brown100 | 43.3(59.2 | 42.3(55.1) | 42.8(56.9 || 32.0(52.9 | 42.5(55.5 | 43.6(59.])
@15 @45

Table 3.1: Directed (and undirected) accuracies on Se@Bof WSJ°, WSJ100 and

Brown100 for Ad-Ho¢, Baby Steps and Leapfrog, trained at WSJ15 (left) and WSJ45.

3.5.4 Result #4: Generalization

These models carry over to the larger WSJ100, Section 23 df\Wahd the independent

Brown100 (see Table 3.1). Baby Steps improves out of dontainfirming that shaping
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Decoding| WSJ10| WSJ20 WS3
Attach-Right [172] — 38.4 33.4 31.7
DMV  Ad-Hoc [172]| \Viterbi 45.8 39.1 34.2
Dirichlet [65] | \Viterbi 45.9 39.4 34.9
Ad-Hoc [65] MBR 46.1 39.9 35.9
Dirichlet [65] MBR 46.1 40.6 36.9
Log-Normal Families [65]] \Viterbi 59.3 451 39.0
Baby Step$@15) Viterbi 55.5 44.3 39.2
Baby Step$@45) Viterbi 55.1 44.4 39.4
Log-Normal Families [65] MBR 59.4 45.9 40.5
Shared Log-Normals (tie-verb-noun) [66] MBR 61.3 47. 41
Bilingual Log-Normals (tie-verb-noun) [66] MBR 62.0 48. 22
Less is MorgAd-Hoc* @15) Viterbi 56.2 48.2 44.1
Leapfrog(Hybrid @45) Viterbi 57.1 48.7 45.0
EVG Smoothed (skip-val) [133 Viterbi 62.1
Smoothed (skip-head) [133]  \Viterbi 65.Q
Smoothed (skip-head), Lexicalized [13B]  \Viterbj 68.8

Table 3.2: Directed accuracies on Section 23 of \W8J20, } for several baselines and
previous state-of-the-art systems.

generalizes well [175, 22]. Leapfrog does best across tlaedbout dips on Brown100,
despite its safe-guards against overfitting.

Section 23 (see Table 3.2) reveals, unexpectedly, that Badps would have been state-
of-the-art in 2008, whereas “Less is More” outperforms athpwork on longer sentences.
Baby Steps is competitive with log-normal families [65]psng slightly better on longer
sentences against Viterbi decoding, though worse agaiB&.M_ess is More” beats state-
of-the-art on longer sentences by close to 2%; Leapfrogsgaiother 1%.

3.6 Conclusion

This chapter explored three simple ideas for unsupervigpdmdency parsing. Pace Halevy
etal. [130], it suggests, “Less is More” — the paradoxicalstethat better performance can
be attained by training with less data, even when removingpsss from the true (test) dis-
tribution. Small tweaks to Klein and Manning’s approach 602 break through the 2009
state-of-the-art on longer sentences, when trained at /@& auto-detected sweet spot
gradation). Second, Baby Steps, is an elegant meta-heudastoptimizing non-convex
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training criteria. It eliminates the need for linguistigabiased manually-tuned initializers,

particularly if the location of the sweet spot is not knowmigtechnique scales gracefully
with more (complex) data and should easily carry over to npangerful parsing models

and learning algorithms. Finally, Leapfrog forgoes thegatece and meticulousness of
Baby Steps in favor of pragmatism. Employing both good atization strategies at its

disposal, and spending CPU cycles wisely, it achieves egtidormance than both “Less
is More” and Baby Steps.

Later chapters will explore unifying these techniques vather state-of-the-art ap-
proaches, which will scaffold on both data and model conipleXhere are many oppor-
tunities for improvement, considering the poor perforneantoracle training relative to
the supervised state-of-the-art, and in turn the poor padoce of unsupervised state-of-
the-art relative to the oracle models.



Chapter 4
Viterbi Training

The purpose of this chapter is to explore, compare and csintina implications of us-

ing Viterbi training (hard EM) versus traditional insidextside re-estimation (soft EM) for
grammar induction with the DMV, as well as to clarify that thesupervised objectives
used by both algorithms can be “wrong,” from perspectives/ofild-be supervised ob-
jectives. Supporting peer-reviewed publicatioviterbi Training Improves Unsupervised
Dependency Parsinigg CoNLL 2010 [309].

4.1 Introduction

Unsupervised learning is hard, often involving difficuljettive functions. A typical ap-
proach is to attempt maximizing the likelihood of unlabetiata, in accordance with a
probabilistic model. Sadly, such functions are riddledwitcal optima [49, Ch. 7inter
alia], since their number of peaks grows exponentially withanses of hidden variables.
Furthermore, higher likelihood does not always translate superior task-specific accu-
racy [97, 219]. Both complications are real, but this chapt#l discuss perhaps more
significant shortcomings.

This chapter proves that learning can be error-prone eveasas when likelihoots
an appropriate measure of extrinsic performaamogwhere global optimization is feasible.
This is because a key challenge in unsupervised learnirtptstiedesiredlikelinood is
unknown. Its absence renders tasks like structure disgawkerently under-constrained.

34
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Search-based algorithms adopt surrogate metrics, gagntsirtonvergence to the “right”
regularities in data. Wrong objectives create opportasito improveboth efficiencyand
performance by replacing expensive exact learning teci@sigvith cheap approximations.

This chapter proposes using Viterbi training [48,2], instead of the more standard
inside-outside re-estimation [14], to induce hierarchgatactic structure from natural
language text. Since the objective functions being usedsupervised grammar induction
are provably wrong, advantages of exact inference may rpdy.ap makes sense to try the
Viterbi approximation — it is also wrong, only simpler andeeper than classic EM. As it
turns out, Viterbi EM is not only faster but also more acceyabnsistent with hypotheses
of de Marcken [82] and with the suggestions from the previchepter. After reporting
the experimental results and relating its contributionsrtor work, this chapter delves into
proofs by construction, using the DMV.

4.2 Viterbi Training and Evaluation with the DMV

Viterbi training [40] re-estimates each next model as ifesufsed by the previous best
parse trees. And supervised learning from reference pagss is straight-forward, since
maximum-likelihood estimation reduces to countiﬁEgTTACH(ch,dir, cq) Is the fraction
of dependents — those of clagg — attached on thelir side of a head of class,;
fP’smp(ch, dir,adj = T), the fraction of words of class, with no children on thelir side;
andIf”smp(ch, dir, adj = F), the ratid of the number of words of class having a child on
thedir side to their total number of such children.

Proposed parse trees are judged on accuraayireated scords simply the overall
fraction of correctly guessed dependencies.d_be a set of sentences, with the number
of terminals (tokens) for eache S. Denote by7'(s) the set of all dependency parse trees
of s, and lett;(s) stand for the parent of token 1 < i < |s|, int(s) € T(s). Call
the gold referenceé*(s) € T'(s). For a given model of grammar, parameterizedbiet

1The expected number of trials needed to get one Berripudiiiccess is ~ Geometri¢p), withn € Z*,
P(n) = (1—p)" !pandE(n) = p~!; MoM and MLE agree, in this casg,= (# of successeg (# of trials).
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t’(s) € T(s) be a (not necessarily unique) likeliest (also known as Wijgrarse ofs:

teT(s)

t%(s) € {arg max ]P)g(t)} ;
thenf@’s directed accuracy on a reference Bas

Ser i, Liao(s)=t7 (5

100% -
ZSGR ‘8‘

4.3 Experimental Setup and Results

As in the previous chapter, the DMV was trained on data set3{WS. . , 45} using three
initialization strategies: (i) the uninformed uniform q@uj (ii) a linguistically-biased ini-
tializer, Ad-Hoc; and (iii) an oracle — the supervised MLE solution. Previgusaining
was without smoothing, iterating each run until successhanges in overall per-token
cross-entropy drop belo@2° bits. In this chapter all models are re-trained using Viterb
EM instead of inside-outside re-estimation, and also exglaplace (add-one) smoothing
during training and experiment with hybrid initializatistrategies.

4.3.1 Result#1: Viterbi-Trained Models

The results of the previous chapter, tested against WSdd@egrinted in Figure 4.1(a);
and the corresponding Viterbi runs appear in Figure 4.1{lere are crucial differences
between the two training modes for each of the three int@ion strategies. Both algo-
rithms walk away from the supervised maximume-likelihootlison; however, Viterbi EM

loses at most a few points of accuracy (3.7% at WSJ40), whelaasic EM drops nearly
twenty points (19.1% at WSJ45). In both cases, the singleuresipervised result is with
good initialization, although Viterbi peaks earlier (4% %t WSJ8) — and in a narrower
range (WSJ8-9) — than classic EM (44.3% at WSJ15; WSJ13-2Z@g uniform prior
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Figure 4.1: Directed dependency accuracies attained bpkhé when trained on WS
smoothed, then tested against a fixed evaluation set, W&l4yree different initializa-
tion strategies. Red, green and blue graphs representpeevited (maximum-likelihood
oracle) initialization, a linguistically-biased initiaer (Ad-Hoc’) and the uninformed (uni-
form) prior. Panel (b) shows results obtained with Viteraining instead of classic EM
— Panel (a), but is otherwise identical (in both, each of thevdrtical slices captures five
new experimental results and arrows connect starting peeoce with final accuracy, em-
phasizing the impact of learning). Panels (c) and (d) shactirresponding numbers of
iterations until EM’s convergence.
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never quite gets off the ground with classic EM but managése guell under Viterbi train-
ing.2 given sufficient data — it even beats the “clever” initialiewerywhere past WSJ10.
The “sweet spot” at WSJ15 — a neighborhood where both Ad:kana the oracle excel
under classic EM — disappears with Viterbi. FurthermordeNii does not degrade with
more (complex) data, except with a biased initializer.

More than a simple efficiency hack, Viterbi EM actually impes performance. And
its benefits to running times are also non-trivial: it notyoskips computing the outside
charts in every iteration but also converges (sometimes@er of magnitude) faster than
classic EM (see Figure 4.1(c,d)).

4.3.2 Result#2: Smoothed Models

Smoothing rarely helps classic EM and hurts in the case of®teining (see Figure 4.2(a)).
With Viterbi, supervised initialization suffers much leise biased initializer is a wash, and
the uninformed uniform prior generally gains a few pointsaiofuracy, e.g., up 2.9% (from
42.4% to 45.2%, evaluated against WSJ40) at WSJ15 (seesHQ(ib)).

Baby Steps (Ch. 3) — iterative re-training with increasyngiore complex data sets,
WSJL, ... WSJ45 — using smoothed Viterbi training fails miserablye(ségure 4.2(b)),
due to Viterbi’s poor initial performance at short senteneossibly because of data spar-
sity and sensitivity to non-sentences — see examplg4.t 3).

4.3.3 Result #3:; State-of-the-Art Models

Simply training up smoothed Viterbi at WSJ15, using the torimed uniform prior, yields
44.8% accuracy on Section 23 of WSJwhich already surpasses the previous state-of-
the-art by 0.7% (see Table 4A)]. Since both classic EM and Ad-Homitializers work

2In a concurrently published related work, Cohen and Smi#} f8ove that the uniform-at-random ini-
tializer is a competitive starting M-step for Viterbi EM;ghluninformed prior from the last chapter consists of
uniform multinomials, seeding the E-step, which also yseddually-likely parse trees for models like DMV.

3For classic EM, the number of iterations to convergence aspgometimes inversely related to perfor-
mance, giving still more credence to the notion of early feation as a regularizer.



4.3. EXPERIMENTAL SETUP AND RESULTS 39
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Figure 4.2: Directed accuracies for DMV models traimeth Laplace smoothing (brightly-
colored curves), superimposed over Figure 4.1(a,b); valeves represent Baby Steps.

well with short sentences (see Figure 4.1(a)), it makesesensse their pre-trained mod-
els to initialize Viterbi training, mixing the two stratexd. Judging all Ad-Haocinitial-
izers against WSJ15, it turns out that the one for WSJ8 mieémsentence-level cross-
entropy (see Figure 4.3). This approach does not involvereate parse trees and is
therefore still unsupervised. Using the Ad-Hanitializer based on WSJ8 to seed clas-
sic training at WSJ15 yields a further 1.4% gain in accuracgring 46.2% on WSJ (see
Table 4.1B)). This good initializer boosts accuracy attained by srhedtViterbi at WSJ15
to 47.8% (see Table 4.@C}). Using its solution to re-initialize training at WSJ4%gs a tiny
further improvement (0.1%) on Section 23 of VWSJut bigger gains on WSJ10 (0.9%) and
WSJ20 (see Table 40f). These results generalize. Gains due to smoothed Vitexibi-
ing and favorable initialization carry over to Brown100 —earacy improves by 7.5% over
previous published numbers (see Table 4.1).
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Model Incarnation WSJ10| WSJ20 WS3
DMV  Bilingual Log-Normals (tie-verb-noun) [66 62.0 48.00 24 | BrownlO0
Less is Mord Ad-Hoc* @15) (Ch.3)| 56.2 48.2 44.1 43.3
A. Smoothed Viterbi Training (@15), | caa | can | ar0l a4 |
Initialized with the Uniform Prior 59.9 50.0 44.8 48.1
B. A Good Initializer (Ad-Ho¢'s @8),
Classically Pre-Trained (@15) 63.8 523 46.2 49.3
C. Sm_oqthed \_/|terb| Training (@15), 64.4 535 478 50.5
Initialized withB
D. Sr_n_oqthed \_/|terb| Training (@45), 65.3 538 479 50.8
Initialized with C

EVG  Smoothed (skip-head), Lexicalized [133] 68.8

Table 4.1: Accuracies on Section 23 of W$J, 20, } and Brown100 for three previous
state-of-the-art systems, this chapter’s initializelg @amoothed Viterbi-trained runs that
employ different initialization strategies.

bpt cross-entropy: (on WSJ15, in bits per token)
5.5 |

50 lowest cross-entropy (4.32bpt) attained at WSJ8

4.5 N~
WSE 5) 10 15 20 25 30 35 40 45

Figure 4.3: Sentence-level cross-entropy for Ad-Hiodtializers of WSJ1, ..., 45}.

4.4 Discussion of Experimental Results

The DMV has no parameters to capture syntactic relatiossbgyond local trees, e.g.,
agreement. Results from the previous chapter suggestlifissic EM breaks down as sen-
tences get longer precisely because the model makes umieatriadependence assump-
tions: the DMV reserves too much probability mass for whatusth be unlikely produc-
tions. Since EM faithfully allocates such re-distributsoaicross the possible parse trees,
once sentences grow sufficiently long, this process begidsplete what began as likelier
structures. But medium lengths avoid a flood of exponegti@dinfusing longer sentences,
as well as the sparseness of unrepresentative shorterdmegexperiments in this chapter
corroborate that hypothesis.
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First of all, Viterbi manages to hang on to supervised sohgimuch better than classic
EM. Second, Viterbi does not universally degrade with mo{plex) training sets, ex-
cept with a biased initializer. And third, Viterbi learnsgaty from small data sets of short
sentences (W$Jk < 5). But although Viterbi may be better suited to unsupervigean-
mar induction compared with classic EM, neither is suffitidy itself. Both algorithms
abandon good solutions and make no guarantees with respegtrinsic performance.
Unfortunately, these two approaches share a deep flaw.

4.5 Related Work on Improper Objectives

It is well-known that maximizing likelihood may, in fact, dexde accuracy [245, 97, 219].
De Marcken [82] showed that classic EM suffers from a fatmhation towards determinis-
tic grammars and suggested a Viterbi training scheme asedyerhiang and Klein’s [189]
analysis of errors in unsupervised learning began withrlhppropriateness of the likeli-
hood objective (approximation), explored problems of dagiarsity (estimation) and fo-
cused on EM-specific issues related to non-convexity (itiebility and optimization).

Previous literature primarily relied on experimental @nde; de Marcken’s analytical
result is an exception but pertains only to EM-specific lattiactors. The analysis in this
chapter confirms his intuitions and moreover shows thaktiban beglobal preferences
for deterministic grammars — problems that would persighwiiactable optimization.
It proves that there is a fundamental disconnect betweegctbg functions even when
likelihood is a reasonable metric and training data areiiefin

4.6 Proofs (by Construction)

There is a subtle distinction betwedree different probability distributions that arise in
parsing, each of which can be legitimately termed “likebdb— the mass that a particular
model assigns to (i) highest-scoring (Viterbi) parse trégsthe correct (gold) reference
trees; and (iii) the sentence strings (sums over all deonaj. A classic unsupervised
parser trains to optimize the third, makes actual parsiegams according to the first, and
is evaluated against the second. There are several potdistannects here. First of all,
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the true generative modél may not yield the largest margin separations for discrirtniga
between gold parse trees and next best alternatives; aoddsét may assign sub-optimal
mass to string probabilities. There is no reason why an aptstimate) should make the
best parser or coincide with a peak of an unsupervised agect

4.6.1 The Three Likelihood Objectives

A supervised parser finds the “best” parameteby maximizing the likelihood of all ref-
erencestructures*(s) — the product, over all sentences, of the probabilitiesitresigns
to each such tree:

Osup = arg max L(0) = arg max 1:[ Py(t*(s)).

For the DMV, this objective function is convex — its uniqueafés easy to find and should
match the true distributio* given enough data, barring practical problems caused by
numerical instability and inappropriate independenceiaggions. It is often easier to
work in log-probability space:

Osp = argmaxy log £(0)
= argmaxy y_ logPy(t*(s)).

Cross-entropy, measured in bits per token (bpt), offer;meerpretable proxy for a model’'s
quality:

i(0) — D8Pt ()
> Is]
Clearly,arg maxy £(0) = Osp = arg ming A(0).
Unsupervised parsers cannot rely on references and attenpntly maximize the
probability of eachsentencenstead, summing over the probabilities of all possiblegre
according to a modél:

Ouns = arg méixz log Z Py(t) .
s teT(s)
~—_———
Py (s)
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This objective function is not convex and in general doeshase a unique peak, so in
practice one usually settles fé,s — a fixed point. There is no reason why;, should
agree withd,.s, Which is in turn (often badly) approximated By, €.g., using EM. A
logical alternative to maximizing the probability of sem¢es is to maximize the probability
of the most likely parse trees inste&d:

Our = arg m;lXZ log Py (7 (s)).

This 1-best approximation similarly arriveséat;, with no claims of optimality. Each next
model is re-estimated as if supervised by reference parses.

4.6.2 A Warm-Up Case: Accuracy vsh,, =+ 0"

A simple way to derail accuracy is to maximize the likelihaddan incorrect model, e.g.,
one that makes false independence assumptions. Consiuhgy tiite DMV to a contrived
distribution — two equiprobable structures over identitake-token sentences from a
unary vocabularf@}:

H@@@ (i)@E@®.
There are six tokens and only two have children on any givee, So adjacent stopping

MLEs are:
. R 9 9
Psrop (@, L, T) = Psrop(@,R, T) = 1 — 6 3

The rest of the estimated model is deterministic:

IAP)ATTACH(<>7 L@) = IAP)ATTACH(@? * @) =1 andfpsnw(@; % F) =1,

since all dependents agand every one is an only child. But the DMV generates left- and
right-attachments independently, allowing a third parse:

(i) @ @ @.

41t is also possible to usk-best Viterbi, withk > 1 (as was later done by Bisk and Hockenmaier [30]).
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It also cannot capture the fact that all structures are I@sahat all dependency arcs point
in the same direction), admitting two additional parsedree

Wé @n vdaa.

Each possible structure must make four (out of six) adjastents, incurring identical prob-
abilities: ,
2 2
=
Thus, the MLE model does not break symmetry and rates eadiedivie parse trees as

PSTDP(@? *, T)4 x (1 - PSTUP(@? *,T))

equally likely. Therefore, its expected per-token accuract0%. Average overlaps be-
tween structures (i-v) and answers (i,ii) are (i) 100% oiipQ(or 100%; and (iii,iv,v) 333%:
3+3 2

= _— =0.4.
5x3 b

A decoy model without left- or right-branching, i.e.,

EDSTOP(@aLaT) =1 or IfDSTOP(@aR, T) =1,

would assign zero probability to some of the training dateuould be forced to parse every
instance ofa@@ either as (i) or as (ii), deterministically. Nevertheleissyould attain a
higher per-token accuracy of 50%. (Judged on exact matehdéise granularity of whole
trees, the decoy’s guaranteed 50% accuracy clobbers thesdkpected 20%.)

The toy data set could be replicatedold without changing the analysis. This confirms
that, even in the absence of estimation errors or data $pdisre can be a fundamental
disconnect between likelihood and accuracy, if the moderang?

4.6.3 A Subtler Case* = 0, VS. 0, VS. 0.,

Let's now prove that, even with thight model, mismatches between the different objec-
tive likelihoods can also handicap the truth. The calcafetiare again exact, so there are
no issues with numerical stability. The set of parametérs already factored by the DMV,

SAnd as George Box quipped, “Essentially, all models are wrbat some are useful” [35, p. 424].
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so that its problems could not be blamed on invalid indepeogl@ssumptions. Yet it is
possible to find another impostor distributi@rihat outshineﬁsup = #* on both unsuper-
vised metrics, which proves that the true modgls and6* are not globally optimal, as
judged by the two surrogate objective functions.

This next example is organic. Starting with WSJ10 confirnad thassic EM abandons
the supervised solution. Large portions of this data setlvam be iteratively discarded, so
long as the remainder maintains the (un)desired effect — Eilking away from itSs,e.
This procedure isolates such behavior, arriving at a mihgega

— T~ N
NP : NNP NNP &

— Marvin  Alisky.

N

T~
S: NNP VBD O

(Braniff  declined).

o
NP-LOC : NNP NNP &

Victoria, Texas

The above kernel is tiny, but, as before, the analysis igiamtton-fold replication: the
problem cannot be explained away by a small training size perisists even in infinitely
large data sets. And so, consider three reference parsedrag®o-token sentences over a
binary vocabulary @, @}:

() @@; ()@@; (i)@a.
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One third of the time,@ is the head; onlya can be a child; and onl@ has right-
dependents. Trees (i)-(iii) are the only two-terminal pargenerated by the model and
are equiprobable. Thus, these sentences are represertthfiviength-two restriction of
everything generated by the trde

2 4
Purraca(¢, L, @) = 3 and Pgrop (@, %, T) = 5

since@® is the head two out of three times, and since only one out ofdigeattaches a
child on either side. Elsewhere, the model is deterministic

IP>STOP<®7 L7 T) = 07

PSTOP(*; *, F) = PSTOP(@aRa T) =1;
Purraca (@, *, @) = Parracu (@, L, @) = 1.

Contrast the optimal estimafg,. = ¢* with the decoyfixed point 4 that is identical t@*,
except ;
ENDSTDP(@J—-,T) = R and I@’STOP(@,& T) = 1.

The probability of stopping is how 3/5 on the left and 1 on tight, instead of 4/5 on both
sides — disallows@’s right-dependents but preserves its overall fertilitheTprobabili-
ties of leavesd (no children), under the models,. andd, are:

4

ED(@) = IEDSTOP(@,L,T) X I@’STOP(@j{, T) = (5)

and P(@) = Psrop(@, L, T) X Psrop(@, R, T) = g

And the probabilities of, e.qg., structu@n@, are:

IFDATTACH(<>7 L, @) X PSTOP(@a R, T) X (1 — IAP)STDP(@; L, T)) X IAP)STOP(@; L, F)

5Models estimated from trees inducedégver these sentences are agaifor both soft and hard EM.
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X IAP)ATTACH(@J—H @) x IAP(@)
= IEDATTACH(Qa L,@) x IED(@) =

and PATTACH(Q; L,@) x I@)(@) =

W =
N b3| =
ol O O

Wl =

Similarly, the probabilities of all four possible parseesefor the two distinct sentences,
@@ and@@®@, under the two modeld,,, = 0* andd, are:

HSUP =0 é
@@ 3 (35) = 3 (3) =
$-0213 1=02
@® 0 0
@@|5H0-DER =] 50-HE) =
T2 = 0.06826 5 = 0.16
@e@ 0.06826 0

To the threetrue parses s, assigns probability( £2) (%)2 ~ 0.0009942 — about
1.66bpt; § leaves zero mass for (iii), corresponding to a larger (ité)ncross-entropy,
consistent with theory. So far so good, but if askeddest(Viterbi) parses 6s,» could still
produce the actual trees, wherdasould happily parse sentences of (iii) and (i) the same,
perceiving a joint probability 0f0.2)(0.16)? = 0.00512 — just 1.27bpt, appearing to out-
performés,, = 6*! Asked forsentence probabilitie® would remain unchanged (it parses
each sentence unambiguously), Byt would aggregate td12) (2 ﬁ)z ~ 0.003977,

1875
improving to 1.33bpt, but still noticeably “worse” than

Despite leaving zero probability to the truthpeatss* on both surrogate metrics, glob-
ally. This seems like an egregious error. Judged by (exthimecuracyf still holds its
own: it gets four directed edges from predicting parse tigesd (i) completely right, but
none of (iii) — a solid 66.7%. Subject to tie-breakirk,is equally likely to get (i) and/or
(i) entirely right or totally wrong (they are indistingsinable): it could earn a perfect
100%, tied, or score a low 33.3%, at 1:2:1 odds, respectively — sanfésateterministic
66.7% accuracy, in expectation, but with higher variance.
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4.7 Discussion of Theoretical Results

Daumé et al. [80] questioned the benefits of using exact lmad@pproximate inference.
In the case of grammar induction, the model already makesgsimplifying assumptions
andthe objective is also incorrect. It makes sense that ViteNisometimes works, since
an approximate wrong “solutiorcould, by chance, be better than one that is exactly wrong.

One reason why Viterbi EM may work well is thié score is used in selecting actual
output parse trees. Wainwright [330] provided strong tegoal and empirical arguments
for using the same approximate inference method in traiasm performing predictions
for a learned model. He showed that if inference involves gpr@imation, then using
the same approximate method to train the model gives evéer lpetrformance guarantees
than exact training methods. If the task were not parsinddmgiuage modeling, where the
relevant score is the sum of the probabilities over indigidilerivations, perhaps classic
EM would not be doing as badly, compared to Viterbi.

Viterbi training is not only faster and more accurate bubdlee of inside-outside’s
recursion constraints. It therefore invites more flexibled@ling techniques, including
discriminative, feature-rich approaches that tagmtditionallikelihoods, essentially via
(unsupervised) self-training [63, 232, 208, 208e¢r alia. Such “learning by doing” ap-
proaches may be relevant to understanding human languggéiion, as children fre-
guently find themselves forced to interpret a sentence iardainteract with the world.
Since most models dfumanprobabilistic parsing are massively pruned [158, 55, &6y
alia], the serial nature of Viterbi EM, or the very limited parditm of k-best Viterbi, may
be more appropriate in modeling this task than fully-ingggd inside-outside solutiors.

4.8 Conclusion

Without a known objective, as in unsupervised learningremrexact optimization be-
comes impossible. In such cases, approximations, althlaigie to pass over a true opti-
mum, may achieve faster convergence andistiiroveperformance. This chapter showed

"Following the work in this chaptek-best Viterbi training [30] and other blends of EM have begpld
to both grammar induction [324, 325] (see also next chaptet)other natural language learning tasks [273].
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that this is the case with Viterbi training, a cheap alteueetb inside-outside re-estimation,
for unsupervised dependency parsing.

This chapter explained why Viterbi EM may be particularlylkgiited to learning from
longer sentences, in addition to any general benefits tdsgnizing approximation meth-
ods across learning and inference. Its best algorithm iplsinand an order of magnitude
faster than classic EM and achieves state-of-the-art pedonce: 3.8% higher accuracy
than previous published best results on Section 23 (aleseet) of the Wall Street Journal
corpus. This improvement generalizes to the Brown corpws held-out evaluation set,
where the same model registers a 7.5% gain.

Unfortunately, approximations alone do not bridge the geg@l between objective func-
tions. This deeper issue will be addressed by drawing panstraints [245] from spe-
cific applications. One example of such an approach, tiedaohine translation, is syn-
chronous grammars [11]. An alternative — observing comgsanduced by hyper-text
markup harvested from the web, punctuation and capitédizat- is explored in the sec-
ond part of this dissertation.



Chapter 5

Lateen EM

This chapter proposes a suite of algorithms that make nawexooptimization with EM

less sensitive to local optima, by exploiting the availiépibf multiple plausible unsuper-
vised objectives, covered in the previous two chapters.p8uing peer-reviewed publi-
cation isLateen EM: Unsupervised Training with Multiple Objectivépplied to Depen-
dency Grammar Inductiom EMNLP 2011 [303].

5.1 Introduction

Expectation maximization (EM) algorithms [83] play impamt roles in learning latent lin-
guistic structure. Unsupervised techniques from this fiaexcel at core natural language
processing (NLP) tasks, including segmentation, alignmggging and parsing. Typi-
cal implementations specify a probabilistic frameworlckpan initial model instance, and
iteratively improve parameters using EM. A key guaranteth#& subsequent model in-
stances are no worse than the previous, according to tegpddta likelihood in the given
framework. Another attractive feature that helped make Bérumental [218] is its initial
efficiency: Training tends to begin with large steps in a peater space, sometimes by-
passing many local optima at once. After a modest numberabf serations, however, EM
lands close to an attractor. Next, its convergence ratessadéy suffers: Disproportion-
ately many (and ever-smaller) steps are needed to finallyapp this fixed point, which is

50
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Wind . -

Figure 5.1: A triangular sail atop a traditional Arab saijlvessel, thelhow(right). Older
square sails permitted sailing only before the wind. Butfiieientlateensail worked like

a wing (with high pressure on one side and low pressure ortkteg)pallowing a ship to go
almost directly into a headwind. Bgcking in a zig-zag pattern, it became possible to salil
in any direction, provided there was some wind at all (I6¥Qr centuries seafarers expertly
combined both sails to traverse extensive distances, lgrieateasing the reach of me-
dieval navigation. (Partially adapted framttp: //www.britannica.com/EBchecked/
topic/331395, http://allitera.tive.org/archives/004922.html andhttp://
landscapedvd. com/desktops/images/ship1280x1024. jpg.)

almost invariably a local optimum. Deciding when to term&BM often involves guess-
work; and finding ways out of local optima requires trial amie This chapter proposes
several strategies that address both limitations.

Unsupervised objectives are, at best, loosely correlatébdextrinsic performance [245,
219, 189,inter alia]. This fact justifies (occasionally) deviating from a presed train-
ing course. For example, singaultiple equi-plausible objectives are usually available,
a learner could cycle through them, optimizing alternatiwen the primary objective
function gets stuck; or, instead of trying to escape, it daim to avoid local optima in
the first place, by halting search early if an improvementne objective would come
at the expense of harming another. This chapter tests tlesra) ideas by focusing on
non-convex likelihood optimization using EM. This settisgtandard and has natural and
well-understood objectives: the classic, “soft” EM; andevbi, or “hard” EM [166]. The
name “lateen” comes from the sea — trianguéteensails can take wind on either side,
enabling sailing vessels tack (see Figure 5.1). As a captain can't count on favorable
winds, so an unsupervised learner can't rely on co-opergtiadients: soft EM maximizes
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likelihoods of observed data across assignments to hidaeables, whereas hard EM fo-
cuses on most likely completions. These objectives aresfilf) yet both can be provably
“wrong,” as demonstrated in the previous chapter. Thus fiarmissible for lateen EM
to maneuver between their gradients, for example by tackingnd local attractors, in a
zig-zag fashion.

5.2 The Lateen Family of Algorithms

This chapter proposes several strategies that use a segargactive to improve over
standard EM training. For hard EM, the secondary objectvhat of soft EM; and vice
versa if soft EM is the primary algorithm.

5.2.1 Algorithm #1: Simple Lateen EM

Simple lateen EM begins by running standard EM to convergieusing a user-supplied
initial model, primary objective and definition of convernge. Next, the algorithm alter-

nates. A single lateen alternation involves two phasegsef{ipining using the secondary
objective, starting from the previous converged solutmmce again iterating until conver-
gence, but now of the secondary objective); and (ii) reingmsing the primary objective

again, starting from the latest converged solution (onceerteconvergence of the primary
objective). The algorithm stops upon failing to sufficignithprove the primary objective

across alternations (applying the standard convergeiteeéan end-to-end) and returns the
best of all models re-estimated during training (as judgethb primary objective).

5.2.2 Algorithm #2: Shallow Lateen EM

Same as algorithm #1, but switches back to optimizing th@gny objective after aingle
step with the secondary, during phase (i) of all lateen rétikons. Thus, the algorithm
alternates between optimizing a primary objective to caymece, then stepping away,
using one iteration of the secondary optimizer.
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5.2.3 Algorithm #3: Early-Stopping Lateen EM

This variant runs standard EM but quits early if the seconadnjective suffers. Con-
vergence is redefined by “or’-ing the user-supplied tertnomacriterion (i.e., a “small-
enough” change in the primary objective) wihy adverse change of the secondary (i.e.,
an increase in its cross-entropy). Early-stopping latedrdBesnot alternate objectives.

5.2.4 Algorithm #4: Early-Switching Lateen EM

Same as algorithm #1, but with the new definition of convergeras in algorithm #3.
Early-switching lateen EM halts primary optimizers as saeithey hurt the secondary ob-
jective and stops secondary optimizers once they harm thrapyr objective. It terminates
upon failing to sufficiently improve the primary objectiverass a full alternation.

5.2.5 Algorithm #5: Partly-Switching Lateen EM

Same as algorithm #4, but again iterating primary objestieeconvergence, as in algo-
rithm #1; secondary optimizers still continue to termineaely.

5.3 The Task and Study #1

This chapter tests the impact of the five lateen algorithmsirmsupervised dependency
parsing — a task in which EM plays an important role [244, 17777, inter alia]. It en-
tails two sets of experiments: Study #1 tests whether sialjgenations of simple lateen
EM (as defined ir§5.2.1, Algorithm #1) improve a publicly-available systean English
dependency grammar induction (from Ch.16%tudy #2 introduces a more sophisticated
methodology that uses factorial designs and regressioegaloate lateen strategies with
unsupervised dependency parsing in many languages, &tecentrolling for other im-
portant sources of variation.

For study #1, the base system is an instance of the DMV, tlaiseng hard EM on
WSJ45. To confirm that the base model had indeed convergestep® of hard EM on

Ihttp://nlp.stanford. edu/pubs/markup-data.tar.bz2: dp.model.dmv
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System DDA (%)
Tree Substitution Grammars [3855.7
Posterior Sparsity [117] 53.3
) Web Markup (Ch. 6) 50.4
+ soft EM + hard EM| 52.8 (2.4

lexicalized, using hard EM 54.3 (+1.5)
+ soft EM + hard EM| 55.6(+1.3)

Table 5.1: Directed dependency accuracies (DDA) on Se@Baf WSJ (all sentences)
for contemporary state-of-the-art systems and two exparism(one unlexicalized and one
lexicalized) with a single alternation of lateen EM.

WSJ45 were run, verifying that its objective did not changeim Next, a single alternation
of simple lateen EM was applied: first running soft EM (thiskd.01 steps, using the same
termination criterion2=2° bpt), followed by hard EM (again to convergence — another 23
iterations). The result was a decrease in hard EM’s cross@) from 3.69 to 3.59 bits
per token (bpt), accompanied by a 2.4% jump in accuracy, 506m to 52.8%, on Section
23 of WSJ (see Table 5.1).

The first experiment showed that lateen EM holds promiseifiople models. The next
test is a more realistic setting: re-estimatlagicalizedmodels? starting from the unlexi-
calized model’s parses; this took 24 steps with hard EM. Resecond lateen alternation,
soft EM ran for 37 steps, hard EM took another 14, and the nedetregain improved, by
1.3%, from 54.3 to 55.6% (see Table 5.1); the correspondiag oh (lexicalized) cross-
entropy was from 6.10 to 6.09 bpt. This last model is competivith the contemporary
state-of-the-art; moreover, gains from single applicaiof simple lateen alternations (2.4
and 1.3%) are on par with the increase due to lexicalizatiomesa(1.5%).

5.4 Methodology for Study #2

Study #1 suggests that lateen EM can improve grammar iratuictiEnglish. To establish
statistical significance, however, it is important to tebiypothesis in many settings [148].

2Using Headden et al.'s [133] method (also the approach afthestronger state-of-the-art systems): for
words seen at least 100 times in the training corpus, gold ta@sare augmented with their lexical items.
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Therefore, a factorial experimental design and regressialyses were used, with a variety
of lateen strategies. Two regressions — one predictingracguthe other, the number of
iterations — capture the effects that lateen algorithme leewvperformance and efficiency,
relative to standard EM training. They controlled for im@amt dimensions of variation,
such as the underlying language: to make sure that reseltsoaEnglish-specific, gram-
mars were induced for 19 languages. Also explored were tpadhfrom the quality of an
initial model (using both uniform and ad hoc initializerdje choice of a primary objective
(i.e., soft or hard EM), and the quantity and complexity afriing data (shorter versus both
short and long sentences). Appendix gives the full details.

5.5 Experiments

All 23 train/test splits from the 2006/7 CoNLL shared tasks ased [42, 236]. These
disjoint splits require smoothing (in the WSJ setting,rinag and test sets overlapped). All
punctuation labeled in the data is spliced out, as is stantactice [244, 172], introducing
new arcs from grand-mothers to grand-daughters where segedoth in train- and test-
sets. Thus, punctuation does not affect scoring. An opémig always halted once a
change in its objective’s consecutive cross-entropy \&afalls below2-2° bpt, at which
point it is considered “stuck.” All unsmoothed models areosthed immediately prior to
evaluation; some of the baseline models are also smoothrethdraining. In both cases,
the “add-one” (a.k.a. Laplace) smoothing algorithm is used

5.5.1 Baseline Models

This chapter tests a total of six baseline models, expetimgwith two types of alterna-
tives: (i) strategies that perturb stuck models directlysimoothing ignoring secondary
objectives; and (iishallowapplications of a single EM step, ignoring convergence.
BaselineB1 alternates running standard EM to convergence and sma@ptAisecond
baseline B2, smooths after every step of EM instead. Another shallowlbzes 33, alter-
nates single steps of soft and hard ENhree such baselines begin with hard EM (marked

3|t approximates a mixture (the average of soft and hard ¢iegs) — a natural comparison, computable
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with the subscript); and three more start with soft EM (marked with the subschip

5.5.2 Lateen Models

Ten modelsA{1,2,3,4,5} ., correspond to the lateen algorithms #1$5.2), starting
with either hard or soft EM’s objective, to be used as the prim

5.6 Results

Soft EM Hard EM
Model | Aa Ai | Aa A
Baselines B3| -2.7| x0.2| -2.0| x0.3

Algorithms 41| 0.0| x1.3| +5.5| x6.5

44| 0.0| x0.8| +3.0| x2.1
a5 | 0.0] x1.2| +2.9| x3.8

Table 5.2: Estimated additive changes in directed depeaydaccuracy Aa) and multi-

plicative changes in the number of iterations before teatniry (A7) for all baseline mod-
els and lateen algorithms, relative to standard training:EM (left) and hard EM (right).
Bold entries are statistically different & 0.01) from zero, forAa, and one, for\i (details

in Table 5.4 and Appendix).

No baseline attained a statistically significant perforogaimprovement. Shallow models
B3y,s, in fact, significantly lowered accuracy: by 2.0%, on avergg~ 7.8 x 107%),
for B3,, which began with hard EM; and down 2.7% on average=(6.4 x 10~7), for
B3, started with soft EM. They were, however, 3-faster than standard training, on
average (see Table 5.4 for all estimates and assogiatatlies; above, Table 5.2 shows a
preview of the full results).

via gradients and standard optimization algorithms, sich-8FGS [192]. Exact interpolations are not
explored because replacing EM is itself a significant conétar, even with unchanged objectives [24].
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bpt
cross-entropies (in bits per token)

4.5
4.0
35 3.39 (3.42) 3.33 (3.39) 3.29 (3.39) 3.29

. — — J—
3.0} 3.26 (3.19) 3.23 (3.18) 3.21 (3.18) 3.22
. , 50 100 150 200 250 300
iteration

Figure 5.2: Cross-entropies for Italian ‘07, initializediformly and trained on sentences
up to length 45. The two curves are primary and secondaryctgs (soft EM’s lies
below, as sentence yields are at least as likely as parsd:tetw®ded regions indicate itera-
tions of hard EM (primary); and annotated values are measemés upon each optimizer’'s
convergence (soft EM’s are parenthesized).

5.6.1 Aly,, — Simple Lateen EM

Al, runs 6.5 slower, but scores 5.5% higher, on average, compared tdathViterbi
training; A1, is only 30% slower than standard soft EM, but does not imgacidcuracy
at all, on average. Figure 5.2 depicts a sample training Itahan ‘07 with A1,. Viterbi
EM converges after 47 iterations, reducing the primary abje to 3.39 bpt (the secondary
is then at 3.26); accuracy on the held-out set is 41.8%. Taiteenations of lateen EM
(totaling 265 iterations) further decrease the primaryeotiye to 3.29 bpt (the secondary
also declines, to 3.22) and accuracy increases to 56.2%%dHigher).

5.6.2 A2y, — Shallow Lateen EM

A2, runs 3.6 slower, but scores only 1.5% higher, on average, comparetatcdard
Viterbi training; A2, is again 30% slower than standard soft EM and also has no mea-
surable impact on parsing accuracy.
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5.6.3 A3y, — Early-Stopping Lateen EM

Both A3, and A3, run 30% faster, on average, than standard training with tiasdft EM;
and neither heuristic causes a statistical change to ancufi@ble 5.3 shows accuracies
and iteration counts for 10 (of 23) train/test splits thatrtimate early withA3, (in one par-
ticular, example setting). These runs are nearly twice sts &ad only two score (slightly)
lower, compared to standard training using soft EM.

5.6.4 A4y, — Early-Switching Lateen EM

A4, runs only 2.% slower, but scores only 3.0% higher, on average, comparsthto
dard Viterbi training; A4, is, in fact, 20% faster than standard soft EM, but still has no
measurable impact on accuracy.

5.6.5 A5y, — Partly-Switching Lateen EM

Aby, runs 3.8 slower, scoring 2.9% higher, on average, compared to stdnlizrbi train-
ing; A5, is 20% slower than soft EM, but, again, no more accurate. dddé4 strictly
dominates bot5 variants.

5.7 Discussion

Lateen strategies improve dependency grammar inductiseveral ways. Early stopping
offers a clear benefit: 30% higher efficiency yet same perdmee as standard training.
This technique could be used to (more) fairly compare lgarmeth radically different
objectives (e.g., lexicalized and unlexicalized), remgjrquite different numbers of steps
— or magnitude changes in cross-entropy — to converge.

The second benefit is improved performance, but only stasiith hard EM. Initial
local optima discovered by soft EM are such that the impa@amuracy of all subsequent
heuristics is indistinguishable from noise (it's not evagative). But for hard EM, lateen
strategies consistently improve accuracy — by 1.5, 3.0%#65— as an algorithm follows
the secondary objective longer (a single step, until thea@ry objective gets worse, or to
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CoNLL Year Soft EM A3,
& Language DDA iters DDA iters
Arabic 2006 28.4 180 28.4 118
Bulgarian '06 39.1 253 39.6| 131
Chinese 06 49.4 268 494 204
Dutch '06 21.3] 246 27.8| 35
Hungarian '07 171 366 17.4| 213
Italian ‘07 39.6| 194 39.6 164
Japanese 06 56.p 113 56.6 93
Portuguese '06 379 180 37.5| 102
Slovenian '06 30.8 234 31.1| 118
Spanish  '06 33.3 125 331 73
Average: 35.4| 216 36.4 125

Table 5.3: Directed dependency accuracies (DDA) and iteratounts for the 10 (of 23)
train/test splits affected by early termination (settingft EM’s primary objective, trained
using shorter sentences and ad-hoc initialization).

convergence). These results suggest that soft EM shouldarsetermination to improve
efficiency. Hard EM, by contrast, could use any lateen gisate improve either efficiency
or performance, or to strike a balance.

5.8 Related Work

5.8.1 Avoiding and/or Escaping Local Attractors

Simple lateen EM is similar to Dhillon et al.'s [84] refinemealgorithm for text cluster-
ing with sphericalk-means. Their “ping-pong” strategy alternates batch antemental
EM, exploits the strong points of each, and improvefaredobjective at every step. Un-
like generalized (GEM) variants [229], lateen EM uses rplgtiobjectives: it sacrifices
the primary in the short run, to escape local optima; in timglun, it also does no harm,
by construction (as it returns the best model seen). Of tha4meuristics that use more
than a standard, scalar objective, deterministic anngdl®\) [268] is closest to lateen
EM. DA perturbs objective functions, instead of manipuigtsolutions directly. As other
continuation methods [5], it optimizes an easy (e.g., cep#enction first, then “rides”
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that optimum by gradually morphing functions towards thiialilt objective; each step
reoptimizes from the previous approximate solution. Sraitld Eisner [292] employed
DA to improve part-of-speech disambiguation, but found tigjectives had to be fur-
ther “skewed,” using domain knowledge, before it helpecdhétibuent) grammar induction.
(For this reason, this chapter does not experiment with @&pde its strong similarities
to lateen EM.) Smith and Eisner used a “temperatuwéd anneal a flat uniform distribu-
tion (8 = 0) into soft EM’s non-convex objectives(= 1). In their framework, hard EM
corresponds t@ — oo, so the algorithms differ only in thejf-schedule: DA’ is con-
tinuous, from 0O to 1; lateen EM’s is a discrete alternatidr, and+oo (a kind of “beam
search” [194], with soft EM expanding and hard EM pruningafier).

5.8.2 Terminating Early, Before Convergence

EM is rarely run to (even numerical) convergence. Fixing alesb number of iterations
a priori [170,85.3.4], running until successive likelihood ratios becan®ll [301,54.1]

or using a combination of the two [2634, Footnote 5] is standard practice in NLP. EI-
worthy’s [97, 85, Figure 1] analysis of part-of-speech tagging showed thahost cases,
a small number of iterations is actually preferable to cogeece, in terms of final ac-
curacies: “regularization by early termination” had beaggested for image deblurring
algorithms in statistical astronomy [19%2]; and validation against held-out data — a
strategy proposed much earlier, in psychology [179], hes béen used as a halting crite-
rion in NLP [344,584.2, 5.2]. Early-stopping lateen EM tethers terminatioasgnchange
in the direction of a secondary objective, similarly to @s¢gvalidation [314, 112, 12], but
without splitting data — it trains using all examples, attaties*°

4t can be viewed as a milder contrastive estimation [293],28¢hostic to implicit negative evidence, but
caringwhencedearners push probability mass towards training examplbsn most likely parse trees begin
to benefit at the expense of their sentence yields (or viceayeoptimizers halt.

SFor a recently proposed instance of EM that uses crossatadid (CV) to optimizesmootheddata
likelihoods (in learning synchronous PCFGs, for phrassedamachine translation), see Mylonakis and
Sima’an’s [226§3.1] CV-EM algorithm.
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5.8.3 Training with Multiple Views

Lateen strategies may seem conceptually related to aafigaj32]. However, bootstrap-
ping methods generally begin with some labeled data andigtigdabel the rest (discrim-
inatively) as they grow more confident, but do not optimizesaplicit objective function;
EM, on the other hand, can be fully unsupervised, relabéksxaimples on each iteration
(generatively), and guarantees not to hurt a well-defingdotibe, at every step. Co-
training classically relies on two views of the data — redamidfeature sets that allow
different algorithms to label examples for each other,dired “probably approximately
correct” (PAC)-style guarantees under certain (strongliiaptions. In contrast, lateen EM
uses the same data, features, model and essentially theadgonghms, changing only
their objective functions: it makes no assumptions, butrgnizes not to harm the pri-
mary objective. Some of these distinctions have becomedauwrith time: Collins and
Singer [72] introduced an objective function (also basedgreement) into co-training;
Goldman and Zhou [126], Ng and Cardie [232] and Chan et al. fd&de do without
redundant views; Balcan et al. [15] relaxed other strongragsions; and Zhou and Gold-
man [347] generalized co-training to accommodate threenaoigk algorithms. Several
such methods have been applied to dependency parsing [@88tituent parsing [277]
and parser reranking [76]. Fundamentally, co-training@igpredundancies in unlabeled
data and/or learning algorithms. Lateen strategles exploit redundancies: in noisy ob-
jectives. Both approaches use a second vantage point towafireir perception of difficult
training terrains.

5.9 Conclusions and Future Work

Lateen strategies can improve performance and efficienaygjpendency grammar induc-
tion with the DMV. Early-stopping lateen EM is 30% fasterttstandard training, without
affecting accuracy — it reduces guesswork in terminating BmMhe other extreme, sim-
ple lateen EM is slower, but significantly improves accuraepy 5.5%, on average — for
hard EM, escaping some of its local optima. Future work c@xijolore other NLP tasks

6Some authors [234, 232, 293] draw a hard line between bapsitig algorithms, such as self- and
co-training, and probabilistic modeling using EM; othée#8,[47] tend to lump them together.
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— such as clustering, sequence labeling, segmentationligmdneent — that often employ
EM. The new meta-heuristics are multi-faceted, featurisygeats of iterated local search,
deterministic annealing, cross-validation, contrastisgmation and co-training. They may
be generally useful in machine learning and non-convexapéition.

5.10 Appendix on Experimental Design

Statistical techniques are vital to many aspects of contipuia linguistics [155, 50, 3,
inter alia). This chapter used factorial desighghich are standard throughout the natural
and social sciences, to assist with experimental desigrsttidtical analyses. Combined
with ordinary regressions, these methods provide sucamttinterpretable summaries that
explain which settings meaningfully contribute to chanigedependent variables, such as
running time and accuracy.

5.10.1 Dependent Variables

Two regressions were constructed, for two types of depdndsrables: to summarize
performance, accuracies were predicted; and to summdfizemrcy, (logarithms of) iter-
ations before termination.

In the performance regression, four different scores weeal tior the dependent vari-
able. These include both directed accuraciesiamirectedaccuracies, each computed in
two ways: (i) using a best parse tree; and (ii) using all pamses. These four types of
scores provide different kinds of information. Undirecsetres ignore polarity of parent-
child relations [244, 172, 282], partially correcting farse effects of alternate analyses
(e.g., systematic choices between modals and main verbgéals of sentences, determin-
ers for noun phrases, etc.). Amdegratedscoring, using the inside-outside algorithm [14]
to compute expected accuracy across all — not just best —e paess, has the advantage of
incorporating probabilities assigned to individual arthis metric is more sensitive to the
margins that separate best from next-best parse treess avud affected by tie-breaking.

71t usedfull factorial designs for clarity of exposition. But many fevaxperiments would suffice, espe-
cially in regression models without interaction terms: tioe more efficienfractional factorial designs, as
well as for randomized block designs and full factorial desi see Montgomery [223, Ch. 4-9].
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Regression foAccuracies Regression fo(Iterations)

Goodness-of-Fit (Raq ~ 76.2%) (Rag ~ 82.4%)
Indicator Factors coeff3 | adij. p-value
undirected 181 | <2.0x 10716
integrated 09 | x7.0x1077 coeff. 3 | mult.e? | adj. p-value
(intercept) 30.9 | <2.0x10716 55 255.8 | <2.0x 10716
|adhoc ~ ~ "~ 1 T 7 12 =31x10 13~ T 00 T T10] =10 T 77
Model | sweet 10| ~31x107? -0.2 08 | <2.0x10716
B3s | shallow (soft-first) 2.7 | ~6.4x1077 -15 02| <2.0x1071©
B3y, | shallow  (hard-first) 20| ~7.8x1074 -1.2 0.3 | <2.0x10716
B2, shallow smooth 06| ~1.0 -0.4 0.7 | ~1.4x10712
Bls smooth 00| ~1.0 0.7 20| <2.0x 10716
Als [ 77 7 7 simple lateen] T 00 =10 T T T T 021 "T137=ma1x10 % T
A2, shallow lateen 00 | ~1.0 0.2 13| ~58x%x107%
A3 early-stopping lateen 00| ~1.0 -0.3 0.7 | ~26x1077
Adg early-switching lateen 00| ~1.0 -0.3 0.8 | ~2.6x1077
Abg | partly-switching lateen 00| ~1.0 0.2 12 | ~42x1073
viterbi -4.0 | ~5.7x10716 -1.7 0.2 | <2.0x10716
B2y, shallow smooth 06| ~1.0 0.2 12| ~56x10°2
B1;, smooth 08 | ~1.0 1.3 37| <2.0x10716
Al [ 77 7 7 simple lateen] T 7 755 <20x10710 " T T 7197 T T65] <20x107 1
A2y, shallow lateen 15| ~50x 1072 1.3 36 | <2.0x10716
A3y, early-stopping lateen 01| ~1.0 -0.4 0.7 | ~1.7x 10"
A4y, early-switching lateen 30| ~1.0x108 0.7 21| <2.0x10716
A5y, | partly-switching lateen 29 | =76x1078 1.3 38| <2.0x10716

Table 5.4: Regressions for accuracies and natural-logtites, using 86 binary predictors
(all p-values jointly adjusted for simultaneous hypothesisngs{langyear indicators not
shown). Accuracies’ estimated coefficiemtshat are statistically different from 0 — and
iteration counts’ multipliers” significantly different from 1 — are shown in bold.

Scores were tagged using two binary predictors in a simpl& @rder, multi-linear) re-
gression, where having multiple relevant quality assesssrimproves goodness-of-fit.

In the efficiency regression, dependent variables wereritbgas of the numbers of
iterations. Wrapping EM in an inner loop of a heuristic hasdtiplicative effect on the
total number of models re-estimated prior to terminatioan§zquently, logarithms of the
final counts better fit the observed data (however, sinceotlj@rithm is concave, the price
of this better fit is a slight bias towards overestimatingdbefficients).

5.10.2 Independent Predictors

All of the predictors are binary indicators (a.k.a. “dumnwgriables). Theaindirectedand
integratedfactors only affect the regression for accuracies (seeeTald, left); remaining
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factors participate also in the running times regressiee (&ble 5.4, right). In a default
run, all factors are zero, corresponding to the intercepinesed by a regression; other
estimates reflect changes in the dependent variable assbwigh having that factor “on”
instead of “off.”

e adhoc— This setting controls initialization. By default, the nformed uniform
initializer is used; when it is on, Ad-Ho¢cbootstrapped using sentences up to length
10, from the training set, is used.

e sweet— This setting controls the length cutoff. By default, tiagis with all sen-
tences containing up to 45 tokens; when it is on, the “sweatt’ gpitoff of 15 tokens
(recommended for English, WSJ) is used.

e viterbi— This setting controls the primary objective of the leaghaigorithm. By
default, soft EM is run; when it is on, hard EM is run.

e {langyear}??, — Thisis a set of 22 mutually-exclusive selectors for thgleage/year
of a train/test split; default (all zeros) is English '07.

Due to space limitations&angyearpredictors are excluded from Table 5.4. Further, interac-
tions between predictors are not explored. This approaghmiss some interesting facts,
e.g., that theadhocinitializer is exceptionally good for English, with soft ENhstead it
yields coarse summaries of regularities supported by dwelming evidence across data
and training regimes.

5.10.3 Statistical Significance

All statistical analyses relied on the R package [258], Whdoes not, by default, adjust
statistical significancepfvalues) for multiple hypotheses testifig-his was corrected us-
ing the Holm-Bonferroni method [141], which is uniformly meopowerful than the older
(Dunn-)Bonferroni procedure; since many fewer hypothddést+ 42 — one per inter-
cept/coefficient3) than settings combinations were tested, its adjustmerttstp-values

8Since one woul@xpectp% of randomly chosen hypotheses to appear significant ai%hlevel simply
by chance one must take precautions against these and other “datpisiy” biases.
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CoNLL Year A3 Soft EM A3y, Hard EM Aly,
& Language DDA | iters DDA | iters DDA| iters DDA| iters DDA iters
Arabic 2006 28.4] 118 28.4 162 21p 19 21l6 21 32.1 | 200

7 - - 269 | 171 24.7 17 24.8 24 22.( 239
Basque 7 - - 39.9 180 32. 16 32)2 20 43.6 | 128
Bulgarian '6 39.6| 131 39.1 253 41.6 22 41(5 25 44.3 | 140
Catalan '7 - - 58.5| 135 50.1 48 501 54 63.8 | 279
Chinese '6 49.4 | 204 49.4| 268 31.3 24 31. 55 3709 378

7 - - 46.0 | 262 30.0 25 30.2 64 34.5 307
Czech '6 - - 50.5 | 294 27.8 27 27.7 33 35.2 445

7 - - 49.8 | 263 29.0 37 29.0 41 314 307
Danish '6 - - 43.5| 116 43.8 31 43.p 45 44.0 | 289
Dutch '6 27.8 35 21.3| 246 24.9 44 249 49 325 | 241
English 7 - - 38.1| 180 34.0 32 33.9 42 34.94 186
German '6 - - 33.3] 136 25.4 20 254 39 33.5| 155
Greek 7 - - 17.5| 230 18.3 18 18.8 21 21.4 | 117
Hungarian '7 17.4 213 17.1 366 128 26 1214 36 23.0 | 246
Italian 7 39.6 | 164 39.6| 194 32.6 25 32.6 27 37/6 273
Japanese 6 56.6 93 56.6 113 49.6 20 49.7 23 53.6 91
Portuguese '6 37.5 102 379 | 180 28.6 27 28.9 41 34.4 134
Slovenian '6 31.1| 118 30.8 234 g - 2314 22 33.6 | 255
Spanish  '6 33.1 73 33.3| 125 18.2 29 18.4] 36 33.3 235
Swedish 6 - - 418 242 36. 24 361 29 425 | 296
Turkish 6 - - 29.8| 303 17.8 19 22.2 38 319 | 134

7 - - 28.3| 227 14.0 9 10.7 31 33.4 | 242

Average: 374 | 162 37.0] 206 30.0] 26 30. 35 371 221

Table 5.5: Performance (directed dependency accuraciasuresl against all sentences in
the evaluation sets) and efficiency (numbers of iteratibms¥tandard training (soft and
hard EM), early-stopping lateen EM18) and simple lateen EM with hard EM’s primary
objective (A1), for all 23 train/test splits, witladhocandsweetsettings on.

are small (see Table 5.3).

5.10.4 Interpretation

Table 5.4 shows the estimated coefficients and their (agtjiistvalues for both intercepts
and most predictors (excluding the language/year of theesks) for all 1,840 experiments.
The default (English) system uses soft EM, trains with baibrsand long sentences, and
starts from an uninformed uniform initializer. It is estited to score 30.9%, converging
after approximately 256 iterations (both intercepts aatidically different from zerop <

2.0 x 10719). As had to be the case, a gain is detected fumirectedscoring;integrated
scoring is slightly (but significantlyp ~ 7.0 x 10~7) negative, which is reassuring: best

9The p-values for all 86 hypotheses were adjusted jointly, ugingp://rss.acs.unt.edu/Rdoc/
library/multtest/html/mt.rawp2adjp.html.
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CoNLL Year A3 Soft EM A3, Hard EM Aly,
& Language DDA | iters DDA | iters DDA| iters DDA| iters DDA iters
Arabic 2006 - — 334 317 20.8 8 20.2 32 16.6 269
7 18.6 60 8.7| 252 26.5 9 26.4 14 495 | 171
Basque 7 - - 18.3] 245 23.2 16 23)0 23 240 | 162
Bulgarian '6 27.0| 242 27.1 293 40.6 33 40(5 34 43.9 | 276
Catalan '7 15.0 74 13.8 159 53.p 30 531 31 59.8 | 176
Chinese '6 63.5| 131 63.6 | 261 36.8 45 36.8, a7 44.5 213
7 58.5| 130 58.5| 258 35.2] 20 35. 48 432 372
Czech '6 29.5| 125 29.7 | 224 23.6 18 23.8 41 27.1 179
7 - - 259 | 215 27.1 37 27.2 64 28.4 | 767
Danish '6 - - 16.6| 155 28.1 30 28.7 30 38.3 | 241
Dutch '6 20.4 51 212 174 25.4 30 256 38 27.8 | 243
English 7 - - 18.0| 162 - - 38.7 35 45.2 | 366
German 6 - - 24.4) 148 30.1 39 301 44 30.4 | 185
Greek 7 255 | 133 25.3| 156 - - 13.2 27 13.p 252
Hungarian 7 — - 18.9 310 28.9 34 2819 44 34.7 | 414
Italian 7 254 | 127 25.3| 165 - - 52.3 36 52.3 81
Japanese '6 — - 39.3 143 42(2 38 42.4 48 50.2 | 199
Portuguese '6 35.2 48 35.6 224 + — 345 21 36.7 | 143
Slovenian '6 24.8| 182 25.3 397 28.8 17 28.8 20 322 | 121
Spanish  '6 - - 277 252 - - 28.8 31 50.6 | 130
Swedish 6 27.9 49 32.6 287 45.p 22 456 52 50.0 | 314
Turkish 6 - - 30.5| 239 30.2 16 30.6 24 29.0| 138
7 - - 48.8 | 254 34.3 24 33.1 34 35.¢ 269
Average: 27.3| 161 27.3] 225 33.72 28 33p 35 38.2 | 236

Table 5.6: Performance (directed dependency accuraciasuresl against all sentences in
the evaluation sets) and efficiency (numbers of iteratibmisstandard training (soft and
hard EM), early-stopping lateen EMi8) and simple lateen EM with hard EM’s primary
objective (A1), for all 23 train/test splits, with settingdhocoff andsweeton.

parses are scoring higher than the rest and may be standihg lawge margins. Thadhoc
initializer boosts accuracy by 1.2%, overall (also sigaifit p ~ 3.1 x 10~!3), without a
measurable impact on running time £ 1.0). Training with fewer, shorter sentences, at
the sweetspot gradation, adds 1.0% and shaves 20% off the total nuaflierations, on
average (both estimates are significant).

The viterbi objective is found harmful — by 4.0%, on average~ 5.7 x 10716) —
for the CoNLL sets. Half of these experiments are with shiagemtences, and half use
ad hoc initializers (i.e., three quarters of settings atadwal for Viterbi EM), which may
have contributed to this negative result; still, the estemado confirm that hard EM is
significantly (80%p < 2.0 x 10~16) faster than soft EM.
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5.10.5 More on Viterbi Training

The overall negative impact of Viterbi objectives is a calasseoncern: On averagell,’s
estimated gain of 5.5% should more than offset the expec@d #bss from starting with
hard EM. But it is, nevertheless, important to make sure simple lateen EM with hard
EM’s primary objective is in fact an improvement ovssthstandard EM algorithms.

Table 5.5 shows performance and efficiency numbersifgr A3y, .}, as well as stan-
dard soft and hard EM, using settings that are least faverlnlViterbi training: adhoc
and sweeton. Although A1, scores 7.1% higher than hard EM, on average, it is only
slightly better than soft EM — up 0.1% (and worse th&3). Withoutadhoc(i.e., using
uniform initializers — see Table 5.6), however, hard EMI #tilproves, by 3.2%, on aver-
age, whereas soft EM drops nearly 10%; hetre, further improves over hard EM, scoring
38.2% (up 5.0), higher than soft EM’s accuracies frioothsettings (27.3 and 37.0).

This suggests that1, is indeed better than both standard EM algorithms. This-chap
ter's experimental set-up may be disadvantageous forbfitesining, since half the set-
tings use ad hoc initializers, and because CoNLL sets ardl.sKiterbi EM works best
with more data and longer sentences.
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Chapter 6
Markup

The purpose of this chapter is to explore ways of constrgiaigrammar induction process,
to make up for the deficiencies of unsupervised objectived,ta quantify the extent to
which naturally-occurring annotations by laymen that nhigé used as a guide, such as
web markup, agree with syntactic analyses rooted in lingutiseories or could be of help.
Supporting peer-reviewed publicationRsofiting from Mark-Up: Hyper-Text Annotations
for Guided Parsingn ACL 2010 [311].

6.1 Introduction

Pereira and Schabes [245] outlined three major problenfisohdssic EM, applied to the re-
lated problem of constituent parsing. They extended aasside-outside re-estimation [14]
to respect any bracketing constraints included with aimgigorpus. This conditioning on
partial parses addressed several problems, leading tdindiistically reasonable con-
stituent boundaries and induced grammars more likely teeagiith qualitative judgments
of sentence structure, which is underdetermined by unateubtext; (ii) fewer iterations
needed to reach a good grammar, countering convergencerpespthat sharply deterio-
rate with the number of non-terminal symbols, due to a peddifion of local maxima; and
(i) better (in the best case, linear) time complexity geration, versus running time that
is ordinarily cubic in both sentence lengithdthe total number of non-terminals, render-
ing sufficiently large grammars computationally impraaticTheir algorithm sometimes

69
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found good solutions from bracketed corpora but not from t@xt, supporting the view
that purely unsupervised, self-organizing inference w@sttan miss the trees for the for-
est of distributional regularities. This was a promisingdk-through, but the problem of
whence to get partial bracketings was left open.

This chapter suggests mining partial bracketings from aghend abundant natural
language resource: the hyper-text markup that annotategages. For example, consider
that anchor text can match linguistic constituents, suckeds phrases, exactly:

..., whereas McCain is secure on the topic,
Obame<a>[yp worries about winning the pro-Israel v¢</a>.

Validating this idea involved the creation of a new datamsetel in combining a real blog’s
raw HTML with tree-bank-like constituent structure parsgenerated automatically. A
linguistic analysis of the most prevalent tags (anchork],btalics and underlines) over its
1M* words reveals a strong connection between syntax and m&akugf this chapter’s
examples draw from this corpus), inspiring several simpthhiques for automatically
deriving parsing constraints. Experiments with both hard more flexible constraints,
as well as with different styles and quantities of annotatashing data — the blog, web
news and the web itself, confirm that markup-induced comggraonsistently improve
(otherwise unsupervised) dependency parsing.

6.2 Intuition and Motivating Examples

It is natural to expect hidden structure to seep through vehgerson annotates a sentence.
As it happens, a non-trivial fraction of the world’s popudatroutinely annotates text dili-
gently, if only partially and informally. They inject hyper-links, vary font sizes, and toggle
colors and styles, using markup technologies such as HTMLXavL.

As noted, web annotations can be indicative of phrase boigsj&.g., in a complicated
sentence:

In 1998, however, as<a>[yp established iiki>[\p The New Republj</i>]</a> and Bill
Clinton just<a>[yp confirmed in his memoif</a>, Netanyahu changed his mind and ...

1Even when (American) grammar schools lived up to their naimey only taught dependencies. This
was back in the days before constituent grammars were iegent
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In doing so, markup sometimes offers useful cues even foiléeel tokenization decisions:

[N [Np Libyan rulet
<a>[yp Mu‘ammar al-Qaddal/a>] referred to ...

(NP (ADJP (NP (JJ Libyan) (NN ruler))
(JJ Mw))
(“* ) (NN ammar) (NNS al-Qaddafi))

At one point in time, a backward quote in an Arabic name caedusome parsers (see
above)? Yet markup lines up with the broken noun phrase, signalssiohgand moreover
sheds light on the internal structure of a compound. As VadasCurran [327] point out,
such details are frequently omitted even from manually dedpree-banks that err on the
side of flat annotations of base-NPs. Admittedly, not allrmtaries between HTML tags
and syntactic constituents match up nicely:

..., but[s [\p the<a><i>Toronto Sta</i>]
[vp reports[yp this)[-p in the softest possible wé</a>,[s stating only that .]]]

Combining parsing with markup may not be straight-forward,there is hope: even above,
one of each nested tag’s boundaries aligns; Bordnto Stais neglected determiner could
be forgiven, certainly within a dependency formulation.

6.3 High-Level Outline of the Approach

Instead of learning the DMV from an unannotated test setjdba here is to train with
text that contains web markup, using various ways of comgHTML into parsing con-
straints. These constraints come from a blog — a new corpagext for this chapter, the
web and news (see Table 6.1 for corpora’s sentence and tokersy. To facilitate future
work, the manually-constructed blog data was made pubdighjlable® Although it is not
practical to share larger-scale resources, the main sesluttuld be reproducible, as both
linguistic analysis and the best model rely exclusivelylmahlog.

2For example, the Stanford parser (circa 20@)tp: //nlp.stanford.edu:8080/parser
3http ://cs.stanford.edu/~valentin/



72

CHAPTER 6. MARKUP

Corpus Sentences POS Tokens
WSJF° 49,208 1,028,347
Section 23 2,353 48,201
- WSJ45] 48,418 986,830
WSJ15 15,922 163,715
Brown100 24,208 391,796
BLOG, 57,809 1,136,659
- BLOG/45| 56,191 1,048,404
BLOG;15 23,214 212,872
NEWS45| 2,263,563,078 32,119,123,561
NEWS15| 1,433,779,438 11,786,164,503
WEBA45 | 8,903,458,234 87,269,385,640
WEB15| 7,488,669,239 55,014,582,024

Table 6.1: Sizes of corpora derived from WSJ and Brown ansitieollected from the web.

6.4 Data Sets for Evaluation and Training

The appeal of unsupervised parsing lies in its ability torifeom surface text alone; but
(intrinsic) evaluation still requires parsed sentencdsusl primary reference sets are still
derived from the Penn English Treebank’s Wall Street Jdypordion — WSJ45 (sentences
with fewer than 46 tokens) and Section 23 of WS&ll sentence lengths), in addition to
Brown100, similarly derived from the parsed portion of the®n corpus. WS{15, 45}
are also used to train baseline models, but the bulk of therempnts is with web data.

6.4.1 A News-Style Blog: Daniel Pipes

Since there was no corpus overlaying syntactic structutie nvarkup, a new one was con-
structed by downloading articleérom a news-style blog. Although limited to a single
genre — political opiniondanielpipes.org is clean, consistently formatted, carefully
edited and larger than WSJ (see Table 6.1). Spanning ded2iges’ editorials are mostly

in-domain for POS taggers and tree-bank-trained parseysgbent (internet-era) entries
are thoroughly cross-referenced, conveniently proviglisgthe markup one might hope to

4http://danielpipes.org/art/year/all



6.4. DATA SETS FOR EVALUATION AND TRAINING 73

Length Marked POS Bracketings
Cutoff | Sentences Tokens All Multi-Token
0 6,047| 1,136,659 7,731 6,015
1| of 57,809| 149,483| 7,731 6,015
2 4,934 124,527 6,482 6,015
3 3,295 85,423 4,476 4,212
4 2,103 56,390 2,952 2,789
5 1,402 38,265 1,988 1,874
6 960 27,285 1,36% 1,302
7 692 19,894 992 952
8 485 14,528 71( 684
9 333 10,484 499 479
10 245 7,887 365 352
15 42 1,519 65 63
20 13 466 20 20
25 6 235 10 10
30 3 136 6 6
40 0 0 0 0

Table 6.2: Counts of sentences, tokens and (unique) biagkdbr BLOG,, restricted to
only those sentences having at least one bracketing noeshban the length cutoff (but

shorter than the sentence).

study via uncluttered (printer-friendly) HTME..

After extracting moderately clean text and markup locajdvixTerminator [264] was
used to detect sentence boundaries. This initial autormaded begot multiple rounds
of various semi-automated clean-ups that involved fixingtesece breaking, modifying
parser-unfriendly tokens, converting HTML entities anah+#&SCII text, correcting typos,
and so on. After throwing away annotations of fractional @gofe.g.<i>basmact</i>Ss)
and tokens (e.g.<i>Sesame Stre</i>-like), all markup that crossed sentence bound-
aries was broken up (i.e., loosely speaking, replacingtoocts like<us...[s...</u> with

<us..</u> |[s <us...</u>) and discarding any tags left covering entire sentences.

Two versions of the data were finalized: BLQ®gged with the Stanford tagger [321,

Shttp://danielpipes.org/article_print.php?id=...
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320]% and BLOG,, parsed with Charniak’s parser [52, 33The reason for this dichotomy
was to use state-of-the-art parses to analyze the relatbgtween syntax and markup,
yet to prevent jointly tagged (and non-standatiX[G]) POS sequences from interfering
with the (otherwise unsupervised) trainitig.

6.4.2 Scaled uguantity: The (English) Web

A large (see Table 6.1) but messy data set, WEB, was built —igtpoking web-

pages, pre-crawled by a search engine. To avoid machirergfed spam, low quality
sites flagged by the indexing system were excluded. Onlegegtlike runs of words (sat-
isfying punctuation and capitalization constraints), evkept, POS-tagged with TnT [36].

6.4.3 Scaled uguality: (English) Web News

In an effort to trade quantity for quality, a smaller, potalty cleaner data set, NEWS,

we also constructed. Editorialized content could lead weefeextracted non-sentences.
Perhaps surprisingly, NEWS is less than an order of magaituidaller than WEB (see

Table 6.1); in part, this is due to less aggressive filteringgause of the trust in sites
approved by the human editors at Google Néwn.all other respects, pre-processing of
NEWS pages was identical to the handling of WEB data.

6.5 Linguistic Analysis of Markup

Is there a connection between markup and syntactic stefefarevious work [18] has only
examined search engine queries, showing that they considominantly of short noun
phrases. If web markup shared a similar characteristicightmot provide sufficiently
disambiguating cues to syntactic structure: HTML tags ddnd too short (e.g., singletons

Shttp://nlp.stanford. edu/software/stanford-postagger-2008-09-28.tar.gz

7ftp ://ftp.cs.brown.edu/pub/nlparser/parser®5Augl6.tar.gz

8However, since many taggers are themselves trained on ihapaesed corpora, such as WSJ, no parser
that relies on external POS tags could be considered tridyparvised; for dully unsupervised example,
see Seginer’s [283] CCL parser, availabl&atp: //www.seggu.net/ccl/

Shttp://news.google.com/
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Count POS Sequence Frac Sum

1 1,242 NNP NNP 16.1%

2 643 NNP 8.3 244
3 419 NNP NNP NNP 54 29.8
4 414 NN 54 35.2
5 201 JJ NN 26 37.8
6 138 DT NNP NNP 1.8 395
7 138 NNS 1.8 41.3
8 112 1] 15 4238
9 102 VBD 1.3 44.1
10 92 DT NNP NNP NNP 1.2 453
11 85 JJ NNS 1.1 46.4
12 79 NNP NN 1.0 474
13 76 NN NN 1.0 484
14 61 VBN 0.8 49.2
15 60 NNP NNP NNP NNP 0.8 50.0

BLOG, +3,869 more with Counk 49 50.0%

Table 6.3: Top 50% of marked POS tag sequences.

Count Non-Terminal Frac Sum
1 5,759 NP 74.5%
2 997 VP 129 87.4
3 524 S 6.8 94.2
4 120 1.6 957
5 72 ADJP 0.9 96.7
6 61 FRAG 0.8 97.4
7 41 ADVP 0.5 98.0
8 39 SBAR 0.5 985
9 19 PRN 0.2 98.7
10 18 NX 0.2 99.0

BLOG, +81 more with CounkK 16 1.0%

Table 6.4: Top 99% of dominating non-terminals.

like “click <a>here</a>”) or otherwise unhelpful in resolving truly difficult amhigies
(such as PP-attachment). Let’s begin simply by countingpuarbasic events in BLOG



76 CHAPTER 6. MARKUP

Count Constituent Production Frac Sum
1 746 NP — NNP NNP 9.6%
2 357 NP — NNP 46 14.3
3 266 NP — NP PP 3.4 17.7
4 183 NP — NNP NNP NNP 2.4 201
5 165 NP — DT NNP NNP 2.1 22.2
6 140 NP — NN 1.8 24.0
7 131 NP — DT NNP_NNP NNP 1.7 25.7
8 130 NP — DT NN 1.7 274
9 127 NP — DT NNP NNP 1.6 29.0
10 109 S — NP VP 1.4 304
11 91 NP — DT NNP NNP NNP 1.2 31.6
12 82 NP — DT JJ NN 1.1 32.7
13 79 NP — NNS 1.0 33.7
14 65 NP — JJ NN 0.8 34.5
15 60 NP — NP NP 0.8 35.3

BLOG, +5,000 more with CounK 60 64.7%

Table 6.5: Top 15 marked productions, viewed as constisu@nacketings are underlined).

6.5.1 Surface Text Statistics

Out of 57,809 sentences, 6,047 (10.5%) are annotated (®de 2); and 4,934 (8.5%)
have multi-token bracketings. Without distinguishing HILkags, i.e., tracking only unique
bracketing end-points within a sentence, 6,015 are moitiéh — an average per-sentence
yield of 10.4%'° As expected, many of the annotated words are nouns, butahessljec-
tives, verbs and other parts of speech too (see Table 6.3kudas short, typically under
five words, yet (by far) the most frequently marked sequehé¥3$5 tags is a pair.

6.5.2 Common Syntactic Subtrees

For three-quarters of all markup, the lowest dominating-tesminal is a noun phrase (see
Table 6.4); there are also non-trace quantities of verbgasr#12.9%) and other phrases,
clauses and fragments. Of the top fifteen35-2%o0f all — annotated productions, only

10A non-trivial fraction of the corpus is older (pre-interhahannotated articles, so this estimate may be
conservative.
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Count Head-Outward Spawn Frac Sum
1 1,889 NNP 24.4%
2 623 NN 8.1 325
3 470 DT - NNP 6.1 38.6
4 458 DT NN 5.9 445
5 345 NNS 45 49.0
6 109 NNPS 1.4 50.4
7 08 VBG 1.3 51.6
8 96  NEP__ NNP——NN 1.2 529
9 80 VBD 1.0 53.9
10 77 IN 1.0 54.9
11 74 VBN 1.0 55.9
12 73 DT TN 0.9 56.8
13 71 VBZ 0.9 57.7
14 69 POS ~— NNP 0.9 58.6
15 63 13 0.8 59.4

BLOG, +3,136 morewitrE:ountg 62 40.6%

Table 6.6: Top 15 marked productions, viewed as dependgrefiter recursively expand-
ing any internal nodes that did not align with bracketingsd@rlined). Tabulated depen-
dencies were collapsed, dropping any dependents thatrfidlely in the same region as
their parent (i.e., both inside the bracketing, both toef$ dr both to its right), keeping
only crossing attachments.

one isnot a noun phrase (see Table 6.5). Three of the fifteen lowestraddimg non-
terminals donot match the entire bracketing — all three miss the leadingrdeter, as
earlier. In such cases, internal nodes were recursiveitysgil the bracketing aligned, as
follows:

[s [np the<a>Toronto Stalfyp reportsyp this| in the softest possible wé</a>,[s stating . .J]]

S — NP_VP — DT NNP NNP VBZ NP S

Productions can be summarized more compactly by using andepey framework and
clipping off any dependents whose subtrees do not crosscadinag boundary, relative to
the parent.
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Thus,

e e %\
DT NNP NNP VBZ DT DT JJS JJ NN

becomeDT NNP /\ﬁsz, "theggtar@ortk/».” Viewed this way, the top fifteen (now
collapsed) productions covBB.4%of all cases and include four verb heads, in addition to
a preposition and an adjective (see Table 6.6). This exgogesases of inexact matches,
three of which involve neglected determiners or adjectieethe left of the head. In fact,
the only case that cannot be explained by dropped depenideftts where the daughters
are marked but the parent is left out. Most instances cauitnig to this pattern are flat NPs
that end with a noun, incorrectly assumed to be the head ofther words in the phrase,

e.g.,

o
... [N\p @ 1994<i>New Yorke</i> article ...

As this example shows, disagreements (as well as agreerbetiseen markup and machine-
generated parse trees with automatically percolated reramigd be taken with a grain of
salt!?

6.5.3 Proposed Parsing Constraints

The straight-forward approach — forcing markup to correspto constituents — agrees
with Charniak’s parse trees on8.0% of the time, e.g.,

... In[yp<a>[nyp an analysik/a>pp of perhaps the
most astonishing PC item | have yet stumbled upon

This number should be higher, as the vast majority of disagents are due to tree-bank
idiosyncrasies (e.g., bare NPs). Earlier examples of iqdeta constituents (e.g., legiti-

mately missing determiners) would also be fine in many listjatheories (e.g., as N-bars).
A dependency formulation is less sensitive to such stgldifferences.

Ravi et al. [262] report that Charniak’s re-ranking par€8][— reranking-parserAug06. tar.gz,
also available fronftp://ftp.cs.brown.edu/pub/nlparser/ — attains 86.3% accuracy when trained
on WSJ and tested against Brown; this nearly 5% performaygs dut-of-domain is consistent with the
numbers originally reported by Gildea [115].



6.5. LINGUISTIC ANALYSIS OF MARKUP 79

Let’s start with the hardest possible constraint on depecids, then slowly relax it. Ev-
ery example used to demonstrate a softer constraint doablasounter-example against
all previous versions.

e strict — seals markup into attachments, i.e., inside a bracke@nfprces exactly
one external arc — into the overall head. This agrees withd{pescolated trees just
35.6% of the time, e.g.,

—
As author oi<i>The SatanidVersez/is, I ...

e loose— same astrict, but allows the bracketing’s head word to have external de-
pendents. This relaxation already agrees with head-mszbdependenci&y .30
of the time, catching many (though far from all) dropped dejsnts, e.g.,

T .
... the<isTorontoStalz/i> reports . ..

e sprawl— same adoose but now allowsall words inside a bracketing to attach
external dependents. This boosts agreement with head-percolated tre€@5 1196,
handling new cases, e.g., wherofonto Stat is embedded in longer markup that
includes its own parent — a verb:

— Vv—
... the<asToronto Staf€POItS. .</as ...

e tear— allows markup to fracture after all, requiring only tha¢ texternal heads at-
taching the pieces lie to the same side of the bracketing [dropels agreement with
percolated dependenciesa®. %%, fixing previously broken PP-attachment ambigui-
ties, e.g., a fused phrase like “Fox News in Canada” thattietha preposition from
its verb:

12This view evokes the trapezoids of thén?) recognizer for split head automaton grammars [91].
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... concession ... has raised eyebrows among those
waiting [pp for <a>Fox News|-p in Canadé</a>.
_ e

Most of the remaining 1.1% of disagreements are due to parsars. Nevertheless, i
possible for markup to be torn apart by external heads tooth sides. Below is a (very
rare) true negative example: “CSA’ modifies “authority” (te left), appositively, while
“Al-Manar” modifies “television” (to its right)*3

The French broadcasting amCSA, banned
... Al-Manak/a> satellite television from ...
e

6.6 Experimental Methods and Metrics

Viterbi training admits a trivial implementation of mosigmosed dependency constraints.
Six settings parameterized each run:

e INIT: ® — default, uniform initialization; orl — a high quality initializer, pre-
trained using Ad-Hog with Laplace smoothing, trained at WSJ15 (the “sweet spot”
data gradation) but initialized off WSJ8, since that iniier has the best cross-
entropy on WSJ15 (see Figure 4.3).

e GENRE: ® — default, baseline training on WSJ; else, uses BLOG;; 2 — NEWS;
or 3 — WEB.

e SCOPE: 0 — default, uses all sentences up to length 43;, ifrains using sentences
up to length 15; i2, re-trains on sentences up to length 45, starting from theiso
to sentences up to the “sweet spot” length, 15.

e CONSTR: if 4, strict; if 3, loose and if 2, sprawl(evel 1, tear, was not implemented).
Over-constrained sentences are re-attempted at sucalgdsiwer levels until they
become possible to parse, if necessary at the lowest (teifzwal 0.14

13A stretch, since the comma after “CSA’” renders the markedggtungrammatical eveit of context.
1At level 4, <b> X<u> Y</b> Z</u> is over-constrained.
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e TRIM: if 1, discards any sentence without a single multi-token mafkbprter than
its length).

e ADAPT: if 1, upon convergence, initializes re-training on WSJ45 uslilegsolution to
<GENRE>, attempting domain adaptation [183].

These make for 294 meaningful combinations. Each one wage@idy its accuracy on
WSJ45, using standard directed scoring — the fraction afecbidependencies over ran-
domized “best” parse trees.

6.7 Discussion of Experimental Results

Evaluation on Section 23 of WSJ and Brown reveals that blagyrng beats all previously
published state-of-the-art numbers in every traditignediported length cutoff category,
with news-training not far behind. Here is a mini-previewtloése results, for Section 23
of WSJ10 and WSJ (from Table 6.9):

Model WSJ10| WS¥
DMV Bilingual Log-Normals (tie-verb-noun) [66] 62.0 42.2
Leapfrog (Ch.3)| 57.1 45.0
"NEWS-best | 67.3]| 50.1 |
BLOG;-best 69.3 50.4
EVG Smoothed (skip-head), Lexicalized [133] 68.8

Table 6.7: Directed accuracies on Section 23 of YW8J° } for previous state-of-the-art
systems and the best new runs (as judged against WSJ45) #iSNdhd BLOG (more
details in Table 6.9).

Since the experimental setup involved testing nearly theeglred models simultaneously,
extreme care must be taken in analyzing and interpretirggethesults, to avoid falling prey
to any looming “data-snooping” biases, as in the previowptdr. In a sufficiently large
pool of models, where each is trained using a randomizedactaotic procedure (such
as here), the best may look good due to pure chance. An apjledlewnade to three
separate diagnostics, to conclude that the best resultoaneise.
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The most radical approach would be to write off WSJ as a dpwmeémt set and to focus
only on the results from the held-out Brown corpus. It wasiafly intended as a test of
out-of-domain generalization, but since Brown was in no waglved in selecting the best
models, it also qualifies as a blind evaluation set. The bestefs perform even better (and
gain more — see Table 6.9) on Brown than on WSJ — a strong itidictnat the selection
process has not overfitted.

The second diagnostic is a closer look at WSJ. Since it woellderd to graph the full
(six-dimensional) set of results, a simple linear regassvill suffice, using accuracy on
WSJ45 as the dependent variable. As in the previous chapigfull factorial design is
preferable to the more traditional ablation studies beed#ualows one to account for and
to incorporate every single experimental data point iredialong the way. Its output is a
coarse, high-level summary of our runs, showing which facsignificantly contribute to
changes in error rate on WSJ45:

Parameter| (Indicator) Setting 3 | p-value
INIT 1 ad-hoc @WSJ8,15 11.8  ***
GENRE |1 BLOG, | -3.7| 0.06

2 NEWS| -5.3 i
3 WEB | -7.7 ol
'scopE |1 @15| -0.5 0.40
2 @15-45| -0.4| 0.53
CONSTR |2 sprawl| 0.9] 023
3 loose| 1.0 0.15
4 strict | 1.8 *
TRIM |1 dropunmarked -7.4 %
ADAPT |1 WSJretraining 1.5 %
Intercept (Rijuea= 73.6%) | 39.9| **

Convention: *** for p < 0.001; ** for p < 0.01 (very significant); and * fop < 0.05 (significant).

The default training mode (all parameters zero) is estichadescore 39.9%. A good ini-
tializer gives the biggest (double-digit) gain; both domadaptation and constraints also
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Corpus Marked Sentencels All Sentengps POS Tokens  All Brgsk¢ Multi-Token Bracketings
BLOG:45 5,641 56,191 1,048,404 7,021 5,346
BLOG;45 4,516 4,516 104,267 5,771 5,346
BLOG:15 1,562 23,214 212,872 1,714 1,240
BLOG;lS 1,171 1,171 11,954 1,288 1,240

NEWS45 304,129,910 2,263,563,018 32,119,123,561 6165684 477,362,150
NEWS'45 205,671,761 205,671,76( 2,740,258,972 453,781,081 ,669D70
NEWS15 211,659,549 1,433,779,438 11,786,164,503 365485 274,791,675
NEWS'15 147,848,358 147,848,354 1,397,562,474 272,223,918 ,023D21
WEB45 1,577,208,680 8,903,458,23%  87,269,385,640 38909161 2,459,337,571
WEB'45 933,115,032 933,115,034 11,552,983,379 2,084,359|555 1,793,238,913
WEB15 1,181,696,194  7,488,669,23D 55,014,582,024 2/@31[95 1,494,675,520
WEB'15 681,087,020 681,087,02(] 5,813,555,341 1,200,980({738 ,072910,682

Table 6.8: Counts of sentences, tokens and (unique) biagkdor web-based data sets;
trimmed versions, restricted to only those sentences patiteast one multi-token brack-
eting, are indicated by a primé.(

make a positive impact. Throwing away unannotated datashag does training out of
domain (the blog is least bad; the web is worst). Of course,dherview should not be
taken too seriously. Overly simplistic, a first order modgilares interactions between pa-
rameters. Furthermore, a least squares fit aims to captoteat&endencies, whereas the
interesting information is captured by outliers — the h@stforming runs.

A major imperfection of the simple regression model is tredpful factors that require
an interaction to “kick in” may not, on their own, appear ititally significant. The
third diagnostic examines parameter settings that gieetashe best-performing models,
looking out for combinations that consistently deliver eapr results.

6.7.1 WSJ Baselines

Just two parameters apply to learning from WSJ. Five of thigicombinations are state-
of-the-art, demonstrating the power of Viterbi trainingnlyothe default run scores worse
than 45.0%, attained by Leapfrog, on WSJ45:

Settings| SCOPE=0 | SCOPE=1 | SCOPE=2
INIT=0 41.3 45.0 45.2
1 46.6 47.5 47.6
@45 @15 @15:45
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6.7.2 Blog

Simply training on BLOG instead of WSJ hurts:

GENRE=1 | SCOPE=0 | SCOPE=1 | SCOPE=2
INIT=0 39.6 36.9 36.9
1 46.5 46.3 46.4

@45 @15 @15:45

The best runs use a good initializer, discard unannotatatkisees, enforce thiwose
constraint on the rest, follow up with domain adaptation bedefit from re-training —
GENRE=TRIM=ADAPT=1:

INIT=1 | SCOPE=0 | SCOPE=1 | SCOPE=2
CONSTR=0 45.8 48.3 49.6
(spraw)) 2 46.3 49.2 49.2

(loose 3 41.3 50.2 50.4
(strict) 4 40.7 49.9 48.7
@45 @15 @15+45

The contrast between unconstrained learning and annetgtimed parsing is higher for
the default initializer, still using trimmed data sets {jever a thousand sentences for
BLOG]15 — see Table 6.8):

INIT=0 | SCOPE=0 | SCOPE=1 | SCOPE=2
CONSTR=0 25.6 19.4 19.3
(sprawl) 2 25.2 22.7 22.5

(loosg 3 32.4 26.3 27.3
(strict) 4 36.2 38.7 40.1
@45 @15 @15>45

Above, a clearer benefit to the constraints can be seen.
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6.7.3 News
Training on WSJ is also better than using NEWS:
GENRE=2 | SCOPE=0 | SCOPE=1 | SCOPE=2
INIT=0 40.2 38.8 38.7
1 43.4 44.0 43.8
@45 @15 @15+45

As with the blog, the best runs use the good initializer, @lidainannotated sentences, en-

force the loose constraint and follow up with domain adaptation -GENRE=2;

INIT=TRIM=ADAPT=1.:

Settings| SCOPE=0 | SCOPE=1 | SCOPE=2
CONSTR=0 46.6 454 45.2
(spraw) 2 46.1 44.9 44.9

(loos§ 3 49.5 48.1 48.3

(strict) 4 37.7 36.8 37.6

@45 @15 @15-45

With all the extra training data, the best new score is juss%0 On the one hand, the lack
of dividends to orders of magnitude more data is disappuntOn the other, the fact that
the system arrives within 1% of its best result — 50.4%, otgdiwith a manually cleaned

up corpus — now using an auto-generated data set, is congorti

6.7.4 Web

The WEB-side story is more discouraging:

GENRE=3 | SCOPE=0 | SCOPE=1 | SCOPE=2
INIT=0 38.3 35.1 35.2
1 42.8 43.6 43.4
@45 @15 @15>45
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The best run again uses a good initializer, kedpsentences, still enforces th@secon-
straint and follows up with domain adaptation, but perfomasse than all well-initialized
WSJ baselines, scoring only 45.9% (trained at WEB15).

The web seems to be too messy for this chapter's methods. of tine challenges
of language identification and sentence-breaking, thexéasof boiler-plate; furthermore,
web text can be difficult for news-trained POS taggers. Fan®le, the verb “sign” is
twice mistagged as a noun and “YouTube” is classified as a, verthe top four POS
sequences of web sentendées:

POS Sequence wes Count
| Sample web sentence, chosen uniformly at random.

1| DT NNS VBN 82,858,487
“““““““““““ All rights reserved|

2 | NNP NNP NNP 65,889,181
. Vuasaetal

3| NN TO VB RB 31,007,783
. Signinto YouTube now!

4 | NN PRP$ JJ NN 31,007,471
““““““ Sign in with your Google Account]

6.7.5 The State of the Art

The best model gains more than 5% over previously publistetd-sf-the-art accuracy
across all sentences of WSJ’s Section 23, more than 8% on Q\8uiPrivals the oracle
skyline (70.2% — see Figure 3.2a) on WSJ10; these gains gleesto Brown100, where
itimproves by nearly 10% (see Table 6.9). The best modekedgrusingooseconstraints.

Of these, the models trained with less data perform beti#r,the best two using trimmed
data sets, echoing that “less is more,” pace Halevy et aQ][13rders of magnitude more
data did not improve parsing performance further, thoughffardnt outcome might be
expected from lexicalized models: The primary benefit ofitmithl lower-quality data is

SEurther evidence: TnT tags the ubiquitous but ambiguougients “click here” and “print post” as
noun phrases.
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Model Incarnation WSJ10| WSJ20 WS3I
DMV  Bilingual Log-Normals (tie-verb-noun) [66 62.0 48.00 2#& | BrownlO0
_Leapfrog  ____(Ch.3)] 571 | 487 450 = 43.6 |
default 55.9 | 45.8 | 41.6 40.5
INIT=0,GENRE=0,SCOPE=0,CONSTR=0,TRIM=0,ADAPT=0
WSJ-best | 653 | 538 479 50.8
INIT=1,GENRE=0,SCOPE=2,CONSTR=0, TRIM=0,ADAPT=0
BLOG-best | 693 | 568 | 504 53.3
INIT=1,GENRE=1,SCOPE=2,CONSTR=3,TRIM=1,ADAPT=1
NEWS-best 673 | 562 | 501 51.6
INIT=1,GENRE=2,SCOPE=0,CONSTR=3,TRIM=1,ADAPT=1
WEB-best | a1 | 527 463 46.9
INIT=1,GENRE=3,SCOPE=1,CONSTR=3,TRIM=0,ADAPT=1
EVG  Smoothed (skip-head), Lexicalized [133] 68.8

Table 6.9: Accuracies on Section 23 of W$J, 20, } and Brown100 for three recent
state-of-the-art systems, our default run, and our best (judged by accuracy on WSJ45)

for each of four training sets.

in improved coverage. But with only 35 unique POS tags, dadassity is hardly an issue.
Extra examples of lexical items help little and hurt whenytaee mistagged.

6.8 Related Work

The wealth of new annotations produced in many languagesy dag already fuels a num-
ber of NLP applications. Following their early and wide-ga use by search engines, in
service of spam-fighting and retrieval, anchor text and tiata enhanced a variety of tra-
ditional NLP techniques: crosslingual information retek[233], translation [196], both
named-entity recognition [220] and categorization [33fjery segmentation [318], plus
semantic relatedness and word-sense disambiguation 3429, Yet several, seemingly
natural, candidate core NLP tasks — tokenization, CJK seggtien, noun-phrase chunk-
ing, and (until now) parsing — remained conspicuously uoivned1°

Approaches related to ones covered by this chapter ariggpiircations that combine
parsing with named-entity recognition (NER). For exampglenstraining a parser to re-
spect the boundaries of known entities is standard praott®nly in joint modeling of

8Following the work in this chapter, this omission has beemigiéy rectified for Chinese [316, 146, 151,
346], as well as in the form of a linguistic inquiry into thenstituency of hyperlinks [99].
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(constituent) parsing and NER [103], but also in higheeleNLP tasks, such as relation
extraction [221], that couple chunking with (dependenafsprg. Although restricted to
proper noun phrases, dates, times and quantities, we sukpeconstituents identified by
trained (supervised) NER systems would also be helpful mstraining grammar induc-
tion.

Following Pereira and Schabes’ [245] success with partialogtions in training a
model of (English) constituents generatively, their idea been extended to discrimina-
tive estimation [265] and also proved useful in modelingp&rese) dependencies [278].
There was demand for partially bracketed corpora. Chen a®d[&7] constructed one
such corpus by learning to partition (English) POS sequemu® chunks [2]; Inui and
Kotani [147] usedr-gram statistics to split (Japanese) claude3his chapter combined
the two intuitions, using the web to build a partially parsedous. Such an approach could
be calledlightly supervised, since it does not require manual annotationsofgle com-
plete parse tree. In contrast, traditional semi-supedvisethods rely on fully-annotated
seed corpor&

6.9 Conclusion

This chapter explored novel ways of training dependencgipgrmodels. The linguis-
tic analysis of a blog reveals that web annotations can beectad into accurate pars-
ing constraintslipose 88%; sprawt 95%;tear. 99%) that could also be helpful to super-
vised methods, e.g., by boosting an initial parser via salfting [208] on sentences with
markup. Similar techniques may apply to standard wordgssinig annotations, such as
font changes, and to certain (balanced) punctuation [39].
The blog data set, overlaying markup and syntax, has beea madiicly available. Its

annotations are 75% noun phrases, 13% verb phrases, 7%edleghrative clauses and
2% prepositional phrases, with traces of other phrasegssetaand fragments. The type

"Earlier, Magerman and Marcus [198] used mutual informatiather than a grammar, to recognize
phrase-structure. But simple entropy-minimizing tecliegtend to clash with human notions of syntax [82].
A classic example is “edby” — a common English character sage (as in “cawsd by or “walked by)
proposed as a word by Olivier’s [242] segmenter.

18 significant effort expended in building a tree-bank coméh whe first batch of sentences [87].
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of markup, combined with POS tags, could make for valuakd¢ufes in discriminative
models of parsing [260].

A logical next step would be to explore the connection betwsgtax and markup for
genres other than a news-style blog and for languages dide&English. If the strength of
the connection between web markup and syntactic structureiversal across languages
and genres, this fact could have broad implications for NLiEh applications extending
well beyond parsing.



Chapter 7
Punctuation

The purpose of this chapter is to explore whether constalaveloped for English web
markup might also be generally useful for punctuation, Wheca traditional signal for
text boundaries in many languages. Supporting peer-redgwblication ifPunctuation:
Making a Point in Unsupervised Dependency Parsm@oNLL 2011 [304].

7.1 Introduction

Uncovering hidden relations between head words and theert#ents in free-form text
poses a challenge in part because sentence structure islatetenined by only raw, unan-
notated words. Structure can be clearefamattedtext, which typically includes proper
capitalization and punctuation [129]. Raw word streamshsas utterances transcribed by
speech recognizers, are often difficult even for humans|[IG¥erefore, one would expect
grammar inducers to exploit any available linguistic mé#déa (e.g., HTML, which is or-
dinarily stripped out during pre-processing). And yet isupervised dependency parsing,
sentence-internal punctuation has long been ignored @, 272, 33jnter alia).

This chapter proposes exploring punctuation’s potergiald grammar induction. Con-
sider a motivating example (all of this chapter’'s examptesiam WSJ), in which all (six)
marks align with constituent boundaries:

[sear Although it probably has reduced the level of expenditucesbme purchaseérsyp utilization
management— like most other cost containment strategies [yp doesn’t appear to have altered the

90
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long-term rate of increase in health-care cpstg the Institute of Medicing [yp an affiliate of the National
Academy of Sciencés|yp concluded after a two-year study

This link between punctuation and constituent boundanggessts that parsing could be
approximated by treating inter-punctuation fragmentepehdently. In training, an algo-
rithm could first parse each fragment separately, then ghesesequence of the resulting
head words. In inference, a better approximation could kd tsallow heads of fragments
to be attached by arbitrary external words, e.g.:

The Soviets complicated the issue by offerindyip mclt&e_l@tan&[s_g&whlch are as light as .].

Count POS Sequence Frac Cum

1 3,492 NNP 2.8%

2 2,716 CD CD 22 50
3 2,519 NNP NNP 20 7.1
4 2,512 RB 20 9.1
5 1,495 CD 1.2 10.3
6 1,025 NN 0.8 111
7 1,023 NNP NNP NNP 0.8 11.9
8 916 NN 0.7 12.7
9 795 VBZ NNP NNP 0.6 13.3
10 748 cC 0.6 13.9
11 730 CD DT NN 0.6 145
12 705 PRP VBD 0.6 15.1
13 652 JJ NN 0.5 15.6
14 648 DT NN 05 16.1
15 627 DT NN 0.5 16.6

wsJ +103,148 more with Counk 621 83.4%

Table 7.1: Top 15 fragments of POS tag sequences in WSJ.

7.2 Definitions, Analyses and Constraints

Punctuation and syntax are related [240, 39, 157,i@®r alia]. But are there simple
enough connections between the two to aid in grammar inghtiThis section explores
the regularities. This chapter’s study of punctuation inJ/g&rallels the previous chapter’s
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Count Non-Terminal Frac Cum
1 40,223 S 32.5%
2 33,607 NP 27.2 59.7
3 16,413 VP 13.3 729
4 12,441 10.1 83.0
5 8,350 SBAR 6.7 89.7
6 4,085 ADVP 3.3 93.0
7 3,080 QP 25 955
8 2,480 SINV 2.0 975
9 1,257 ADJP 1.0 98.5
10 369 PRN 0.3 98.8

WSJ +1,446 more with CounkK 356 1.2%

Table 7.2: Top 99% of the lowest dominating non-terminalsvid®y complete inter-
punctuation fragments in WSJ.

analysis of markup from a web-log, since the proposed caimgérturn out to be useful.
Throughout, an inter-punctuatidnagment is defined as a maximal (non-empty) consec-
utive sequence of words that does not cross punctuationdaoieés and is shorter than its
source sentence.

7.2.1 A Linguistic Analysis

Out of 51,558 sentences, most— 37,076 (71.9%) — contaieseeatinternal punctuation.
These punctuated sentences contain 123,751 fragmently;, aka— 111,774 (90.3%) —

of them multi-token. Common POS sequences comprising feaggrare diverse (note also
their flat distribution — see Table 7.1). The plurality ofgraents are dominated by a
clause, but most are dominated by one of several kinds ofphr@see Table 7.2). As ex-
pected, punctuation does not occur at all constituent baniest Of the top 15 productions
that yield fragments, five dootmatch the exact bracketing of their lowest dominating non-
terminal (see ranks 6, 11, 12, 14 and 15 in Table 7.3). Founahtmiss a left-adjacent
clause, e.gS — S NP VP:

[s [s It's an overwhelming joh [\p shé [vp says||

This production is flagged because the fragni¢RtVP is nota constituent — it is two;
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Count Constituent Production Frac Cum
1 7,115 — IN NP 57%
2 5,950 S — NP_VP 4.8 10.6
3 3,450 NP — NP PP 2.8 13.3
4 2,799 SBAR — WHNP_S 2.3 15.6
5 2,695 NP — NNP 22 17.8
6 2,615 S — S NP VP 2.1 199
7 2,480 SBAR — IN S 20 219
8 2,392 NP — NNP NNP 1.9 238
9 2,354 ADVP — RB 1.9 257
10 2,334 QP — CD CD 1.9 27.6
11 2,213 S — PP NP VP 1.8 294
12 1,441 S—scs 1.2 30.6
13 1,317 NP — NP NP 1.1 31.6
14 1,314 S — SBAR NP VP 1.1 327
15 1,172 SINV — S VP NP NP 0.9 33.6

WwsJ +82,110 more with Counk 976 66.4%

Table 7.3: Top 15 productions yielding punctuation-indué&gments in WSJ, viewed
as constituents, after recursively expanding any intemodes that do not align with the
associated fragmentation (underlined).

still, 49.4% of all fragments do align with whole constituents.

Inter-punctuation fragments correspond more stronghefmeddencies (see Table 7.4).
Only one production (rank 14) shows a daughter outside hehens fragment. Some
number of such productions is inevitable and expectedednagments must coalesce (i.e.,
the root of at least one fragment — in every sentence witheseetinternal punctuation
— must be attached by some word from a different, externghfient). It is noteworthy
that in 14 of the 15 most common cases, a word in an inter-pation fragment derives
precisely the rest of that fragment, attaching none of themexternal words. This is true
for 39.26 of all fragments, and if fragments whose heads attach &gments’ heads are
also included, agreement increase34d¥o (seestrict andlooseconstraints, next).
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Count Head-Outward Spawn Frac Cum
1 11,928 IN 9.6%
2 8,852 NN 7.2 16.8
3 7,802 NNP 6.3 23.1
4 4,750 (&) 3.8 26.9
5 3,914 VBD 3.2 30.1
6 3,672 VBZ 3.0 33.1
7 3,436 RB 2.8 35.8
8 2,691 VBG 2.2 38.0
9 2,304 VBP 1.9 39.9
10 2,251 NNS 1.8 41.7
11 1,955 WDT 1.6 43.3
12 1,409 MD 1.1 444
13 1,377 VBN 1.1 455
14 1,204 N ~-VBD 1.0 46.5
15 927 1] 0.7 47.3

WSJ +65.279 more with Coun 846 52.8%

Table 7.4: Top 15 productions yielding punctuation-indué®agments in WSJ, viewed
as dependencies, after dropping all daughters that fallegntn the same region as their
mother (i.e., both inside a fragment, both to its left or btihts right), keeping only
crossing attachments (just one).

7.2.2 Five Parsing Constraints

The previous chapter showed how to express similar correpwes with markup as pars-
ing constraints, proposing four but employing only thecséist three constraints, and omit-
ting implementation details. This chapter revisits thasestraints, specifying precise log-
ical formulations used in the code, and introduces a fifthdimelaxed) constraint.

Let [z,y| be a fragment (or markup) spanning positiangroughy (inclusive, with
1 <z <y <), inasentence of length And let[i, j];, be a sealed span headed /by
1 <i<h<jg <), ie., the word at position dominates precisely. .. ; (but none
other):

(\
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Defineinside(h, x,y) as true iffx < h < y; and also letross(i, j, x,y) be true iff
i<ax ANj>x ANj<yV (i>z AN i<y A j>y). Then the three tightest
constraints impose conditions which, when satisfied, digsedealingi, j|;, in the presence
of an annotatiotr, y|:

e strict — requires|z, y] itself to be sealed in the parse tree, voiding all seals that
straddle exactly one dfz, y} or protrude beyondl, y] if their head is inside. This
constraint holds foB9.246 of fragments. By contrast, only 35.6% of HTML anno-
tations, such as anchor texts and italics, agree with its macessarily fails in every
sentence with internal punctuation (since themmefragment must take charge and
attach another), whetross(i, j,xz,y) V (inside(h,z,y) A\ (i <x V j>y)).

<

... the British daily newspap,’r The FinancialTImes.

T =1 h=j=y

e loose — if h € [z,y], requires that everything im ...y fall underh, with only
h allowed external attachments. This holds 7@.0% of fragments — 87.5% of
markup, failing wheneross(i, j, z, y).

S \
... arrests foIIowed< Snake Day " at Utrecht ...
) T h=j=uy

e sprawml — still requires that: derivex . ..y but lifts restrictions on external attach-
ments. Holding foB2.9% of fragments (95.1% of markup), this constraint fails when

cross(i, j,x,y) N —inside(h,z,y).

Maryland Club also distributes te|,. which ...
T =1 h Y 7
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These three strictest constraints lend themselves toightfarward implementation as an
O(1°) chart-based decoder. Ordinarily, the probabilityiof];, is computed by multiplying
the probability of the associateshsealed span by two stopping probabilities — that of the
word ath on the left (adjacent if = h; non-adjacent if < &) and on the right (adjacent
if h = j; non-adjacent ity < 7). To impose a constraint, one could run through all of the
annotationgz, y| associated with a sentence and zero out this probabilityyifcd them
satisfy disallowed conditions. There are faster — &Xjl?), and everD(I*) — recognizers
for split head automaton grammars [91]. Perhaps a moreipagdiut still clear, approach
would be to generate-best lists using a more efficient unconstrained algoritien apply
the constraints as a post-filtering step.

Relaxed constraints disallow joining adjacent subtregs, preventing the sedl, j];
from merging below thensealed spafy + 1, J]y, on the left:

e tear — preventse . ..y from being torn apart by external heads froppositesides.
This constraint holds fo®4.®%6 of fragments (97.9% of markup), and is violated
when(z <j A y>j A h <z),inthis case.

... they “Were/not—awsulted about the [Ridley deci]ion

in advance and were surprised at the action tak.:n
-~ ~ . ~ 4

e thread — requires only that no path from the root to a leaf entey] twice. This
constraint holds foB5.0% of all fragments (98.5% of markup); it is violated when
(x<j ANy>j AN h<z) A (H<y), again, inthis case. Example that satisfies
threadbut violategear.

The ... cha/ng?all makwqmd.
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The case whefi, j];, is to the right is entirely symmetric, and these constraioisid be
incorporated in a more sophisticated decoder (sinaed.J do not appear in the formu-
lae, above). They could be implemented by zeroing out thbahidity of the word ati
attaching that ak (to its left), in case of a violation.

Note that all five constraints are nested. In particulag theans that it does not make
sense to combine them, for a given annotafiany|, since the result would just match the
strictest one. The markup number fi@ar in this chapter is lower (97.9 versus 98.9%),
compared to the previous one, because that chapter alloaged evhere markup wa®i-
thertorn nor threaded. Common structures that viotatead(and, consequently, all five
of the constraints) include, e.g., “seamless” quotatiotseven ordinary lists:

—_— T . )
Her recent report classifies the stock ¢bald.”
~

—_
The company said its directgmmanagement and
subsidiaries will remain long-term investors and ...
~— A

7.2.3 Comparison with Markup

Most punctuation-induced constraints are less accurate tie corresponding markup-
induced constraints (e.gsprawt 92.9 vs. 95.1%|oose 74.0 vs. 87.5%; but nddtrict:
39.2 vs. 35.6%). However, markup is rare: only 10% of the esesds in the blog were
annotated; in contrast, over 70% of the sentences in WSJagménted by punctuation.

Fragments are more than 40% likely to be dominated by a ¢gléurssmarkup, this num-
ber is below 10% — nearly 75% of it covered by noun phrasesthEyrinter-punctuation
fragments are spread more evenly under noun, verb, prepaditadverbial and adjectival
phrases (approximateR7:13:10:3:1 versus75:13:2:1:1) than markup.

IMarkup and fragments are as likely to be in verb phrases.
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7.3 Methods

The DMV ordinarily strips out punctuation. Since this stéqgady requires identification
of marks, the techniques in this chapter are just as “unsigsst.”

7.3.1 A Basic System

The system in this chapter is based on Laplace-smoothecoVEM, using a two-stage
scaffolding: the first stage trains with just the sentengesuength 15; the second stage
then retrains on nearly all sentences — those with up to 48svor

I nitialization
Since the “ad-hoc harmonic” initializer does not work vergliWor longer sentences, par-
ticularly with Viterbi training (see Figure 4.2), this ctapemploys an improved initializer
that approximates the attachment probability between twads/as an average, over all
sentences, of their normalized aggregaggghteddistances. The weighting function is

w(d) =1+1g (1 + d);

the integer! > 1 is a distance between two tokens; (agd" is 1/ log,).

Termination

Since smoothing can (and does, at times) increase the mgjeittis more efficient to
terminate early. In this chapter, optimization is stoppierden steps of suboptimal mod-
els, using the lowest-perplexity (not necessarily the lastdel found, as measured by the
cross-entropy of the training data.

Constrained Training

Training with punctuation replaces ordinary Viterbi patses, at every iteration of EM,
with the output of a constrained decoder. All experimenktepthan #2 {7.5) train with
the looseconstraint. Previous chapter found this setting to be bmstfarkup-induced
constraints; this chapter applies it to constraints indumeinter-punctuation fragments.
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Constrained I nference

Previous chapter suggested usinggheawlconstraint in inference. Once again, we follow
its suggestion in all experiments except #2.5).

7.3.2 Forgiving Scoring

One of the baseline systems (below) produces dependeres/ ¢omtaining punctuation.
In this case the heads assigned to punctuation were notsemiagforgiving scoringfor
regular words: crediting correct heads separated fromn gdidren by punctuation alone
(from the point of view of the child, looking up to the nearash-punctuation ancestor).

7.3.3 Baseline Systems

This chapter’s primary baseline is the basic system witboostraintsgtandard training.
It ignores punctuation, as is standard, scoring 52.0% ag#i$J45.
A secondary gunctuation as wordgsbaseline incorporates punctuation into the gram-
mar as if it were words, as supervisedlependency parsing [237, 191, 2@ter alia]. It
is worse, scoring only 41.0%°

7.4 Experiment #1: Default Constraints

The first experiment compares “punctuation as constratotffie baseline systems, using
the default settingsloosein training; andsprawlin inference. Both constrained regimes

2Exactly the same data sets were used in both cases, notrmpputictuation towards sentence lengths.

3To get this particular number punctuation was forced to bietd on, as a layer below the tree of words, to
fairly compare systems (using the same initializer). Singaroved initialization strategies — botteighted
and the “ad-hoc harmonic” — rely on distances between tqkéey could be unfairly biased towards one
approach or the other, if punctuation counted towards fen§imilar baselines were also trained without
restrictions, allowing punctuation to appear anywheréattee (still withforgiving scoring, using the unin-
formed uniform initializer. Disallowing punctuation as arpnt of a real word made things worse, suggesting
that not all marks belong near the leaves (sentence stapgaens, colons, etc. make more sense as roots
and heads). The weighted initializer was also tried withestrictions, and all experiments were repeated
without scaffolding, on WSJ15 and WSJ45 alone, but tregtimgctuation as words never came within even
5% of (comparable) standard training. Punctuation, as syaediably disrupted learning.
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WSJF° | WSJ10
Supervised DMV 69.8 83.6
w/Constrained Inference 73.0 84.3
Punctuation as Words 41.7 54.8

Standard Training 52.0 63.2
_wiConstrained Inference 54.0 | 63.6 |

Constrained Training 55.6 67.0
w/Constrained Inferenc

D

(6)]
~
~
o
\‘
Ul

Table 7.5: Directed accuracies on Section 23 of W&dd WSJ10 for the supervised DMV,
several baseline systems and the punctuation runs (al ttsweighted initializer).

improve performance (see Table 7.5). Constrained decadiimg increases the accuracy of
a standardly-trained system from 52.0% to 54.0%. And cairstd training yields 55.6%
— 57.4% in combination with inference. These are multi-paicreases, but they could
disappear in a more accurate state-of-the-art system. stahtis hypothesis, constrained
decoding was also applied tosapervisedgsystem. This (ideal) instantiation of the DMV
benefits as much or more than the unsupervised systemsaagéncreases from 69.8% to
73.0%. Punctuation seems to capture the kinds of, perhagsdistance, regularities that
are not accessible to the model, possibly due to its untealslependence assumptions.

7.5 Experiment #2: Optimal Settings

The recommendation to train witboseand decode witlsprawl came from the previous
chapter’s experiments with markup. But are these the rigttitg)s for punctuation? Inter-
punctuation fragments are quite different from markup —ythiee more prevalent but less
accurate. Furthermore, a new constraint was introducddsrchapterthread that had not
been considered before (along widar).

Next the choices of constraints are re-examined. The folbféal analysis was similar,
but significantly smaller, than in the previous chapterxdleded the larger-scale news and
web data sets that are not publicly available. Nevertheg&sy meaningful combination
of settings was tried, testing bathreadandtear (instead ofstrict, since it can’t work with
sentences containing sentence-internal punctuatiobptimtraining and inference. Better
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settings thamoosefor training, andsprawlfor decoding, were not among the options.

A full analysis is omitted. But the first, high-level obsetiea is that constrained in-
ference, using punctuation, is helpful and robust. It bedstccuracy (on WSJ45) by ap-
proximately 1.5%, on average, with all settings. Indegmtawlwas consistently (but only
slightly, at 1.6%, on average) better than the rest. Secomtktrained training hurt more
often than it helped. It degraded accuracy in all but one,dasse where it gained ap-
proximately 0.4%, on average. Both improvements are sty significant:p ~ 0.036
for training withloose andp ~ 5.6 x 10~'2 for decoding withsprawl

7.6 More Advanced Methods

So far, punctuation has improved grammar induction in a &itirgy. But would it help

a modern system? The next two experiments employ a slighthe momplicated set-up,
compared with the one used up until noyv 3.1). The key difference is that this system is
lexicalized, as is standard among the more accurate gramohasers [33, 117, 133].

Lexicalization

Only in the second (full data) stage is lexicalized, usirgrtirethod of Headden et al. [133]:
for words seen at least 100 times in the training corpus, dletBOS tag is augmented with
the lexical item. The first (data poor) stage remains entinelexicalized, with gold POS

tags for word classes, as in the earlier systems.

Smoothing

Smoothing is not used in the second stage except at the ertdeffinal lexicalized model.
Stage one still applies “add-one” smoothing at every itenat

7.7 Experiment #3: State-of-the-Art

The purpose of these experiments is to compare the purmeatihanced DMV with other,
more recent state-of-the-art systems. LexicaliZ&dq), this chapter’s approach performs
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Brown | WSJ° | WSJ10

L-EVG [133] | — — 68.8
Web Markup (Ch. 6) 53.3 50.4 69.3
Posterior Sparsity [117]] — 53.3 64.3
Tree Substitution Grammars [338] — 55.7 67.[7
Constrained Training 58.4 58.0 69.3
w/Constrained Inference 59.5 58.4 69.5

Table 7.6: Accuracies on the out-of-domain Brown100 set %&ction 23 of WSJ and
WSJ10, for the lexicalized punctuation run and other, mecemt state-of-the-art systems.

better, by a wide margin; without lexicalizatiof7(3.1), it was already better for longer,
but not for shorter, sentences (see Tables 7.6 and 7.5).

7.8 Experiment #4: Multilingual Testing

This final batch of experiments probes the generalizatichisfchapter's approaclj{.6)
across languagés.The gains arenot English-specific (see Table 7.7). Every language
improves with constrained decoding (more so without camnséd training); and all but
Italian benefit in combination. Averaged across all eightemguages, the net change in
accuracy is 1.3%. After standard training, constraine@dig alone delivers a 0.7% gain,
on average, never causing harm in any of our experimentsselgains are statistically
significant:p ~ 1.59 x 10~° for constrained training; and~ 4.27 x 107 for inference.

A synergy between the two improvements was not detected eMemit is noteworthy
that without constrained training, “full” data sets do n&ig on average, despite hav-
ing more data and lexicalization. Furthermoaéer constrained training, no evidence of
benefits to additional retraining was detected: not withréHaxedsprawl constraint, nor
unconstrained.

“Note that punctuation, which was identified by the CoNLL tas§ganizers, was treated differently in
the two years: in 2006, it was always at the leaves of the dipmy trees; in 2007, it matched original
annotations of the source treebanks. For both, punctuatgensitive scoring was use¢l7(3.2).
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Unlexicalized, Unpunctuated Lexicalized and Punctuated

CoNLL Year Initialization @15 Training @15 Retraining @45 etRiining @45 Net
& Language 1.  wl/nference 2. wl/Inference 3. w/Inference ', 3 wilnference Gain
Arabic 2006 23.3] 23.6 (+0.3) 32.8 33.1(+0.4) 315 | 31.6(+0.0) 32.1] 32.6 (+0.5) 1.1
7 25.6 | 26.4(+0.8) 33.7| 34.2(+0.5) 32.7 | 33.6(+0.9) 34.9 35.3 (+0.4) +2.6

Basque 7 19.3| 20.8(+1.5) 29.9 30.9(+1.00 29.3 | 30.1(+0.8) 29.3 29.9 (+0.6) +0.6
Bulgarian '6 23.7| 24.7 (+1.0) 39.3 40.7(+1.4) 388 | 39.9(+1.1) 39.9 40.5 (+0.6) +1.6
Catalan 7 33.2| 34.1(+0.8) 548 555(+0.7) 543 | 55.1(+0.8) 54.3 55.2 (+0.9) +0.9
Czech '6 18.6| 19.6 (+1.0) 34.6 35.8(+1.2) 34.8 | 35.7(+0.9) 37.0 37.8 (+0.8) +3.0
7 17.6 | 18.4(+0.8) 335 354(+1.9) 334 | 34.4(+1.0) 35.2 36.2 (+1.0) +2.7

Danish  '6 22.9| 24.0(+1.1) 35.6 36.7(+1.2) 36.9 | 37.8(+0.9) 36.5 37.1 (+0.6) +0.2
Dutch '6 15.8| 16.5(+0.7) 11.2 | 12,5 (+1.3) 11.0 | 11.9 (+1.0) 13.7] 14.0 (+0.3) +3.0
English 7 25.0| 25.4(+0.5) 472 495(+2.3) 475 | 48.8(+1.3) 49.3 50.3 (+0.9) +2.8
German 6 19.2| 19.6 (+0.4) 274 28.0(+0.7) 27.0 | 27.8(+0.8) 28.2 28.6 (+0.4) +1.6
Greek 7 18.5| 18.8(+0.3) 20.7 21.4(+0.7) 205 | 21.0(+0.5) 20.9 21.2 (+0.3) +0.7
Hungarian '7 17.4| 17.7 (+0.3) 6.7 | 7.2(+0.5) 6.6 | 7.0 (+0.4) 7.8| 8.0 (+0.2) +1.4
Italian 7 25.0 | 26.3(+1.2) 29.4 29.9 (+0.3) 29.7 | 29.7 (+0.1) 28.3 28.8 (+0.5) -0.8
Japanese '6 30.0 30.0(+0.0) 27.3| 27.3(+0.0) 27.4 | 27.4(+0.0) 27.5 27.5 (+0.0) +0.1
Portuguese '6 27.3 27.5(+0.2) 32{8 33.7(+0.9) 32.7 | 33.4(+0.7) 33.3 33.5(+0.3) +0.8
Slovenian '6 21.8| 21.9(+0.2) 283 304 (+2.1) 284 | 30.4(+2.0) 29.8 31.2 (+1.4) +2.8
Spanish  '6 25.3| 26.2(+0.9) 31.y 324(+0.7) 31.6 | 32.3(+0.8) 31.9 32.3 (+0.5) +0.8
Swedish 6 31.0| 31.5(+0.6) 441 452 (+1.1) 45.6 | 46.1(+0.5) 46.1 46.4 (+0.3) +0.8
Turkish  '6 22.3| 22.9(+0.6) 39.] 39.5(+0.4) 39.9 | 39.9(+0.1) 40.6 40.9 (+0.3) +1.0
7 22.7 | 23.3(+0.6) 417 42.3(+0.6) 41.9 | 42.1(+0.2) 41.6 42.0 (+0.4) +0.1

Average: 234~ 24.040.7 319  329¢1L0 319 326+0.7) 326 33.2¢05H +1.3

Table 7.7: Multilingual evaluation for CONLL sets, meagiiet all three stages of training,
with and without constraints.

7.9 Related Work

Punctuation has been used to improve parsing since rubdb@stems [157]. Statisti-
cal parsers reap dramatic gains from punctuation [98, 266154, 69,inter alia]. And

it is even known to help iunsuperviseatonstituent parsing [283]. But fatependency
grammar induction, prior to the research described in thaépter, punctuation remained
unexploited.

Parsing Techniques Most-Similar to Constraints

A “divide-and-rule” strategy that relies on punctuatiorsteeen used in supervised con-
stituent parsing of long Chinese sentences [187]. For Ehgthere has been interest in
balancedpunctuation [39], more recently using rule-based filtel¥6[]3n a combinatory
categorial grammar (CCG). This chapter’s focus was speadifion unsupervisedearn-
ing of dependencgrammars and is similar, in spirit, to Eisner and Smith’s][S2ne
grammar” formalism. An important difference is that insted imposing static limits on
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allowed dependency lengths, the restrictions are dynamibey-disallow some long (and
some short) arcs that would have otherwise crossed neartyuyation.

Incorporating partial bracketings into grammar inductieran idea tracing back to
Pereira and Schabes [245]. It inspired the previous chaptéring parsing constraints
from the web. In that same vein, this chapter prospected & mbundant and natural
language-resource — punctuation, using constraint-besgthiques developed for web
markup.

Modern Unsupervised Dependency Parsing

State-of-the-art in unsupervised dependency parsingysa$ tree substitution grammars.
These are powerful models, capable of learning large degmaydragments. To help pre-
vent overfitting, a non-parametric Bayesian prior, defingdabhierarchical Pitman-Yor
process [252], is trusted to nudge training towards fewdrsaanaller grammatical produc-
tions. This chapter pursued a complementary strategygukeamuch simpler DMV, but
persistently steering training away from certain constons, as guided by punctuation, to
help preventunderfitting

Various Other Uses of Punctuation in NLP

Punctuation is hard to prediepartly because it can signal long-range dependencies.[195]
It often provides valuable cues to NLP tasks such as paspeéch tagging and named-
entity recognition [136], information extraction [100]&machine translation [185, 206].
Other applications have included Japanese sentence @r@W%], genre detection [313],
bilingual sentence alignment [343], semantic role lalgp[ip55], Chinese creation-title
recognition [56] and word segmentation [188], plus, morerly, automatic vandalism
detection in Wikipedia [333].

SPunctuation has high semantic entropy [216]; for an anglysihe many roles played in the WSJ by the
comma — the most frequent and unpredictable punctuatiok mahat data set — see Beeferman et al. [20,
Table 2].
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7.10 Conclusions and Future Work

Punctuation improves dependency grammar induction. Marsypervised (and super-
vised) parsers could be easily modified to apeawlconstrained decoding in inference. It
applies to pre-trained models and, so far, helped everysgatand language.

Tightly interwoven into the fabric of writing systems, punation frames most unanno-
tated plain-text. This chapter showed that rules for cainwgmarkup into accurate parsing
constraints are still optimal for inter-punctuation fragmts. Punctuation marks are more
ubiquitous and natural than web markup: what little punidtumainduced constraints lack
in precision, they more than make up in recall — perhaps hgtlg of constraints would
work better yet in tandem. For language acquisition, a matyuestion is whether prosody
could similarly aid grammar induction from speech [159].

The results in this chapter underscore the power of simpldats@nd algorithms, com-
bined with common-sense constraints. They reinforce msiffomjoint modeling insu-
pervisedearning, where simplified, independent models, Viterlwatkng and expressive
constraints excel at sequence labeling tasks [269]. Sudemse is particularly welcome
in unsupervisegettings [257], where it is crucial that systems scale dudlgeo volumes
of data, on top of the usual desiderata — ease of implementaxtension, understanding
and debugging. Future work could explore softening comggd132, 47], perhaps using
features [92, 24] or by learning to associate differenirsgs$twith various marks: Simply
adding a hidden tag for “ordinary” versus “divide” types affjztuation [187] may already
usefully extend the models covered in this chapter.



Chapter 8
Capitalization

The purpose of this chapter is to test the applicability ofstmaints also to capitalization
changes in text for languages that use cased alphabetso@ogpeer-reviewed publica-
tion is Capitalization Cues Improve Dependency Grammar IndughdNILS 2012 [306].

8.1 Introduction

Since sentence structure is underdetermined by raw testte thave been efforts to sim-
plify the task, via (i) pooling features of syntax acrossgjaages [64, 213, 66]; as well as
(i) identifying universal rules [228] — such as verbo-aggity [119] — that need not be
learned at all. Unfortunately most of these techniques dapply to plain text, because
they require knowing, for example, which words are verbsst#andard practice in gram-
mar induction shifts away from relying on gold part-of-sple¢POS) tags [283, 253, 297,
inter alia] (see also next chapter), lighter cues to inducing lingeigtucture become more
important. Examples of useful POS-agnostic clues inclushefuation boundaries and var-
ious other kinds of bracketing constraints, from previobgpters. This chapter proposes
adding capitalization to this growing list of sources oftgdrbracketings. The intuition
here stems from English, where (maximal) spans of capédizords — such a&pple II,
World War |, Mayor William H. Hudnut 1| International Business Machines Corand
Alexandria, Va— tend to demarcate proper nouns.

Consider a motivating example (all of the examples in thegtlr are also from WSJ)

106
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without punctuation, in which all (eight) capitalized woclimps and uncased numerals
match base noun phrase constituent boundaries:
[\p Jay Steverjsof [yp Dean Wittef actually cut his per-share earnings estimatén® $9 from

[np $9.50Q for [yp 1989 and to[yp $9.50 from [yp $10.35 in [yp 1990 because he decided sales would be
even weaker than he had expected.

and another (whose first word happens to be a leaf), wher¢atiaption complements
punctuation cues:
[Np Jurors in [yp U.S. District Courtin [yp Miami] cleared[yp Harold Hershhensdna former ex-

ecutive vice presidentfjyp John Pagonésa former vice president; arjdp Stephen Vaddasand[yp Dean
Ciporkin|, who had been engineers wiilp Cordis.

Could such chunks help bootstrap grammar induction anaimrave the accuracy of
already-trained unsupervised parsers? In answering thesstions, this chapter will focus
predominantly on sentence-internal capitalization. Buiili also show that first words —
those capitalized by convention — and uncased segments -sem@racters are not even
drawn from an alphabet — could play a useful role as well.

8.2 English Capitalization from a Treebank

As in the two previous chapters, this study begins by comgpuihe 51,558 parsed sentences
of the WSJ corpus: 30,691 (59.5%) of them contain non-thivizapitalizedfragments—
maximal (non-empty and not sentence-initial) consecugeguences of words that each
differs from its own lower-cased form. Nearly all — 59,388 (&%) — of the 61,731 frag-
ments are dominated by noun phrases; slightly less thar-half,005 (43.8%) — perfectly
align with constituent boundaries in the treebank; and alhsumany — 27,230 (44.1%)
are multi-token. Table 8.1 shows the top POS sequences ingpiragments.

8.3 Analytical Experiments with Gold Trees

The suitability of capitalization-induced fragments folidjing dependency grammar induc-
tion can be gauged by assessing accuracy, in WSJ, of pa@nstraints derived from their
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Count POS Sequence Frac Cum

1| 27,524 NNP 44.6%

2| 17,222 NNP NNP 279 725
3 4,598 NNP NNP NNP 7.5 79.9
4 2,973 1] 4.8 84.8
5 1,716 NNP NNP NNP NNP 28 87.5
6 1,037 NN 1.7 89.2
7 932 PRP 1.5 90.7
8 846 NNPS 1.4 921
9 604 NNP NNPS 1.0 93.1
10 526 NNP NNP NNP NNP NNP | 0.9 93.9

wSsJ 43,753 more with Counk 498 6.1%

Table 8.1: Top 10 fragments of POS tag sequences in WSJ.

end-points. Several such heuristics are tested, follothiaguite of increasingly-restrictive
constraints on how dependencies may interact with fragsietroduced in previous chap-
ters. The most lenient constraitiiyead only asks that no dependency path from the root
to a leaf enter the fragment twicksar requires any incoming arcs to come from the same
side of the fragmensprawldemands that there be exactly one incoming laasefurther
constrains any outgoing arcs to be from the fragment’s haadstrict — the most strin-
gent constraint — bans external dependents. Sincestribt is binding for single words,
this chapter experiments also wikrict': applyingstrict solely to multi-token fragments
(ignoring singletons). In sum, it explores six ways in wha#pendency parse trees can be
constrained by fragments whose end-points could be defipeditalization (or in other
various ways, e.g., semantic annotations [227], pundnatr HTML tags in web pages).
For example, in the sentence about Cordis sthiet hypothesis would be wrong about
five of the eight fragmentsurors attachesn; Court takes the seconoh; Hershhenson
and Pagonedderive their titles,president and (at least in one referencexdasattaches
and Ciporkin andwho. Based on thisstrict would be considered 37.5%-accurate. But
loose— and the rest of the more relaxed constraints — would geepedcores. (And
strict would retract the mistake aboudtrrors but also the correct guesses abdMiami
andCordis, scoring only 20%.) Table 8.Z#&pital) shows scores averaged over the entire
treebank. Columnmarkupandpunctindicate that capitalization yields across-the-board
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markup| punct|| capitall initial uncased
thread 98.5| 95.0f 99.5|| 984 99.2
tear 97.9| 94.7| 98.6| 984 98.5
sprawl 95.1| 929 98.2|| 97.9 96.4
loose 87.5| 74.0f 97.9| 96.9 96.4
strict/ 32.7| 35.6 38.7 40.3 55.6
strict 35.6| 39.2 59.3 66.9 61.1

Table 8.2: Several sources of fragments’ end-points andf&ectness of their derived
constraints (for English).

more accurate constraints (for English) compared withnfraigts derived from punctuation
or markup (i.e., anchor text, bold, italics and underlingstan HTML), for which such
constraints were originally intended.

8.4 Pilot Experiments on Supervised Parsing

To further test the potential of capitalization-inducedsinaints, they were applied in the
Viterbi-decoding phase of a simple (unlexicalized) supss dependency parser — an
instance of DBM-1 (Ch. 10), trained on WSJ sentences withou5t words (excluding

Section 23). Table 8.3 shows evaluation results on heldtatat (all sentences), using “add-
one” smoothing. All constraints other thatrictimprove accuracy by about a half-a-point,

punct.: thread| tead| sprawl loose
none:71.8| 74.3| 74.4 74.5 73.3
capital:ithread| 72.3| 74.6| 74.7 749 73.6
tear| 72.4\ 74.7| 74.7 74.9 73.6
sprawl | 72.4|| 74.7) 74.7 749 734
loose| 72.4| 74.8 74.7 74.9| 73.3
strict 714\ 73.7| 73.7 73.9 72.°7
strict || 71.0| 73.1| 73.1 73.2 72.1

Table 8.3: Supervised (directed) accuracy on Section 23 81 Wsing capitalization-
induced constraints (vertical) jointly with punctuatidro(izontal) in Viterbi-decoding.
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CoNLL Year Filtered Training Directed Accuracies with laitConstraints Fragments
&Language || Tokeng Sentences| noné thread tedr sprajvl lodse  dtrictstrict | Multi | Single
German 2006 139,33$ 12,296 36,3 36.3 36.3 39.1 36.2 36.3, 30.1|| 3,287 | 30,435
Czech '6 187,505, 20,374 51.8 5113 51|13 51.352.5 5251 514 1,831 6,722

English 7| 74,023, 5087 292 285]| 283 29.0 293 | 2831 27.7| 1135 2,218
Bulgarian '6| 46,5991 57241 594 59.3| 59.3| 59.4| 59.1| 593! 595| 184| 1,506
Danish 6| 14,1501 1,599 21.$ 17.7 | 22.7 21.5| 214 31.4: 27.9 113 317
Greek 7| 11,043 842| 281 461 463 463 46.4 | 311, 310 113 456
Dutch 6 || 72043' 7,107/ 459, 458| 459| 458 | 458| 457, 29| 89| 4,335
ltalian 7 9,142: 921|| 4171 52.6 52.7| 52.6| 442| 5261 458 41 296
Catalan 7| 62811, 4,087 618 618 613 613 61.361.3! 36.5 28 | 2,828
Turkish 6 || 17,610, 2,835 329  329322| 330/| 330| 336 339 27 590

Portuguese '6 24,494 2,04¢ 68/9 67.1| 69.1 69.2 | 68.9 68.9: 38.5 9 953

Hungarian '7 10,3431 1,258 43.% 43243.1 43.2 43.2| 43.7, 255 7 277
Swedish '6 41,918 4,108 48.6 486 48(6 485 48.5 48.5, 48.8 3 296
Slovenian '6 3,627! AT77 30.4 30.p 305 3014 30.5 30.530.8 1 63

Median: 4251 46.0| 46.1| 46.0| 450| 447 325
Mean: 42.8' 44.4| 448 450| 443| 446' 369

Table 8.4: Parsing performance for grammar inducers tdawi¢h capitalization-based
initial constraints, tested against 14 held-out sets fr@®627 CoNLL shared tasks, and
ordered by number of multi-token fragments in training data

from 71.8 to 72.4%, suggesting that capitalization is infative of certain regularities not
captured by DBM grammars; moreover, it still continues tauseful when punctuation-
based constraints are also enforced, boosting accuraty /o5 to 74.9%.

8.5 Multi-Lingual Grammar Induction

So far, this chapter showed only that capitalization infation can be helpful in parsing a
very specific genre of English. Its ability to generally aepbéndency grammar induction
is tested next, focusing on situations when other bracgetures are unavailable. These
experiments cover 14 CoNLL languages, excluding Arabiagn&e and Japanese (which
lack case), as well as Basque and Spanish (which are pregs®ed in a way that loses rel-
evant capitalization information). For all remaining lasages training was only on simple
sentences — those lacking sentence-internal punctuatitmom-the relevant training sets
(for blind evaluation). Restricting attention to a subsghe available training data serves
a dual purpose. First, it allows estimation of capitaliza® impact where no other (known
or obvious) cues could also be used. Otherwise, unconsttdiaselines would not yield
the strongest possible alternative, and hence not the mesesting comparison. Second,
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to the extent that presence of punctuation may correlate seéhtence complexity [107],
there are benefits to “starting small” [95]: e.g., relegatinll data to later stages helps
training, as in many of the previous chapters.

The base systems induced DBM-1, starting from uniformiyasmidom chosen parse
trees [67] of each sentence, followed by inside-outsidestenation [14] with “add-one”
smoothingt Capitalization-constrained systems differed from cdstimexactly one way:
each learner got a slight nudge towards more promisingtsitieg by choosing initial seed
trees satisfying an appropriate constraint (but othergtileiniformly). Table 8.4 contains
the stats for all 14 training sets, ordered by number of mtaken fragments. Final ac-
curacies on respective (disjoint, full) evaluation setsiarproved by all constraints other
thanstrict, with the highest average performance resulting fepmawt 45.0% directed de-
pendency accuradpn average. This increase of about two points over the batersis
42.8% is driven primarily by improvements in two languagésgek and Italian).

8.6 Capitalizing on Punctuation in Inference

Until now this chapter avoided using punctuation in graminduction, except to filter
data. Yet the pilot experiments indicated that both kindsfdfrmation are helpful in the
decoding stage of a supervised system. Indeed, this isr@dsmase in unsupervised parsing.

Taking the trained models obtained using sipegawlnudge (from58.5) and proceeding
to again apply constraints in inference (a814), capitalization alone increased parsing
accuracy only slightly, from 45.0 to 45.1%, on average. Jgwnctuation constraints
instead led to more improved performance: 46.5%. Combibwit types of constraints
again resulted in slightly higher accuracies: 46.7%. T8bereaks down this last average
performance number by language and shows the combinedatpi@be competitive with
the previous state-of-the-art. Further improvementsatbalattained by also incorporating
both constraints in training and with full data.

1Using “early-stopping lateen EM” (Ch. 5) instead of threlsig or waiting for convergence.
2Starting from five parse trees for each sentence (using reamistthreadthroughstrict’) was no better,
at 44.8% accuracy.
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CoNLL Year this State-of-the-Art Systems: POS-
& Language | Chaptet (i) Agnostic (i) Identified
Bulgarian 2006 64.5, 44.3 L; 70.3 Sy
Catalan 7 61.5I 63.8 L; 56.3 MZr
Czech '6 53.5: 50.5 L 33.3 MZ\r
Danish '6 20.6, 46.0 RF 56.5 S,
Dutch '6 46.7, 325 L; 62.1 MPH,
English 7 29.2/ 503 P 45.7 MPH,
German '6 42.6: 335 Ly 55.8 MPH,,
Greek 7 49.3, 39.0 MZ | 63.9 MPHg,
Hungarian 7 53.7, 48.0 MZ 48.1 M4
Italian 7 50.5, 57.5 MZ 69.1 MPHy
Portuguese 6 7241432 MZ | 76.9 Sy
Slovenian 6 34.81 33.6 L; 34.6 MZr
Swedish '6 50.5, 50.0 Lg 66.8 MPHy
Turkish '6 34.4, 409 P 61.3 RRy;

Median: 48.5! 45.2 58.9

Mean: 46.71 45.2 57.2

Table 8.5: Unsupervised parsing with both capitalizatiand punctuation-induced con-
straints in inference, tested against the 14 held-out sats 2006/7 CoNLL shared tasks,
and state-of-the-art results (all sentence lengths) fetesys that: (i) are also POS-agnostic
and monolingual, including L (Lateen EM, Tables 5.5-5.6) Br(Punctuation, Ch. 7); and
(ii) rely on gold POS-tag identities to (a) discourage nooots [202, MZ], (b) encourage
verbs [259, RF], or (c) transfer delexicalized parsers [&)6rom resource-rich languages
with parallel translations [213, MPH].

8.7 Discussion and A Few Post-Hoc Analyses

The discussion, thus far, has been English-centric. Niegkss, languages differ in how
they use capitalization (and even the rules governing andareguage tend to change over
time — generally towards having fewer capitalized termsy. iRstance, adjectives derived
from proper nouns are not capitalized in French, GermangifoEpanish or Swedish,
unlike in English (see Table 8.1:3). And while English forces capitalization of the first-
person pronoun in the nominative casg¢see Table 8.1PRP), in Danish it is the plural
second-person pronoun (algdhat is capitalized; further, formal pronouns (and these-
forms) are capitalized in Germa®igeandlhre, lhres..), Italian, Slovenian, Russian and
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CoNLL Year Capitalization-Induced Constraints Punctoatinduced Constraints

& Language thread| tear] spraw| loos¢ stfict strict || thread | tear| sprawl| loosd strict| strict

Arabic 2006 — — — — — — 89.6| 89.5 819| 61.2 29.7| 334
7 — — — — — — 90.9 | 90.6 83.1| 61.2 295 | 35.2

Basque 7 — — — — — — 96.2| 95.7 92.3 81.p 4218  50.6

Bulgarian '6 99.8| 995 96.6 96.4 51.8 81)p 976 97.2 96.1| 74.7 36.7 41.2
Catalan 7 100 | 99.5 95.0 | 94.6 15.8 57.9 96.1] 95.5 94.6 73{7 36(0 42.6
Chinese '6 — — — — — — — — — — — —

7 — — — — — — — — — — — —
Czech '6 99.7| 98.3 96.7 95.4 424 680 89.4 | 89.2 87.7 68.9 37.2| 417
99.7 | 98.3 96.1 95.4 42.6 67.6 89,5 893 87.8 69.3 3r.4 419
Danish 99.9| 994 98.3 97.0 59.0| 69.7 96.9( 96.9 95.2 68.3 39.6 409
Dutch 99.9( 99.1 98.4 96.6 16.6 468 89|16 89.5 86.4 69.6 42.86.2

German 99.6| 98.0 96.7 96.4 41.7 57.1 945 93.p 90{7 711 37.2 40.7
Greek 99.9| 99.3 98.9 96. 13.6 50{L 913 91.0 8p.8 715.7 43.27.0
Hungarian 99.9| 98.1 95.7 94.4 466 62\ 96.1 94.0 89.0 17.128.9 32.6
Italian 99.9| 99.6 99.0 | 98.8 12.8 | 68.2 97.1| 96.8 96.0 77.4 44.y 47.9
Japanese 6 — — — — — — 100 | 100 95.4 | 89.0 48.9 63.5
Portuguese '6 100{ 99.¢ 97.6 9710 144 317 96.0 95.8 94.9 r4.80.3 | 45.0
Slovenian '6 100 | 99.8 98.9( 98.9 52.0 | 84.7 93.3 | 93.3 92.6 72.7 42.1 45.8
Spanish  '6 — — — — — — 96.5| 96.0 95.2 75.4 33/4 409
Swedish '6 99.8| 99.6 99.4 97.0 247 58{4 90.8 90.4 87.4 6.8 .1 8133.9
Turkish 6 100 | 99.8 96.2 94.0 22.8 42.8 99.8| 99.7 95.1 76.p 37(7 420

7
'6
'6
English  '7 99.3 | 98.7 98.0 96.0 17.9 2438 915 | 914 90.6 76.9 39.4 42.3
'6
7
7
7

7 100 | 99.9 96.1 94.2 21.6| 429 99.8 99.f 9416 76.7 382 428
Max: 100 | 99.9 99.0 98.9 59.( 84.1 100 100 94.1 89.0 4B8.9 63.5
Mean: 99.8 | 99.1 97.4 96.4 30.§ 57.J1 9416 942 91.7 74.0 385 433
Min:  99.3 | 98.0 95.0 94.0 12.8 24 4 89/4 892 81.9 6.2 28.9 326

Table 8.6: Accuracies for capitalization- and punctuaimmfuced constraints on all (full)
2006/7 CoNLL training sets.

Bulgarian.

In contrast to pronouns, single-word proper nouns — inciggiersonal names — are
capitalized in nearly all European languages. Such shditasketings are not particularly
useful for constraining sets of possible parse trees in gramnduction, however, com-
pared to multi-word expressions; from this perspectivern@a appears less helpful than
most cased languages, because of noun compounding, degsiteibing capitalization of
all nouns. Another problem with longer word-strings in maagguages is that, e.g., in
French (as in English) lower-case prepositions may be mxadth contiguous groups of
proper nouns: even in surnames, the German pastaabds not capitalized, although the
Dutchvanis, unless preceded by a given name or initial — hevire Gogh yet Vincent
van Gogh
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8.7.1 Constraint Accuracies Across Languages

Since even related languages (e.g., Flemish, Dutch, GeamartEnglish) can have quite
different conventions regarding capitalization, one wioubt expect the same simple strat-
egy to be uniformly useful — or useful in the same way — acrdspatate languages.
To get a better sense of how universal our constraints mashbe,accuracies were tabu-
lated for the full training sets of the CoNLL datafter all grammar induction experiments
had been executed. Table 8.6 shows that the less-stricatzpiion-induced constraints
all fall within narrow (yet high) bands of accuracies of jastew percentage points: 99—
100% in the case dhread 98—100% fortear, 95-99% forsprawland 94-99% fotoose
By contrast, the ranges for punctuation-induced condgaire all at least 10%. Nothing
seems particularly special about Greek or Italian in thesensaries that could explain
their substantial improvements (18 and 11%, respectivelgee-Table 8.4), though Ital-
ian does appear to mesh best with gpgawl constraint (not by much, closely followed
by Swedish). And English — the language from which the iregpn for this chapter
was drawn — barely improved with capitalization-inducedstoaints (see Table 8.4) and
caused the lowest accuracieslmfeadandstrict.

These outcomes are not entirely surprising: some best- aratywerforming results are
due to noise, since learning via non-convex optimizationlmchaotic: e.g., in the case of
Greek, applying 113 constraints to initial parse trees@balve a significant impact on the
first grammar estimated in training — and consequently atsa learner’s final, converged
model instance. Averages (i.e., means and medians) — cechpuer many data sets —
could be expected to be more stable and meaningful than thersu

8.7.2 Immediate Impact from Capitalization

Next, consider two settings that are less affected by tmgimoise: grammar inducers
immediately after an initial step of constrained Viterbi EBvid supervised DBM parsers
(trained on sentences with up to 45 words), for various laggs in the CoNLL sets. Ta-
ble 8.7 shows effects of capitalization to be exceedingliioth if applied alone and
in tandem with punctuation. Exploring better ways of inargting this informative re-
source — perhaps as soft features, rather than as hard aotst— and in combination
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CoNLL Year Bracketings Unsupervised Training SupervisediRy
& Language || capital., punct init; 1-step constraingd ngne pita. | punct.| both
Arabic 2006 - 101 184 20.6 — —| 59. — — —
7 — 311 19.0f 235 — —|| 63.5 — — —
Basque 7 —: 547| 17.4 224 — — 584 —+ —+ —
Bulgarian '6 44, 552|| 194 28.9 284 -0p 76.7 76.8 78.1 78.2
Catalan '7 24: 398 18.( 251 254 +0|3 78.1 78.3 78.6 78.9
Chinese 6 — —1| 23.5 272 — —| 83.Y — — —
7 — ! — || 19.4| 25.0f — — | 81.0 — — —
Czech '6 48, 549|| 18.6 19.7 198 +0j1 64.9 64.8 6.0 66.9
7 57 | 466 | 18.0| 21.7 — —| 62.8 — — —
Danish '6 85, 590 19.5 27.4 260 -1B 719 72.0 4.2 743
Dutch '6 28! 318| 18.7 17.9 177 -0l 60.9 60.9 62.7 62.8
English 7 151, 423 17.8 24.0 21.9-2.1| 65.2 65.6 68.5 68.4
German '6 135! 523 16.4| 23.0| 23.7 +0.7| 70.7 70.Y 7165 714
Greek 7 47, 372| 171 17.1| 166 -05| 71.3 71.6 738 737
Hungarian '7 28: 893 17.1 186 18.6 +0{1L 671.3 67.2 69.8 69.6
Italian 7 71, 505| 18.6| 32.5| 34.2 +1.7|| 66.0 65.9 67.0 66.8
Japanese 'f —L 0 265 36/8 — — 851 -+ -+ —
Portuguese '6 29 559 193 2412 24.0 -0.180.5 80.5 81.6/ 81.6
Slovenian '6 7 785|| 18.9 225 224 -0 675 67.4 70.9 70.9
Spanish  '6 —, 453 180 193 — —| 695 -+ B —
Swedish '6 14 417 20.2 314 314 400 74.9 74.9 TA.7 T74.6
Turkish 6 18, 683| 20.4| 26.4| 26.7 +0.3| 66.1 66.0 660 66.7
7 4 ' 305 203 24.8 — —1 67.3 — — —
Max: 20.4| 32.5| 342 +1.7 80.5 80.5 81i6 81.6
Mean: 18.5 242 241 -0.1) 70.1 702 718 71.8
Min: 16.4 17.1) 16.6 -2.1] 60.9 60.9 627 62.8

Table 8.7: Unsupervised accuracies for uniform-at-randoojective parse trees (init), also
after a step of Viterbi EM, and supervised performance withuced constraints, on 2006/7
CoNLL evaluation sets (sentences under 145 tokens).

with punctuation- and markup-induced bracketings could beitful direction.

8.7.3 0Odds and Ends

Earlier analyses in this chapter excluded sentencedimitieds because their capitalization
is, in a way, trivial. But for completeness, constraintsived from this source were also
tested, separately (see Table 8ritials). As expected, the new constraints scored worse
(despite many automatically-correct single-word fragtapaxcept foistrict, whose bind-

ing constraints over singletons drowpaccuracy. It turns out, most first words in WSJ are
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leaves — possibly due to a dearth of imperatives (or justiEhgldeterminers).

The investigation of the “first leaf” phenomenon was broadkrdiscovering that in
16 of the 19 CoNLL languages first words are more likely to lavés than other words
without dependents on the I€ftast words, by contrast, areorelikely to take dependents
than expected. These propensities may be related to thédoactendency of languages
to place old information before new [334] and could also Hefs grammar induction.

Lastly, capitalization points to yet another class of worttl®se with identical upper-
and lower-case forms. Their constraints too tend to be atelsee Table 8.2incased,
but the underlying text is not particularly interesting. WSJ, caseless multi-token frag-
ments are almost exclusively percentages (e.g., the twentokf10%), fractions (e.g.,
1 1/4) or both. Such boundaries could be useful in dealing withiore data, as well as for
breaking up text in languages without capitalization (eAgabic, Chinese and Japanese).
More generally, transitions between different fonts angpss should be informative too.

8.8 Conclusion

Orthography provides valuable syntactic cues. This chagitewed that bounding boxes
signaled by capitalization changes can help guide gramnaiction and boost unsuper-
vised parsing performance. As with punctuation-delimgedments and tags from web
markup, it is profitable to assume only that a single wordwesrthe rest, in such text frag-
ments, without further restricting relations to externards — possibly a useful feature
for supervised parsing models. The results in this chapteuld be regarded with some
caution, however, since improvements due to capitalinatiogrammar induction exper-

iments came mainly from two languages, Greek and ltaliartthEu research is clearly

needed to understand the ways that capitalization canmzento improve parsing.

SArabic, Basque, Bulgarian, Catalan, Chinese, Danish, IQuEaglish, German, Greek, Hungarian, Ital-
ian, Japanese, Portuguese, Spanish, SwedisBzech, Slovenian, Turkish.
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Chapter 9
Unsupervised Word Categories

The purpose of this chapter is to understand which propedieyntactic categories an-
notated by linguists, used up until now, make them partitplsuitable as word classes
for English grammar induction, and to construct a taggesetieon unsupervised word
clustering algorithms, that eliminates this blatant sewsEsupervision. Supporting peer-
reviewed publication id2Jnsupervised Dependency Parsing without Gold Part-ofeSpe
Tagsin EMNLP 2011 [310].

9.1 Introduction

Not all research on grammar induction has been fully unsiped. For example, every
new state-of-the-art dependency grammar inducer sincBhii relied on gold part-of-
speech tags. For some time, multi-point performance degjats caused by switching
to automatically induced word categories have been indéedras indications that “good
enough” parts-of-speech induction methods exist, justifyhe focus on grammar induc-
tion with supervised part-of-speech tags [34], pace [75]e Of several drawbacks of this
practice is that it weakens any conclusions that could be&mebout how computers (and
possibly humans) learn in the absence of explicit feedb2tR][

In turn, not all unsupervised taggers actually induce watégories: Many systems —
known as part-of-speedatisambiguatorg219] — rely on external dictionaries of possible

118
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tags. The work in this chapter builds on two older part-adesghinducers— word cluster-
ing algorithms of Clark [61] and Brown et al. [41] — that weezently shown to be more
robust than other well-known fully unsupervised techngé8].

This chapter investigates which properties of gold parsfmgech tags are useful in
grammar induction and parsing, and how these propertidd belintroduced into induced
tags. It also explores the number of word classes that is gmogirammar induction: in
particular, whether categorization is needed at all. Byaeng the “unrealistic simplifi-
cation” of using gold tags [2493.2, Footnote 4], it goes on to demonstrate why grammar
induction from plain text is no longer “still too difficult.”

9.2 Methodology

All experiments model the English grammar, via the DMV, ioéd from subsets of not-
too-long sentences of WSJ. This chapter imitates Klein®[lset-up, initializing from
an “ad-hoc harmonic” completion, followed by training w4l steps of EM. Most of its
experiments (#1-4§9.3-9.4) also iterate without actually verifying converge — but
using more data (WSJ15 instead of WSJ10) — and are evalugésadsathe training set.
Experiments #5-650.5) employ a state-of-the-art grammar inducer (from ChwHich
uses constrained Viterbi EM (details§A.5). The final experiments (#5—§0.5) employ a
simple scaffolding strategy (as in Ch. 3) that follows ugiatitraining at WSJ15 (“less is
more”) with an additional training run (“leapfrog”) thatdarporates most sentences of the
data set, at WSJ45. For a meaningful comparison with previmrk, some of the models
from earlier experiments (#1,3) — and both models from finglegziments (#5,6) — are
tested against Section 23 of WSJafter applying Laplace (a.k.a. “add one”) smoothing.

9.3 Motivation and Ablative Analyses

The concepts of polysemy and synonymy are of fundamentalitapce in linguistics. For
words that can take on multiple parts of speech, knowing the g can reduce ambigu-
ity, improving parsing by limiting the search space. Funthere, pooling the statistics of
words that play similar syntactic roles, as signaled byeshgold part-of-speech tags, can
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Accuracy | Viable

1. manual tags Unsupervised Sky Groups
gold | 50.7| 78.0 36
- mfc|47.2]745] 34|

2. taglesdexicalizedmodels
full | 25.8 | 97.3| 49,180
partial | 29.3| 60.5 176

3. tags from dlat [61] clustering
| 47.8] 83.8 197 |

4. prefixes of anierarchical [41] clustering
first 7 bits| 46.4| 73.9 96

8 bits | 48.0| 77.8 165

9 bits | 46.8| 82.3 262

Table 9.1: Directed accuracies for the “less is more” DM¥jried on WSJ15 (after 40
steps of EM) and evaluated also against WSJ15, using vaegrigsil categories in place of
gold part-of-speech tags. For each tag-set, its effectveber of (non-empty) categories
in WSJ15 and the oracle skylines (supervised performameedlso reported.

simplify the learning task, improving generalization bgueing sparsity. This chapter be-
gins with two sets of experiments that explore the impadteah of these factors has on
grammar induction with the DMV.

9.3.1 Experiment #1. Human-Annotated Tags

The first set of experiments attempts to isolate the effexdtrétplacing gold POS tags with
deterministicone class per woranappings has on performance, quantifying the cost of
switching to a monosemous clustering (see Table 9.1: maandlTable 9.4). Grammar
induction with gold tags scores 50.7%, while the oracleisky(an ideal, supervised in-
stance of the DMV) could attain 78.0% accuracy. It may be wadting that only 6,620
(13.5%) of 49,180 unique tokens in WSJ appear with multid&sRags. Most words, like
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token|| mfc | mfp | ua
it | {PrRP} | {PRP} {PRP}
gains| {nns} | {vBZ,NNS} {VBZ,NNS}

the| {pT} | {JJ,DT} | {VBP,NNP,NN,JJ,DT,CD}

Table 9.2: Example most frequent class, most frequent pdiuaion all reassignments for
tokensit, theandgains

it, are always tagged the same way (5,768 tiPR®). Some words, likegains usually
serve as one part of speech (227 tim#s, as inthe gaing but are occasionally used dif-
ferently (5 timesVBZ, as inhe gain3. Only 1,322 tokens (2.7%) appear with three or more
different gold tags. However, this minority includes thesnivequent word —the (50,959
timesDT, 7 timesJJ, 6 timesNNP and once as each b, NN andVBP).!

This chapter experiments with three natural reassignn@mR©OS categories (see Ta-
ble 9.2). The firstmost frequent clasgnfc), simply maps each token to its most common
gold tag in the entire WSJ (with ties resolved lexicograplyg. This approach discards
two gold tags (type®DT andRBER are not most common for any of the tokens in WSJ15)
and costs about three-and-a-half points of accuracy, ih dgpervised and unsupervised
regimes. Another reassignmeunnion all (ua), maps each token to tketof all of its ob-
served gold tags, again in the entire WSJ. This inflates thaeu of groupings by nearly
a factor of ten (effectively lexicalizing the most ambigsauords)? yet improves the or-
acle skyline by half-a-point over actual gold tags; howglearning is harder with this
tag-set, losing more than six points in unsupervised tnginirhe last reassignmemhost
frequent pair(mfp), allows up to two of the most common tags into a tokeatsel set (with
ties, once again, resolved lexicographically). This imediate approach performs strictly
worse tharunion all, in both regimes.

1Some of these are annotation errors in the treebank [16ré&igu such (mis)taggings can severely
degrade the accuracy of part-of-speech disambiguatatsomtiadditional supervision [185, Table 1].

2Kupiec [177] found that the 50,000-word vocabulary of th@Bn corpus similarly reduces 9400
ambiguity classes.
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9.3.2 Experiment #2: Lexicalization Baselines

The next set of experiments assesses the benefits of catgwr| turning to lexicalized
baselines that avoid grouping words altogether. All threelets discussed below estimated
the DMV withoutusing the gold tags in any way (see Table 9.1: lexicalized).

First, not surprisingly, a fully-lexicalized model overary 50,000 unique words is
able to essentially memorize the training set, supervigédthout smoothing, it is pos-
sible to deterministically attach most rare words in a delpagy tree correctly, etc.) Of
course, local search is unlikely to find good instantiatifmmso many parameters, causing
unsupervised accuracy for this model to drop in half.

The next experiment is an intermediate, partially-lexi=ad approach. It mapped fre-
guent words — those seen at least 100 times in the traininguedi33] — to their own
individual categories, lumping the rest into a single “uokm” cluster, for a total of under
200 groups. This model is significantly worse for supervigadning, compared even with
the monosemous clusters derived from gold tags; yet it ig slightly more learnable than
the broken fully-lexicalized variant.

Finally, for completeness, a model that maps every tokeh@asame one “unknown”
category was trained. As expected, such a trivial “clustgris ineffective in supervised
training; however, it outperforms both lexicalized vatgnnsupervisedstrongly suggest-
ing that lexicalization alone may be insufficient for the DMXd hinting that some degree
of categorization is essential to its learnability.

9.4 Grammars over Induced Word Clusters

So far, this chapter has demonstrated the need for groupmmtaswords and estimated
a bound on performance losses due to monosemous clustdrirggeparation for experi-
menting with induced POS tags. Two sets of establishedjgwalvailable hard clustering
assignments, each computed from a much larger data set tBan&gproximately a mil-
lion words) are used. The first is a flat mapping (200 clusteosistructed by training
Clark’s [61] distributional similarity model over sevetalindred million words from the

3Note that it also beats supervised training; this isn't a (fiy 4 explain this paradox in the DMV).
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Cluster #173 Cluster #188

1. | open 1.| get

2. | free 2.| make

3. | further 3.| take

4. | higher 4. find

5. | lower 5.| give

6. | similar 6.| keep

7. | leading 7. pay

8. | present 8| buy

9. | growing 9. win

10. | increased 10. sell

37.] cool 42.| improve
1,688.| up-wind 2,105 zero-out

Table 9.3: Representative members for two of the flat wordigirays: cluster #173 (left)
contains adjectives, especially ones that take comparéivother) complements; cluster
#188 comprises bare-stem verbs (infinitive stems). (Of smumany of the words have
other syntactic uses.)

British National and the English Gigaword corpdrdhe second is a hierarchical cluster-
ing — binary strings up to eighteen bits long — constructedumning Brown et al.’s [41]
algorithm over 43 million words from the BLLIP corpus, minisSJ®

9.4.1 Experiment #3: A Flat Word Clustering

This chapter’s main purely unsupervised results are witataflistering [61F, that groups
words having similar context distributions, according tolldack-Leibler divergence. (A
word’s context is an ordered pair: its left- and right-aéjaicneighboring words.) To avoid
overfitting, an implementation from previous literatur@3] was employed. The number
of clusters (200) and the sufficient amount of training daéa€ral hundred-million words)
were tuned to a task (NER) that is not directly related to ddpacy parsing. (Table 9.3

“http://nlp.stanford.edu/software/stanford-postagger-2008-09-28.tar.gz
models/egw.bnc.200
Shttp://people.csail.mit.edu/maestro/papers/bllip-clusters.gz
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Figure 9.1: Parsing performance (accuracy on WSJ15) asretitin” of the number of
syntactic categories, for all prefix lengthsk< {1, ..., 18} — of a hierarchical [41] clus-

tering, connected by solid lines (dependency grammar tm@lum blue; supervised oracle
skylines in red, above). Tagless lexicalized mod&ld,(partial andnong connected by
dashed lines. Models based gald part-of-speech tags, and derived monosemous clus-
ters (nfc mfpandua), shown as vertices of gold polygons. Models based @at461]
clustering indicated by squares.

shows representative entries for two of the clusters.)

One more category (#0) was added for unknown words. Now a@wkgn in WSJ could
again be replaced by a coarse identifier (one of at most 28fedd of just 36), in both
supervised and unsupervised training. (The training codexot change.) The resulting
supervised model, though not as good as the fully-lexiedli2MV, was more than five
points more accurate than with gold part-of-speech tagsT{able 9.1: flat). Unsupervised
accuracy was lower than with gold tags (see also Table 9#igher than withall three
derived hard assignments. This suggests that polysemyafpiéty to tag a word differently
in context) may be the primary advantage of manually contdicategorizations.
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System Description | Accuracy
#1 (§9.3.1)| “less is more” (Ch.3) 44.0
#3 (39.4.1)| “less is more” with monosemous induced tags 41.86)-2.

Table 9.4: Directed accuracies on Section 23 of WSJ (alleseets) for two experiments
with the base system.

9.4.2 Experiment #4: A Hierarchical Clustering

The purpose of this batch of experiments is to show that Glf@ki] algorithm isn’t unique
in its suitability for grammar induction. Brown et al.’s [jlder information-theoretic
approach, which does not explicitly address the problemarefand ambiguous words [61]
and was designed to induce large numbers of plausible gyn#a semantic clusters, can
perform just as well, as it turns out (despite using less)datance again, the sufficient
amount of text (43 million words) was tuned in earlier workk4]. Koo’s task of interest
was, in fact, dependency parsing. But since the algorithmeigarchical (i.e., there isn’t
a parameter for the number of categories), it is doubtful thare was a strong risk of
overfitting to question the clustering’s unsupervised reatu

As there isn't a set number of categories, binary prefixesmgthi from each word’s
address in the computed hierarchy were used as clusteslaResults forr < £ < 9
bits (approximately 100—250 non-empty clusters, closénéo200 used before) are simi-
lar to those of flat clusters (see Table 9.1: hierarchicaljts@@e of this range, however,
performance can be substantially worse (see Figure 9.hyistent with earlier findings:
Headden et al. [134] demonstrated that (constituent) granmmduction, using the singular-
value decomposition (SVD-based) tagger of Schitze [28%¢ works best with 100-200
clusters. Important future research directions may ineliedrning to automatically select
a good number of word categories (in the case of flat clugiefyiand ways of using mul-
tiple clustering assignments, perhaps of different gramtigs/resolutions, in tandem (e.g.,
in the case of a hierarchical clustering).

60ne issue with traditional bigram class HMM objective fuoos, articulated by Martin et al. [2045.4],
is that resulting clustering processes are dominated bgntist frequent words, which are pushed towards a
uniform distribution over the word classes. As a resulthwitt a morphological component [62], there will
not be a homogenous class of numbers or function words, iartiebecause some such words appear often.
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System Description | Accuracy
(89.5) | “punctuation” (Ch.7) 58.4
#5 (§9.5.1) | “punctuation” with monosemous induced tags 58.2.2§-0
#6 (§9.5.2) | “punctuation” withcontext-sensitiveinduced tags 59.1 (+0.7)

Table 9.5: Directed accuracies on Section 23 of WSJ (alleseats) for experiments with
the state-of-the-art system.

9.4.3 Further Evaluation

It is important to enable easy comparison with previous ardré work. Since WSJ15
is not a standard test set, two key experiments — “less is’hwatk gold part-of-speech
tags (#1, Table 9.1: gold) and with Clark’s [61] clusters,(#8ble 9.1: flat) — were re-
evaluated on all sentences (not just length fifteen and eshavhich required smoothing
both final models), in Section 23 of WSJ (see Table 9.4). Thapter thus showed that
two classic unsupervised word clusterings — one flat and @rartchical — can be better
for dependency grammar induction than monosemous synteategories derived from
gold part-of-speech tags. And it confirmed that the unsupedvtags are worse than the
actual gold tags, in a simple dependency grammar inducistes.

9.5 State-of-the-Art without Gold Tags

Until now, this chapter’s experimental methods have bedibelately kept simple and
nearly identical to the early work based on the DMV, for d¢larNext, let's explore how its
main findings generalize beyond this toy setting. A prelanyntest will simply quantify
the effect of replacing gold part-of-speech tags with theasemous flat clustering (as in
experiment #3¢9.4.1) on a more modern grammar inducer. And the last exeetinvill
gauge the impact of using a polysemous (but still unsupedyislustering instead, obtained
by executing standard sequence labeling techniques tminte context-sensitivity into the
original (independent) assignment of words to categories.

These final experiments are with a later state-of-the-atesy (Ch. 7) — a partially
lexicalized extension of the DMV that uses constrainedfgit&M to train on nearly all
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of the data available in WSJ, at WSJ45. The key contributian differentiates this model
from its predecessors is that it incorporates punctuatitngrammar induction (by turning
it into parsing constraints, instead of ignoring punctoratnarks altogether). In training,
the model makes a simplifying assumption — that sentengebeaplit at punctuation and
that the resulting fragments of text could be parsed indegetty of one another (these
parsed fragments are then reassembled into full senteees, tby parsing the sequence
of their own head words). Furthermore, the model continoeske punctuation marks
into account in inference (using weaker, more accuratetngs, than in training). This
system scores 58.4% on Section 23 of W3dee Table 9.5).

9.5.1 Experiment #5: A Monosemous Clustering

As in experiment #359.4.1), the base system was modified in exactly one way: god P
tags were swapped out and replaced them with a flat distoialtsimilarity clustering. In
contrast to simpler models, which suffer multi-point drapsccuracy from switching to
unsupervised tags (e.g., 2.6%), the newer system’s peaftcendegrades only slightly, by
0.2% (see Tables 9.4 and 9.5). This result improves ovettauitis performance degra-
dations previously observed for unsupervised dependesrsyng with induced word cate-
gories [172, 134inter alia].

One risk that arises from using gold tags is that newer systemld be finding cleverer
ways to exploit manual labels (i.e., developing an ovaengle on gold tags) instead of
actually learning to acquire language. Part-of-speech aagknownto contain significant
amounts of information for unlabeled dependency parsii@,[23.1], so it is reassuring
that this latest grammar induceréessdependent on gold tags than its predecessors.

9.5.2 Experiment #6: A Polysemous Clustering

Results of experiments #1 and §9(3.1, 9.4.1) suggest that grammar induction stands to

gain from relaxing thene class per wor@ssumption. This conjecture is tested next, by

inducing a polysemous unsupervised word clustering, tisamgut to induce a grammar.
Previous work [134§£4] found that simple bitag hidden Markov models, classycall
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trained using the Baum-Welch [19] variant of EM (HMM-EM), if@&m quite well! on
average, across different grammar induction tasks. Sugphesee models incorporate a
sensitivity to context via state transition probabilitieg,y(¢; | ¢;—1), capturing the like-
lihood that a tag,; immediately follows the tag,_;; emission probabilitie®eyr(w; | t;)
capture the likelihood that a word of typgis w;.

A context-sensitive tagger is needed here, and HMM modelggaod — relative to
other tag-inducers. However, they are not better than gajg, tat least when trained using
a modest amount of dafaFor this reason, the monosemous flat clustering will be eslax
plugging it in as an initializer for the HMM [123]. The maingdsylem with this approach is
that, at least without smoothing, every monosemous ladp@itrivially at a local optimum,
sinceP(t; | w;) is deterministic. To escape the initial assignment, a ‘®maigection” tech-
nique [285] will be used, inspired by the contexts of [61, hewirst, the MLE statistics for
Pr(tiq | t;) andPL(¢; | t;11) will be collected from WSJ, using the flat monosemous tags.
Next, WSJ text will be replicated 100-fold. Finally, thisder data set will be retagged, as
follows: with probability 80%, a word keeps its monosemags with probability 10%, a
new tag is sampled from the left conte® | associated with the original (monosemous)
tag of its rightmost neighbor; and with probability 10%, g ta drawn from the right con-
text (P;) of its leftmost neighbot. Given that the initializer — and later the input to the
grammar inducer — are hard assignments of tags to wordsfa$ker and simpler) Viterbi
training will be used to estimate this HMM'’s parameters.

In the spirit of reproducibility, again, an off-the-shetiraponent was used for tagging-
related work!® Viterbi training converged after just 17 steps, replachedriginal monose-
mous tags for 22,280 (of 1,028,348 non-punctuation) tokekgSJ. For example, the first
changed sentence is #3 (of 49,208):

Some “circuit breakers” installed after the October 198ash failed their first

"They are also competitive with Bayesian estimators, oreladgta sets, with cross-validation [110].

8All of Headden et al.’'s [134] grammar induction experimentth induced POS were worse than their
best results with gold tags, most likely because of a venfisragpus (half of WSJ10) used to cluster words.

9The sampling split (80:10:10) and replication paramet@0flwere chosen somewhat arbitrarily, so
better results could likely be obtained with tuning. Howetke real gains would likely come from using
soft clustering techniques [137, 246ter alia] and propagating (joint) estimates of tag distribution® ia
parser. The ad-hoc approach presented here is intended/#ossdely as a proof of concept.

®David Elworthy’sC+ tagger, with options-i t -G -1, available fromhttp://friendly-moose.
appspot.com/code/NewCpTag.zip.
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test, traders say, unable tmol the selling panic in both stocks and futures.

Above, the worctool gets relabeled as #188 (from #173 — see Table 9.3), sinceritext

is more suggestive of an infinitive verb than of its usual ging with adjectivesd! Using
this new context-sensitive hard assignment of tokens topersised categories the latest
grammar inducer attained a directed accuracy of 59.1%lyn@#éull point better than with
the monosemous hard assignment (see Table 9.5). To thefbegtkmowledge, it is also
the first state-of-the-art unsupervised dependency p&oseerform better with induced
categories than with gold part-of-speech tags.

9.6 Related Work

Early work in dependency grammar induction already reliedald part-of-speech tags [44].
Some later models [345, 24iter alia] attempted full lexicalization. However, Klein and
Manning [172] demonstrated that effort to be worse at redngedependency arcs than
choosing parse structures at random, leading them to incatgpgold tags into the DMV.

Klein and Manning [172§5, Figure 6] had also tested their own models with induced
word classes, constructed using a distributional sintylarustering method [281]. With-
out gold POS tags, their combined DMV+CCM model was aboutdaiats worse, both in
(directed) unlabeled dependency accuracy (42.3% vs. 4725d unlabeled bracketing
F1 (72.9% vs. 77.6%), on WSJ10. In constituent parsing, eg@kginer [283¢6, Table 1]
built a fully-lexicalized grammar inducer that was comped with DMV+CCM despite
not using gold tags. His CCL parser has since been improvea@ Vzoomed learning”
technique [263]. Moreover, Abend et al. [1] reused CCL'=inal distributional repre-
sentation of words in a cognitively-motivated part-of-eple inducer. Unfortunately their
tagger did not make it into Christodoulopoulos et al.’'s [6&¢ellent and otherwise com-
prehensive evaluation.

1A proper analysis of all changes, however, is beyond theesobthis work.
120n the same evaluation set (WSJ10), the context-sensitaters without gold tags (Experiment #6,
§9.5.2) scores 66.8%.
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Outside monolingual grammar induction, fully-lexicaliz&tatistical dependency trans-
duction models have been trained from unannotated patatietts for machine transla-
tion [9]. More recently, McDonald et al. [213] demonstrata impressive alternative
to grammar induction by projecting reference parse tramsa fanguages that have annota-
tions to ones that are resource-pbolt uses graph-based label propagation over a bilingual
similarity graph for a sentence-aligned parallel corpug,[ihducing part-of-speech tags
from a universal tag-set [249]. Even in supervised pardiege are signs of a shift away
from using gold tags. For example, Alshawi et al. [10] denti&isd good results for map-
ping text to underspecified semantics via dependenciesutitiesorting to gold tags. And
Petrov et al. [24834.4, Table 4] observed only a small performance loss “goid&fess”
in question parsing.

| am not aware of any systems that induce both syntactic tneésheir part-of-speech
categories. However, aside from the many systems that énttaes from gold tags, there
are also unsupervised methods for inducing syntactic oateggfrom gold trees [102, 246],
as well as for inducing dependencies from gold constituanbtations [274, 58]. Con-
sidering that Headden et al.’s [134] study of part-of-speggers found no correlation
between standard tagging metrics and the quality of indgcachmars, it may be time for
a unified treatment of these very related syntax tasks.

9.7 Discussion and Conclusions

Unsupervised word clustering techniques of Brown et al] §htl Clark [61] are well-suited
to dependency parsing with the DMV. Both methods outperfgoid parts-of-speech in su-
pervised modes. And both can do better than monosemousdukdrived from gold tags
in unsupervised training. This chapter showed how Clatkl flat tags can be relaxed,
using context, with the resulting polysemous clusteringpetforming gold part-of-speech
tags for the English dependency grammar induction task.

Bwhen the target language is English, however, their bestracg (projected from Greek) is low:
45.7% [213 84, Table 2]; tested on the same CoNLL 2007 evaluation sef][236 chapter’s “punctuation”
system with context-sensitive induced tags (trained ond834dithout gold tags) performs substantially bet-
ter, scoring 51.6%. Note that this is also an improvement twe same system trained on the CoNLL set
using gold tags: 50.3% (see Table 7.7).
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Monolingual evaluation is a significant flaw in this chapemethodology, however.
One (of many) take-home points made in Christodoulopoulcs.s [60] study is that
results on one language do not necessarily correlate whtkr danguage¥ Assuming
that the results do generalize, it will still remain to reradhe present reliance on gold
tokenization and sentence boundary labels. Neverthedigsnating gold tags has been
an important step towards the goal of fully-unsupervisquedeency parsing.

This chapter has cast the utility of a categorization schama combination of two
effects on parsing accuracy: a synonymy effect and a polysdfact. Results of its ex-
periments with both full and partial lexicalization suggtbst grouping similar words (i.e.,
synonymy) is vital to grammar induction with the DMV. Thisdensistent with an estab-
lished view-point, that simple tabulation of frequenciésvords participating in certain
configurations cannot be reliably used for comparing thkélihoods [246,54.2]: “The
statistics of natural languages is inherently ill definedec®ise of Zipf's law, there is
never enough data for a reasonable estimation of joint bbjstibutions.” Seginer’s [284,
61.4.4] argument, however, is that the Zipfian distributioraproperty of words, not parts-
of-speech — should allow frequent words to successfullglgyiarsing and learning: “A
relatively small number of frequent words appears almostyavhere and most words are
never too far from such a frequent word (this is also the piedehind successful part-
of-speech induction).” It is important to thoroughly unstand how to reconcile these only
seemingly conflicting insights, balancing them both in tiyeand in practice. A useful
starting point may be to incorporate frequency informatiothe parsing models directly
— in particular, capturing the relationships between warfdgrious frequencies.

The polysemy effect appears smaller but is less contra@lershis chapter’s experi-
mental results suggest that the primary drawback of thesiclatustering schemes stems
from theirone class per wordature — and not a lack of supervision, as may be widely be-
lieved. Monosemous groupings, even if they are themsekgadl from human-annotated
syntactic categories, simply cannot disambiguate worglsviy gold tags can. By relaxing

4Furthermore, it would be interesting to know how sensitifedent head-percolation schemes [339, 152]
would be to gold versus unsupervised tags, since the Mage@odins rules [199, 70] agree with gold
dependency annotations only 85% of the time, even for WS [Pfoper intrinsic evaluation of dependency
grammar inducers is not yet a solved problem [282].
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Clark’s [61] flat clustering, using contextual cues, depEmy grammar induction was im-
proved: directed accuracy on Section 23 (all sentence$)eofMSJ benchmark increased
from 58.2% to 59.1% — from slightly worse to better than withdjtags (58.4%, previous
state-of-the-art).

Finally, since Clark’s [61] word clustering algorithm isrehdy context-sensitive in
training, it is likely possible to do better simply by pregeg the polysemous nature of
its internal representation. Importing the relevant distiions into a sequence tagger di-
rectly would make more sense than going through an intermedionosemous summary.
And exploring other uses dfoft clustering algorithms — perhaps as inputs to part-of-
speech disambiguators — may be another fruitful researectthn. Ajoint treatment of
grammar and parts-of-speech induction could fuel majoaades in both tasks.



Chapter 10
Dependency-and-Boundary Models

The purpose of this chapter is to introduce a new family of el®&br unsupervised depen-
dency parsing, which is specifically designed to exploitidu@ous informative cues that are
observable at sentence and punctuation boundaries. Sungppeer-reviewed publication
is Three Dependency-and-Boundary Models for Grammar Indaoéti EMNLP-CoNLL
2012 [307].

10.1 Introduction

Natural language is ripe with all manner of boundaries asthréace level that align with hi-
erarchical syntactic structure. From the significance néfion words [23] and punctuation
marks [284, 253] as separators between constituents iretsentences — to the impor-
tance of isolated words in children’s early vocabulary asitjon [37] — word boundaries
play a crucial role in language learning. This chapter withs that boundary information
can also be useful in dependency grammar induction modgishwraditionally focus on
head rather than fringe words [44].

Consider again the example in Figure 1The check is in the mailBecause the de-
terminer PT) appears at the left edge of the sentence, it should be pedsitearn that
determiners may generally be present at left edges of phrabés information could then
be used to correctly parse the sentence-internal deteriniiee mail Similarly, the fact
that the noun headV) of the objectthe mailappears at the right edge of the sentence

133
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could help identify the nounheckas the right edge of the subje. As with jigsaw puz-
zles, working inwards from boundaries helps determinesse@-internal structures of both
noun phrases, neither of which would be quite so clear if ewseparately.

Furthermore, properties of noun-phrase edges are parsiadired with prepositional-
and verb-phrase units that contain these nouns. Becausmltyy@ad-driven grammars
model valency separately for each class of head, howewsyr,dlinnot grasp that the left
fringe boundaryThe checkof the verb-phrase is shared with its daughtetgck Neither
of these insights is available to traditional dependencyntdations, which could learn
from the boundaries of this sentence only that determineghtnihave no left- and that
nouns might have no right-dependents.

This chapter proposes a family of dependency parsing mtusisre capable of induc-
ing longer-range implications from sentence edges thdrgudities of their fringe words.

Its ideas conveniently lend themselves to implementatiogiscan reuse much of the stan
dard grammar induction machinery, including efficient dyi@programming routines for
the relevant expectation-maximization algorithms.

10.2 The Dependency and Boundary Models

The new models follow a standard generative story for heddsard automata [7], re-
stricted to the split-head case (see below), over lexicatietasseqc, }: first, a sentence
root ¢, is chosen, with probabilit,rricu(c. | ©; L); ¢ is a special start symbol that, by
convention [172, 93], produces exactly one child, to it$. I&fext, the process recurses.
Each (head) word,, generates a left-dependent with probability- Psrgp( - | L; ---),
where dots represent additional parameterization on wihigtay be conditioned. If the
child is indeed generated, its identity is chosen with probability?yrracu(ca | cn; -+ +),
influenced by the identity of the parentand possibly other parameters (again represented
by dots). The child then generates its own subtree reculysivel the whole process con-
tinues, moving away from the head, untj| fails to generate a left-dependent. At that
point, an analogous procedure is repeated,t® right, this time using stopping factors
Psrop( - | R; -+ -). All parse trees derived in this way are guaranteed to besptiog and
can be described by split-head grammars.
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Instances of these split-head automata have been heagdyrugrammar induction [244,
172, 133jnter alia], in part because they allow for efficient implementatid®, 8] of the
inside-outside re-estimation algorithm [14]. The basreteof split-head grammars is that
every head word generates its left-dependents indepdpaérits right-dependents. This
assumption implies, for instance, that words’ left- andhtigalencies — their numbers of
children to each side — are also independent. But it sm¢gmply that descendants that
are closer to the head cannot influence the generation tiefadependents on the same
side. Nevertheless, many popular grammars for unsupeérpaesing behave as if a word
had to generate all of its children (to one side) — or at |dasit tount —beforeallowing
any of these children themselves to recurse.

For example, the DMV could be implemented as both head-adtaad head-inward
automata. (In fact, arbitrary permutations of siblings wiveen side of their parent would
not affect the likelihood of the modified tree, with such misdeThis chapter proposes to
make fuller use of split-head automata’s head-outwardradiy drawing on information
in partially-generated parses, which contain useful pteds that, previously, had not been
exploited even in featurized systems for grammar indudéén 24].

Some of these predictors, including the identity — or evemiper [207] — of already-
generated siblings, can be prohibitively expensive inesargs above a short lengthFor
example, they break certain modularity constraints imgdsethe charts used i@ (k?%)-
optimized algorithms [243, 89]. However, in bottom-up pagsand training from text,
everything about the yield — i.e., the ordered sequencel @li@ady-generated descen-
dants, on the side of the head that is in the process of spgwiffian additional child — is
not only known but also readily accessible. This chaptepthices three new models for
dependency grammar induction, designed to take advantdlyes availability.

10.2.1 Dependency and Boundary Model One

DBM-1 conditions all stopping decisions on adjacency aredidentity of the fringe word
c. — the currently-farthest descendant (edge) derived by hemxthe given head-outward
direction {ir € {L,R}):

Psrop( - | dir; adj, ce).
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Figure 10.1: The running example — a simple sentence andnlthealed dependency
parse structure’s probability, as factored by DBM-1; highted comments specify heads
associated to non-adjacent stopping probability factors.

In the adjacent casedj = T), ¢, is deciding whether to have any children on a given
side: a first child’s subtree would be right next to the headth& head and the fringe
words coincided, = ¢.). In the non-adjacent cased] = F), these will be different words
and their classes will, in general, not be the sariéwus, non-adjacent stopping decisions
will be made independently of a head word’s identity. Theref all word classes will be
equally likely to continue to grow or not, for a specific prged fringe boundary.

For example, production dfhe check isnvolves two non-adjacent stopping decisions
on the left: one by the nowheckand one by the veris, both of which stop after generating
a first child. In DBM-1, this outcome is captured by squarirghared parameter belonging
to the left-fringe determinefhe Pgsep( - | L; F,DT)? — instead of by a product of two
factors, such aBsrop( - | L; F,NN) - Pgrop( - | L; F,VBZ). In DBM grammars, dependents’
attachment probabilities, given heads, are additionallyditioned only on their relative
positions — as in traditional models [172, 24®8}rrpcu(cy | cp; dir).

Figure 10.1 shows a completely factored example.

Fringe words differ also from standard dependency feaf@8:$2.3]: parse siblings and adjacent words.
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10.2.2 Dependency and Boundary Model Two

DBM-2 allows different but related grammars to coexist inrege model. Specifically, it
presupposes that all sentences are assigned to one of sseslaomplete and incomplete
(comp € {T,F}, for now taken as exogenous). This model assumes that word-{ive.,
head-dependent) interactions in the two domains are the.sdiowever, sentence lengths
— for which stopping probabilities are responsible — andritigtions of root words may
be different. Consequently, an additiorainp parameter is added to the context of two
relevant types of factors:

Psrop( - | dir; adj, c., comp);

andPyrracu(cr | ©; L, comp).
For example, the new stopping factors could capture thetfettincomplete fragments
— such as the noun-phraségorge Morton headline€EnergyandOdds and Endsa line
item ¢ - Domestic cardollar quantityRevenue:$3.57 billion, the timel:11am and the
like — tend to be much shorter than complete sentences. Maeawd-attachment factors
could further track that incomplete sentences generatlky\arbs, in contrast to other short
sentences, e.ggxcerpts follow; Are you kidding?Yes, he did.It's huge, Indeed it is, |
said, ‘'NOW?, “Absolutely,” he said, | am waiting, Mrs. Yeargin declinedMcGraw-Hill
was outraged.‘It happens”, I'm OK, Jack, Who cares?Never mindand so on.

All other attachment probabilitieB,rracu(cq | cn; dir) remain unchanged, as in DBM-1.
In practice comp can indicate presence of sentence-final punctuation.

10.2.3 Dependency and Boundary Model Three

DBM-3 adds further conditioning on punctuation contextintroduces another boolean
parametergross, which indicates the presence of intervening punctuatetwéen a pro-
posed head worgd, and its dependeny,. Using this information, longer-distance punctuation-
crossing arcs can be modeled separately from other, l@vet-iependencies, via

Pyrracu(ca | cn; dir, eross).
For instance, irContinentals believe thdahe strongest growth area wile southern Eu-
rope, four words appear betwedhat andwill. Conditioning on (the absence of) inter-
vening punctuation could help tell true long-distancetretes from impostors. All other
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Split-Head Dependency Grammadl Parracy (head-root) | Parraca  (dependent-head) Pstop  (adjacent and not)
GB [244] 1/ {w} d | h; dir 1/2

DMV [172] cr|o; L cq | ep; dir - | dir; adj, cp,

EVG [133] || ¢ | o; L cq | ep; dir, adj - | dir; adj, cp,

DBM-1 (810.2.1) || cr | o; L cq | cp; dir - | dir; adj, ce

DBM-2 (810.2.2) || ¢r | ©; L, comp cq | ep; dir - | dir; adj, ce, comp
DBM-3 (810.2.3) || ¢ | ©; L, comp cq | ep; dir, cross - | dir; adj, ce, comp

Table 10.1: Parameterizations of the split-head-outwarteative process used by DBMs
and in previous models.

probabilities Psrop( - | dir; adj, c.,comp) andPyrrpcu(c, | ©; L, comp), remain the same
as in DBM-2.

10.2.4 Summary of DBMs and Related Models

Head-outward automata [7, 8, 9] played a central part asrgéwe models for proba-
bilistic grammars, starting with their early adoption inpswised split-head constituent
parsers [69, 71]. Table 10.1 lists some parameterizatioashave since been used by
unsupervised dependency grammar inducers sharing thekbbiae split-head process.

10.3 Experimental Set-Up and Methodology

Let’s first motivate each model by analyzing WSJ text, befdetving into grammar in-
duction experiments. Although motivating solely from ttrisebank biases the discussion
towards a very specific genre of just one language, it hasdhasage of allowing one to
make concrete claims that are backed up by significant titatfs

In the grammar induction experiments that follow, each niisdgcremental contribu-
tion to accuracies will be tested empirically, across maispatate languages. For each
CoNLL data set, a baseline grammar will be induced using tMVDSentences with
more than 15 tokens will be excluded, to create a conseevaias, because in this set-
up the baseline is known to excel. All grammar inducers weitealized using (the same)
uniformly-at-random chosen parse trees of training sest®ef67]; thereafter, “add one”
smoothing was applied at every training step.

2A kind of bias-variance trade-off, if you will...
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To fairly compare the models under consideration — whichid&tave quite differ-
ent starting perplexities and ensuing consecutive radikelihoods — two termination
strategies where employed. In one case, each learner watyblun through 40 steps of
inside-outside re-estimation, ignoring any convergeniera@,; in the other case, learners
were run until numerical convergence of soft EM’s objectiuection or until the likelihood
of resulting Viterbi parse trees suffered — an “early-stogpateen EM” strategy (Ch. 5).

Table 10.2 shows experimental results, averaged over &lloMNLL languages, for the
DMV baselines and DBM-1 and 2. DBM-3 was not tested in thisugebecause most
sentence-internal punctuation occurs in longer sentemestead, DBM-3 will be tested
later (see€§10.7), using most sentencés the final training step of a curriculum strat-
egy [22] that will be proposed for DBMs. For the three modelstéd on shorter inputs
(up to 15 tokens) both terminating criteria exhibited theedrend; lateen EM consistently
scored slightly higher than 40 EM iterations.

Termination Criterion| DMV | DBM-1 | DBM-2
40 steps of EM|  33. 38.8 40.7
early-stopping lateen E 34. 39:10 40.9

Table 10.2: Directed dependency accuracies, averagedath\af06/7 CoNLL evaluation
sets (all sentences), for the DMV and two new dependencybanddary grammar induc-
ers (DBM-1 and 2) — using two termination strategies.

10.4 Dependency and Boundary Model One

The primary difference between DBM-1 and traditional msgslich as the DMV, is that
DBM-1 conditions non-adjacent stopping decisions on tleniities of fringe words in
partial yields (se§10.2.1).

SResults for DBM-3, given only standard input (up to lengtf), 1ould be nearly identical to DBM-2’s.
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Non-Adjacent Stop Predictdr ~ RZ, AIC,

(dir) | 0.0149] 1,120,200
) | 0.0726| 1,049,175
) || 0.0728| 1,047,157

(ce,dir) | 0.2361 904,102.4
)

0.3320| 789,594.3

Table 10.3: Coefficients of determinatioR¥) and Akaike information criteria (AIC), both
adjusted for the number of parameters, for several singddigtor logistic models of non-
adjacent stops, given directidiv; ¢, is the class of the head s its number of descendants
(so far) to that side, and represents the farthest descendant (the edge).

10.4.1 Analytical Motivation

Treebank data suggests that the class of the fringe word —paitisof-speech¢, — is

a better predictor of (non-adjacent) stopping decisioms given directioniir, than the
head’s own class,. A statistical analysis of logistic regressions fitted te tlata shows that
the (cy,, dir) predictor explains only about 7% of the total variation ($able 10.3). This
seems low, although it is much better compared to directmmea(which explains less than
2%) and slightly better than using the (current) number efltbad’s descendants on that
side,n, instead of the head’s class. In contrast, usinm place ofc;, boosts explanatory
power to 24%, keeping the number of parameters the samee lvere willing to roughly
square the size of the model, explanatory power could beawegr further, to 33% (see
Table 10.3), using both, andc;,.

Fringe boundaries thus appear to be informative even in tpersised case, which
is not surprising, since using just one probability factmd its complement) to generate
very short (geometric coin-flip) sequences is a recipe fgh l@ntropy. But as suggested
earlier, fringes should be extra attractive in unsuped/settings because yields are ob-
servable, whereas heads almost always remain hidden. Matevery sentence exposes
two true edges [131]: integrated over many sample sentesgiatings and ends, cumula-
tive knowledge about such markers can guide a grammar inthgde long inputs, where
structure is murky. Table 10.4 shows distributions of all3?ags in the treebank versus
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% of All First , Last Sent, Frag.
POS || Tokens| Tokens Tokens Roots Roots
NN 15.94| 4.31, 36.67| 0.10, 23.40
11.85| 1854' 057| 024 433
NNP 11.09| 20.49, 12.85| 0.02, 32.02
DT 9.84| 2334' 034 000 0.04
33 7.32| 433 374 001 115
NNS 7.19| 4.49' 20.64| 0.15 17.12
CD 437 129, 6.92| 0.00, 327
RB 371| 596' 388 000 150
VBD 3.65| 009, 3.52 46.65, 0.93
VB 317| 0441 167 048 681
cC 286| 593, 0.00 000 0.00
TO 2.67| 037" 005 002 044
VBZ 257| 017, 1.65 28.31, 0.93
VBN 242| 061 257 063 128
PRP 2.08| 904, 134/ 000 0.00
VBG 1.77| 1.26' 0.64 010 097
VBP 1.50| 0.05, 0.61 14.33, 0.71
MD 1.17| 0.07' 0.05 888' 057
POS 1.05| 0.00, 0.11 001 0.04
PRPS 100/ 090" 009 000 0.0
WDT 052| 008 000 001 013
JIR 0.39| 018' 043 000 0.9
RP 0.32| 000, 042 0.00 0.00
NNPS || 0.30| 0200 056 0.00 2.96
WP 028| 042, 001 001 0.04
WRB 026/ 078 002 001 031
338 023| 027, 006 0.00 0.00
RBR 021| 020 054 0.00 0.04
EX 0.10| 075, 0.00 0.00 0.00
RBS 005| 006 001 0.00 0.00
PDT 0.04| 008 000 0.00 0.00
Fil 0.03| 001 005 0.00 0.09
WP$ 0.02| 000, 000 0.00 0.00
UH 001| 008 005 0.00 062
SYM 001| 011, 001 000 0.18
LS 001| 009" 000 000 0.00

Table 10.4: Empirical distributions for non-punctuatic@®tags in WSJ, ordered by over-
all frequency, as well as distributions for sentence botiad@and for the roots of complete
and incomplete sentences. (A uniform distribution wouldehg/ 36 = 2.7% for all tags.)

in sentence-initial, sentence-final and sentence-roatipns. WSJ often leads with deter-
miners, proper nouns, prepositions and pronouns — all gandidates for starting English
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1->. bt | All | First | Last| Sent. Frag.
Uniform | 0.48| 0.58, 0.64 0.79 0.65
~ Al ]035' 0400 079 042
First 1 0.59| 0.94, 0.57
~Last| [ 7 ]0.837 029
Sent ! ' 0.86

Table 10.5: A distance matrix for all pairs of probabilitygttibutions over POS-tags shown
in Table 10.4 and the uniform distribution; the BC- (or Hedjer) distance [28, 235] be-
tween discrete distributionsandq (overz € X) ranges from zero (ifp = ¢) to one (iff
p-q=0,Ii.e., when they do not overlap at all).

phrases; and its sentences usually end with various nows tyggain consistent with the
running example.

10.4.2 Experimental Results

Table 10.2 shows DBM-1 to be substantially more accuratettreDMV, on average: 38.8
versus 33.5% after 40 steps of EfMlateen termination improved both models’ accuracies
slightly, to 39.0 and 34.0%, respectively, with DBM-1 sewyifive points higher.

10.5 Dependency and Boundary Model Two

DBM-2 adapts DBM-1 grammars to two classes of inputs (cotepsentences and in-
complete fragments) by forking off new, separate multiredsor stopping decisions and
root-distributions (seg10.2.2).

10.5.1 Analytical Motivation

Unrepresentative short sentences — such as headlineslasd-t are common in news-
style data and pose a known nuisance to grammar inducergo®seesearch sometimes

4DBM-1's 39% average accuracy with uniform-at-random aliiation is two points above DMV’s scores
with the “ad-hoc harmonic” strategy, 37% (see Table 5.5).
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Figure 10.2: Histograms of lengths (in tokens) for 2,261-ntausal fragments (red) and
other sentences (blue) in WSJ.

took radical measures to combat the problem: for exampliéer®iater et al. [118] ex-
cluded all sentences with three or fewer tokens from thgiedarments; and Marecek and
Zabokrtsky [202] enforced an “anti-noun-root” policy ttesr their Gibbs sampler away
from the undercurrents caused by the many short noun-pfreagaents (among sentences
up to length 15, in Czech data). This chapter will refer tansswippets of text as “incom-
plete sentences” and focus its study of WSJ on non-clausal(da signaled by top-level
constituent annotations whose first character isShét

Table 10.4 shows that roots of incomplete sentences, whekl@minated by nouns,
barely resemble the other roots, drawn from more traditieed and modalD) types. In
fact, these two empirical root distributions are more disfeom one another than either is
from the uniform distribution, in the space of discrete fbitity distributions over POS-
tags (see Table 10.5). Of the distributions under consiideraonly sentence boundaries
are as or more different from (complete) roots, suggeshagheads of fragments too may
warrant their own multinomial in a model.

Further, incomplete sentences are uncharacteristidatist §see Figure 10.2). It is this
property that makes them particularly treacherous to gramnducers, since by offering
few options of root positions they increase the chancesathesrner will incorrectly induce

Sl.e., separating top-level type§s, SINV, SBARQ, SQ, SBAR} from the rest (ordered by frequency):
{NP, FRAG, X, PP,...}.
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nouns to be heads. Given that expected lengths are diretdied to stopping decisions, it
makes sense to also model the stopping probabilities omipbete sentences separately.

10.5.2 Experimental Results

Since it is not possible to consult parse trees during granmaaction (to check whether
an input sentence is clausal), a simple proxy was used thspgasence of sentence-final
punctuation. Using punctuation to divide input sentenoés two groups, DBM-2 scored
higher: 40.9, up from 39.0% accuracy (see Table 10.2).

After evaluating these multilingual experiments, the gyalf the proxy’s correspon-
dence to actual clausal sentences in WSJ was examined. Talieshows the binary
confusion matrix having a fairly low (but positive) Pearsmrrelation coefficient. False
positives include parenthesized expressions that areedak noun-phrases, such(8se
related story: “Fed Ready to Inject Big Funds”: WSJ Oct. 1689}, false negatives can be
headlines having a main verb, e.Bgpulation Drain Ends For Midwestern StateBhus,
the proxy is not perfect but seems to be tolerable in practldentities of punctuation
marks [71, Footnote 13] — both sentence-final and sentantali— could be of extra
assistance in grammar induction, for grouping imperatigasstions, and so forth.

ro ~ 0.31 | Clausal| non-Clausa Total
Punctuation| 46,829 1,936, 48,765
no Punctuation 118 325 443
Total | 46,947 2,261 49,208

Table 10.6: A contingency table for clausal sentences amlthyy punctuation in WSJ; the
mean square contingency coefficieptsignifies a low degree of correlation. (For two bi-
nary variablesy, is equivalent to Karl Pearson’s better-known product-matgerrelation
coefficient,p.)
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10.6 Dependency and Boundary Model Three

DBM-3 exploits sentence-internal punctuation contextsrimgeling punctuation-crossing
dependency arcs separately from other attachment§16e2.3).

10.6.1 Analytical Motivation

Many common syntactic relations, such as between a deter@ind a noun, are unlikely to
hold over long distances. (In fact, 45% of all head-perealatependencies in WSJ are be-
tween adjacent words.) However, some common construcii@siore remote: e.g., sub-
ordinating conjunctions are, on average, 4.8 tokens aveay their dependent modal verbs.

Sometimes longer-distance dependencies can be vettaglaggitence-internal punctuation
marks.

It happens that the presence of punctuation between sugimobion (I17) and verb ¥D)
types serves as a clue that they are not connected (see Ta by contrast, a simpler
cue — whether these words are adjacent — is, in this caselyhafrdny use (see Ta-
ble 10.D). Conditioning on crossing punctuation could be of helmthglaying a role
similar to that of comma-counting [692.1] — and “verb intervening” [29§5.1] — in
early head-outward models for supervised parsing.

a) rs~ —0.40 || Attached| notAttached  Total

Punctuation 337 7,645 7,982

no Punctuation 2,144 4,040) 6,184

Total 2,481 11,685 14,166

non-Adjacent 2,478 11,673 14,151
Adjacent 3 12 15

b) r4~ +0.00 | Attached| not Attached  Total

Table 10.7: Contingency tables for right-attachingiD, among closest ordered pairs of
these tokens in WSJ sentences with punctuation, versugrgsgnce of intervening punc-
tuation; and (b) presence of intermediate words.
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10.6.2 Experimental Results Postponed

As mentioned earlier (se€10.3), there is little point in testing DBM-3 with shortense
tences, since most sentence-internal punctuation ocoulenger inputs. Instead, this
model will be tested in a final step of a staged training sgrat@ith more data (se¥l0.7.3).

10.7 A Curriculum Strategy for DBMs

The proposal is to train up to DBM-3 iteratively — by begingiwith DBM-1 and gradu-
ally increasing model complexity through DBM-2, drawingtbe intuitions of IBM trans-
lation models 1-4 [40]. Instead of using sentences of up ttkéns, as in all previous
experiments{10.4—10.5), nearly all available training data will now tsed: up to length
45 (out of concern for efficiency), during later stages. la finst stage, however, DBM-1
will make use of only a subset of the data, in a process sorastoalleccurriculum learn-
ing[22, 175,inter alia]. The grammar inducers will thus be “starting small” in betinses
suggested by ElIman [95]: simultaneously scaffolding on etaahd data-complexity.

10.7.1 Scaffolding Stage #1: DBM-1

DBM-1 training begins from sentences without sentencerirdl punctuation but with at
least one trailing punctuation mark. The goal here is todwshen possible, overly specific
arbitrary parameters like the “15 tokens or less” threshisked to select training sentences.
Unlike DBM-2 and 3, DBM-1 does not model punctuation or sangefragments, so it
makes sense to instead explicitly restrict its attentiothi® cleaner subset of the training
data, which takes advantage of the fact that punctuationgeagrally correlate with sen-
tence complexity [107]. (Next chapters cover even moresimantal training strategies.)

Aside from input sentence selection, the experimentalipdtere remained identical
to previous training of DBMs§10.4-10.5). Using this new input data, DBM-1 averaged
40.7% accuracy (see Table 10.8). This is slightly highen tth@ 39.0% when using sen-
tences up to length 15, suggesting that the proposed heddstlean, simple sentences
may be a useful one.
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Directed Dependency Accuracies fof: Best of State-ofAtieSystems
CoNLL Year this Work (@10) Monolingual; POS- Crosslingual
& Language [ DMV | DBM-1 | DBM-2 | DBM-3 | +inference @) Agnostic; (ii) Identified (iii) Transfer

Arabic 2006 12.9 10.6, 11.0 111 10845 || 334 L¢ | — 50.2 Spg |
7 36.6 4391 44.0! 44.4  44.9488) || 55.6 RF | 54.6 RFy; — |

Basque 7 32.7 34.1 33.0 32.f 33.865) || 43.6 Ls 347 MZNR — |
Bulgarian 7 || 24.7 59.4 63.6 64.6 652 (704) || 443 Ls | 53.9 RRy;e, | 70.3 Spt !
Catalan 7 41.1 61.3 61.3% 61.1 62.r81) || 63.8 Ls | 56.3 MZNR — :
Chinese '6 50.4 63.1 63.0 63.2 63.@257) || 63.6 L¢ | — — |
7 55.3 56.8 | 57.0! 57.1 57.0598) || 58.5 Lg I 34.6 MZNR — |

Czech '6 315 51.3! 52.8 53.0 55.1 (618) || 50.5 Ly | — — |
7 || 345 505, 512 533 542 (73 || 498 Ls | 424 RRyye, | — !

Danish '6 22.4 21.3, 19.9 21. 22.274) || 46.0 RF | 53.1 RFRy 4, | 56.5 Sar |
Dutch 6 || 449 459, 465 46.0 46.6 (486) || 325 L5 1 48.8 RFygo | 65.7 MPHmp
English 7 32.3 29.2) 28.6 29.( 29.¢51.4) || 50.3 P I 23.8 MZNR 45.7 MPHg, :
German '6 27.7 36.3 37.9 38.439.1 521) | 335 Ls ' 21.8 MZpR 56.7 MPHp-q |
Greek 6| 363 28.1! 26.1 261 26.%68) || 39.0 MZ | 334 MZNR | 65.1 MPHmp |
Hungarian 7| 23.6 432 52.1 57.4 58.2 (es4) || 48.0 MZ | 48.1 MZpR — |
Italian 7 25.5 41.7, 39.8, 39.9 40.7418) || 57.5 MZ | 60.6 MZNR 69.1 MPHpt |
Japanese 6| 42.3 22.8 22,7 22|17 22%5) || 56.6 Ls | 53.5 MZNR — !
Portuguese '6|  37.1 68.9 72.8 71{172.4 (s06) || 43.2 MZ ! 558 RFy 4, | 76.9 Spg :
Slovenian ‘6| 33.4 30.4 33. 341352 (@0 || 336 Ly | 346 MZ\R — |
Spanish 6 22.0 25.0 26. 27.01 28218 || 53.0 MZ | 54.6 MZNR 68.4 MPH; |
Swedish '6 30.7 48.6, 50.3 50.0 50.7 63.2) || 50.0 Lg I 34.3 RFyygo | 68.0 MPHm:p I
Turkish '6 43.4 32.9 1 33.71 33.4| 34.4381) || 409 P I 61.3 RRy; — I
7 || 585| 446! 442!  437) 448uss || 488 Ly | — — !

Average: 33.6 40.7" 417 422 429 (519 || 382 Lg (best averagenot an average of bests

Table 10.8: Average accuracies over CoNLL evaluation sgtséntences), for the DMV
baseline, DBM1-3 trained with a curriculum strategy, aradesbf-the-art results for sys-
tems that: (i) are also POS-agnostic and monolingual, dicly L (Lateen EM, Ta-
bles 5.5-5.6) and P (Punctuation, Ch. 7); (ii) rely on golgl identities to discourage
noun roots [202, MZ] or to encourage verbs [259, RF]; and {iansfer delexicalized
parsers [296, S] from resource-rich languages with trénsia [213, MPH]. DMV and
DBM-1 were trained on simple sentences, starting from (#meey parse trees chosen
uniformly-at-random; DBM-2 and 3 were trained on most secés, starting from DBM-1
and 2’s output, respectivelyinferenceis DBM-3 with punctuation constraints.

10.7.2 Scaffolding Stage #2: DBM-2- DBM-1

Next comes training on all sentences up to length 45. Sinesetinputs are punctuation-
rich, both remaining stages employed the constrained biiteM set-up (Ch. 7) instead
of plain soft EM; also, an early termination strategy wasdysgiitting hard EM as soon
as soft EM's objective suffered (Ch. 5). Punctuation wasseted into Viterbi-decoding
constraints during training using the so-calledsemethod, which stipulates that all words
in an inter-punctuation fragment must be dominated by alsifftgead) word, also from
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that fragment — with only these head words allowed to atthehhtead words of other
fragments, across punctuation boundaries. To adapt tal&sil, DBM-2 was initialized

using Viterbi parses from the previous stag@&Q.7.1), plus uniformly-at-random chosen
dependency trees for any new complex and incomplete sexgesigbject to punctuation-
induced constraints. This approach improved parsing aces to 41.7% (see Table 10.8).

10.7.3 Scaffolding Stage #3: DBM-3— DBM-2

Next, the training process of the previous stagf(7.2) was repeated using DBM-3. To
initialize this model, the final instance of DBM-2 was comdgirwith uniform multinomials

for punctuation-crossing attachment probabilities (§8&2.3). As a result, average per-
formance improved to 42.2% (see Table 10.8). Lastly, puaiiio constraints were applied
also in inference. Here theprawl method was used — a more relaxed approach than in
training, allowing arbitrary words to attach inter-puration fragments (provided that each
entire fragment still be derived by one of its words). Thishteique increased DBM-3'’s
average accuracy to 42.9% (see Table 10.8). The final radogtantially improves over
the baseline’s 33.6% and compares favorably to previou&.fvor

10.8 Discussion and the State-of-the-Art

DBMs come from a long line of head-outward models for depanggrammar induction
yet their generative processes feature important noselti@ne is conditioning on more
observable state — specifically, the left and right end woifds phrase being constructed
— than in previous work. Another is allowing multiple grammma— e.g., of complete and
incomplete sentences — to coexist in a single model. Thepeovements could make
DBMs quick-and-easy to bootstrap directly from any avdédatartial bracketings [245],
for example web markup (Ch. 6) or capitalized phrases (Ch. 8)
The second part of this chapter — the use of a curriculumegyato train DBM-1

through 3 — eliminates having to know tuned cut-offs, suckeagences with up to a pre-
determined number of tokens. Although this approach adae smmplexity, choices were

5Note that DBM-1's 39% average accuracy with standard tngiisee Table 10.2) was already nearly a
full point higher than that of any single previous best sys{e; — see Table 10.8).
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made conservatively, to avoid overfitting settings of secedength, convergence criteria,
etc.. stage one’s data is dictated by DBM-1 (which ignoresfuation); subsequent stages
initialize additional pieces uniformly: uniform-at-raowh parses for new data and uniform
multinomials for new parameters.

Even without curriculum learning — trained with vanilla EM -BBM-2 and 1 are
already strong. Further boosts to accuracy could come fnompl@®/ing more sophisti-
cated optimization algorithms, e.g., better EM [273], ¢oaised Gibbs sampling [202] or
locally-normalized features [24]. Other orthogonal defecy grammar induction tech-
niques — including ones based on universal rules [228] — nsyt@enefit in combination
with DBMs. Direct comparisons to previous work require saraee, however, as there are
several classes of systems that make different assummloms training data (see Ta-
ble 10.8).

10.8.1 Monolingual POS-Agnostic Inducers

The first type of grammar inducers, including this chaptapproach, uses standard train-
ing and test data sets for each language, with gold POS tagysomymized word classes.
For the purposes of this discussion, transductive leatthetsmay train on data from the
test sets will also be included in this group. DBM-3 (decodti punctuation constraints)
does well among such systems — for which accuraciesl@entence lengths of the evalu-
ation sets are reported — attaining highest scores for 8 tdriuages; the DMV baseline
is still state-of-the-art for one language; and the rermgrii0 bests are split among five
other recent systems (see Table 10.8Malf of the five came from various lateen EM
strategies (Ch. 5) for escaping and/or avoiding local ogtifrhese heuristics are compati-
ble with how the DBMs were trained and could potentially pdevfurther improvement to
accuracies.

Overall, the final scores of DBM-3 were better, on averagen tthose of any other
single system: 42.9 versus 38.2% (Ch. 5). The progressisoags for DBM-1 through 3
without using punctuation constraints in inference — 40177 and 42.2% — fell entirely
above this previous state-of-the-art result as well; the\Didhseline — also trained on

’But for Turkish '06, the “right-attach” baseline performstter, at 65.4% [259, Table 1] (an important
difference between 2006 and 7 CoNLL data has to do with setatien of morphologically-rich languages).
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sentences without internal but with final punctuation — aged 33.6%.

10.8.2 Monolingual POS-Identified Inducers

The second class of techniques assumes knowledge aboititiédenf POS tags [228], i.e.,
which word tokens are verbs, which ones are nouns, etc. Saahngar inducers generally
do better than the first kind — e.g., by encouraging verbowmatyt [119] — though even
here DBMs’ results appear to be competitive. In fact, peshayrprisingly, only in 5 of
19 languages a “POS-identified” system performed better #lzof the “POS-agnostic”
ones (see Table 10.8).

10.8.3 Multilingual Semi-Supervised Parsers

The final broad class of related algorithms considered helends beyond monolingual
data and uses both identities of POS-tags and/or paratkettbito transfer (supervised)
delexicalized parsers across languages. Parser prajastioy far the most successful
approach to date (and it too may stand to gain from this chiapt®deling improvements).

Of the 10 languages for which results could be found in tregdiure, transferred parsers
underperformed the grammar inducers in only one case: ohdbr(gee Table 10.8). The
unsupervised system that performed better used a speocgditited” initializer (Ch. 4)

that worked well for English (but less so for many other laages). DBMs may be able
to improve initialization. For example, modeling of incoleie sentences could help in
incremental initialization strategies likeby stepgCh. 3), which are likely sensitive to the
proverbial “bum steer” from unrepresentative short fragtagpaceTu and Honavar [323].

10.8.4 Miscellaneous Systems on Short Sentences

Several recent systems [64, 297, 228, 117{1#8y alia] are absent from Table 10.8 because
they do not report performance for all sentence lengthsadiitate comparison with this
body of important previous work, final accuracies for the-tagen words” task were also
tabulated, under headir@1a 51.9%, on average.
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10.9 Conclusion

Although a dependency parse for a sentence can be mappednstéwency parse [337],
the probabilistic models generating them use differentlt@ning: dependency grammars
focus on the relationship between arguments and headdjtaensy grammars on the co-
herence of chunks covered by non-terminals. Since redindews of data can make
learning easier [32], integrating aspects of both constity and dependency ought to be
able to help grammar induction. This chapter showed thatittsight is correct: depen-
dency grammar inducers can gain from modeling boundarynmdition that is fundamental
to constituency (i.e., phrase-structure) formalisms. BBife a step in the direction to-
wards modeling constituent boundaries jointly with heaplestelencies. Further steps must
involve more tightly coupling the two frameworks, as wellsd®mwing ways to incorporate
both kinds of information in other state-of-the art grammnauction paradigms.



Chapter 11

Reduced Models

The purpose of this chapter is to explore strategies thatatae on the advantages of
DBMs, which track the words at the fringes, as well as semarampleteness status,
by feeding them more and simpler implicitly constrainedadéext fragments chopped
up at punctuation boundaries), as well as modeling simatibas that are well suited to
bootstrapping from such artificial input snippets. Suppgrpeer-reviewed publication is
Bootstrapping Dependency Grammar Inducers from Incoragbsintence Fragments via
Austere Models ICGI 2012 [305].

11.1 Introduction

“Starting small” strategies [95] that gradually increaseplexities of training models [178,
40, 107, 119] and/or input data [37, 22, 175, 323] have lorenbaown to aid various as-
pects of language learning. In dependency grammar indygbi@-training on sentences
up to length 15 before moving on to full data can be partiduleffective (Chs. 4, 6, 7, 9).
Focusing on short inputs first yields many benefits: faséeniing, better chances of guess-
ing larger fractions of correct parse trees, and a preferéoicmore local structures, to
name a few. But there are also drawbacks: notably, unwanssgdy since many short
sentences are not representative, and data sparsity,siateypical complete sentences
can be quite long.

This chapter proposes starting with short inter-punctutmafragments of sentences,

152
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rather than with small whole inputs exclusively. Splittitegt on punctuation allows more
and simpler word sequences to be incorporated earlierimricg alleviating data sparsity
and complexity concerns. Many of the resulting fragmentkbei phrases and clauses (see
Ch. 7), since punctuation correlates with constituent lbamies [253, 254], and may not
fully exhibit sentence structure. Nevertheless, theseoéimer unrepresentative short inputs
can be accommodated using dependency-and-boundary nip&ats), which distinguish
complete sentences from incomplete fragments (Ch. 10).

DBMs consist of overlapping grammars that share all infaromeabout head-dependent
interactions, while modeling sentence root propensitieleead word fertilities separately,
for different types of input. Consequently, they can gleanegalizable insights about local
substructures from incomplete fragments without allowtimgjr unrepresentative lengths
and root word distributions to corrupt grammars of compséstetences. In addition, chop-
ping up data plays into other strengths of DBMs — which leaomf phrase boundaries,
such as the first and last words of sentences — by increasengutimber of visible edges.

11.2 Methodology

All of the experiments in this chapter make use of DBMs, which head-outward [7]
class-based models, to generate projective dependerssy fpaes for WSJ. They begin by
choosing a class for the root word.. Remainders of parse structures, if any, are pro-
duced recursively. Each node spawns off ever more disttirtdpendents by (i) deciding
whether to have more children, conditioned on directioft)(léhe class of the (leftmost)
fringe word in the partial parse (initially, itself), andhar parameters (such as adjacency of
the would-be child); then (ii) choosing its child’s categdoased on direction, the head’s
own class, etc. Right dependents are generated analogbuslysing separate factors.
Unlike traditional head-outward models, DBMs conditioaittgenerative process on more
observable state: left and right end words of phrases beingtructed. Since left and right
child sequences are still generated independently, DBMhgrars are split-head.

DBM-2 maintains two related grammars: one for completeesards (omp = T), ap-
proximated by presence of final punctuation, and anotheéntmmplete fragments. These
grammars communicate through shared estimates of worchatent parameters, making
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Stage || Stage ll DDA TA
Baseline {11.2) DBM-2| constrained DBM-3 59.7 34
Experiment #1§11.3) split DBM-2| constrained DBM-3] 60.2 3/5
Experiment #2§11.4) split DBM+4 | constrained DBM-3|| 60.3 4.9
Experiment #3{11.5) split DBM-0| constrained DBM-3] 61.2 50
Unsupervised Tags (Ch. 9) constrained DMV constrained LMDM59.1 | —

Table 11.1: Directed dependency and exact tree accurdgi@a ( TA) for the baseline,
experiments with split data, and previous state-of-theaSection 23 of WSJ.

it possible to learn from mixtures of input types withoutlptihg root and stopping fac-
tors. DBM-3 conditions attachments on additional contdigtinguishing arcs that cross
punctuation boundariesi(oss = T) from lower-level dependencies. Only heads of frag-
ments are allowed to attach other fragments as patbo&€@ constrained Viterbi EM; in
inference, entire fragments could be attached by arbitargrnal wordsgpraws)).

All missing families of factors (e.g., those of punctuaticnessing arcs) are initialized
as uniform multinomials. Instead of gold parts-of-speeaxntext-sensitive unsupervised
tags are now used, obtained by relaxing a hard clusteringugeex by Clark’s [62] algo-
rithm using an HMM [123]. As in the original set-up withoutlddaags (Ch. 9), training is
split into two stages of Viterbi EM: first on shorter input$(@r fewer tokens), then on most
sentences (up to length 45). The baseline system learns BB\Nstage | and DBM-3 (with
punctuation-induced constraints) in Stage I, startirmgrfruniform punctuation-crossing
attachment probabilities. Smoothing and termination dhlstages are as in Stage | of
the original system. This strong baseline achieves 59.7é6tid dependency accuracy —
somewhat higher than the previous state-of-the-art r€s8li%, obtained with the DMV
—see also Table 11.1). All experiments make changes to Bsagaining only, initialized
from the same exact trees as in the baselines and affectugg 8tonly via its initial trees.
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11.3 Experiment #1 (DBM-2):
Learning from Fragmented Data

Punctuation can be viewed as implicit partial bracketingstrints [245]: assuming that
some (head) word from each inter-punctuation fragmentvesrihe entire fragment is a
useful approximation in the unsupervised setting (Ch. 7)thWhis restriction, splitting
text at punctuation is equivalent to learning partial pdosests — partial because longer
fragments are left unparsed, and forests because evenrdezlgeagments are left uncon-
nected [224]. Grammar inducers are allowed to focus on nmagléwer-level substruc-
tures first! before forcing them to learn how these pieces may fit togetbeferring de-
cisions associated with potentially long-distance irfitagment relations and dependency
arcs from longer fragments to a later training stage is thuaretion on the “easy-first”
strategy [124], which is a fast and powerful heuristic fréra supervised dependency pars-
ing setting.

DBM-2 will now be bootstrapped using snippets of text obeditoy slicing up all in-
put sentences at punctuation. Splitting data increaseduhwer of training tokens from
163,715 to 709,215 (and effective short training inputsnfrd5,922 to 34,856). Ordi-
narily, tree generation would be conditioned on an exogssentence-completeness sta-
tus (comp), using presence of sentence-final punctuation as a bimarypThis chapter
refines this notion to account for new kinds of fragmentsfa(ilthe purposes of modeling
roots, only unsplit sentences could remain complete; astémping decisions, (ii) leftmost
fragments (prefixes of complete original sentences) atectghplete; and, analogously,
(iii) rightmost fragments (suffixes) retain their status-@a-vis right stopping decisions (see
Figure 11.1). With this set-up, performance improved frofn75t0 60.2% (from 3.4 to
3.5% for exact trees — see Table 11.1).

Next, let's make better use of the additional fragmenteiditng data.

LAbout which thdooseandsprawl punctuation-induced constraints agree (Ch. 7).
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Odds and Ends
(&) Anincomplete fragment.

“It happens.”
(b) A complete sentence that cannot be split on punctuation.

Bach’s “Air” followed.
(c) A complete sentence that can be split into three fragsaent

Figure 11.1: Three types of input: (a) fragments lackingiesece-final punctuation are
always considered incomplete; (b) sentences with tralbmigno internal punctuation are
considered complete though unsplittable; and (c) textd@atbe split on punctuation yields
several smaller incomplete fragments, eBach’s Air andfollowed In modeling stopping
decisionsBach’sis still considered left-complete — arfidllowedright-complete — since
the original input sentence was complete.

11.4 Experiment#2 (DBM1):
Learning with a Coarse Model

In modeling head word fertilities, DBMs distinguish betwe®e adjacent casedj = T,
deciding whether or not to have any children in a given dioectdir € {L,R}) and non-
adjacent casesi{; = F, whether to cease spawning additional daughters —Pseg
in Table 11.2). This level of detail can be wasteful for sifemgments, however, since
non-adjacency will be exceedingly rare there: most wordsmneit have many children.
Therefore, a model can be reduced by eliding adjacency. ©mdlwn side, this leads
to some loss of expressive power; but on the up side, poofedniation about phrase
edges could flow more easily inwards from input boundariegesit will not be quite so
needlessly subcategorized.

DBM-i is implemented by conditioning all stopping decisions amfythe direction in
which a head word is growing, the input's completeness statuhat direction and the
identity of the head’s farthest descendant on that sidehgiael word itself, in the adjacent
case — see Tables 11.2 and 11.7). With this smaller initiadehadirected dependency
accuracy on the test set improved only slightly, from 60.80&%; however, performance
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Model Parracy (root-head) Parracs (head-dependent) Psyop (adjacent/not)
DBM-3 (Ch.10) | (o,L, ¢, comproot) (ch, dir, cq, cross) (compir, Ce, dir, ady)
DBM-2 (§11.3, Ch. 10)| (¢,L, ¢, comproot) (ch, dir, cq) (compgir, Ce, dir, adj)
DBM-4 (811.4,11.7)| (o,L, ¢, cOMProot) (ch, dir, cq) (compair, Ce, dir)
DBM-0 (811.5,11.7)| (o,L,c,) iff comproot | (cp,dir, cq) (compair, Ce, dir)

Table 11.2: Feature-sets parameterizing dependencypamadary models three, two,
and zero: ifcomp is false, then so areomp,.,; and both ofcompg;,.; otherwise.comp, oot
is true for unsplit inputssompy;,. for prefixes (ifdir = L) and suffixes (whedir = R).

at the granularities of whole trees increased dramatidatign 3.5 to 4.9% (see Table 11.1).

11.5 Experiment #3 (DBM-0):
Learning with an Ablated Model

DBM-i maintains separate root distributions for complete andrmuete sentences (see
Parracy for ¢ in Table 11.2), which can isolate verb and modal types hegiyipical sen-
tences from the various noun types deriving captions, eeglltitles and other fragments
that tend to be common in news-style data. Heads of intectpation fragments are less
homogeneous than actual sentence roots, however. Theréfer learning task can be
simplified by approximating what would be a high-entropytrilsition with a uniform
multinomial, which is equivalent to updating DBbvia a “partial” EM variant [229].

DBM-O0 is implemented by modifying DBM-to hardwire the root probabilities as one
over the number of word classes (1/200, in this case), fomabmplete inputs. With
this more compact, asymmetric model, directed dependetmyracy improved substan-
tially, from 60.5 to 61.2% (though only slightly for exacegs, from 4.9 to 5.0% — see
Table 11.1).

11.6 Conclusion

This chapter presented an effective divide-and-conquatesty for bootstrapping gram-
mar inducers. Its procedure is simple and efficient, achg@tate-of-the-art results on
a standard English dependency grammar induction task hyitsineously scaffolding on
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both model and data complexity, using a greatly simplifiedvD®ith inter-punctuation
fragments of sentences. Future work could explore indusingcture from sentence pre-
fixes and suffixes — or even bootstrapping from intermediatgams, perhaps via novel
parsing models that may be better equipped for handlingubsit fragments.

11.7 Appendix on Partial DBMs

Since dependency structures are trees, few heads get to spaltiple dependents on the
same side. High fertilities are especially rare in shoginants, inviting economical mod-
els whose stopping parameters can be lumped together @eecaadjacent cases heads
and fringe words coincideadj = T — h = e, hencec, = ¢.). Eliminating inessential
components, such as the likely-heterogeneous root factarcomplete inputs, can also
yield benefits.

Consider the sentenc® @. It admits two structures@ @ and@ @. In theory,
neither should be preferred. In practice, if the first pas®ics100p% of the time, a multi-
component model could re-estimate total probability’as (1 — p)", wheren may exceed
its number of independent components. Only root and adjatepping factors are non-
deterministic hereProor(@) = Pstop(@),L) = p andProor(@) = Pstop(@,R) = 1 — p;
attachments are fixedd can only attach?2 and vice-versa). Tree probabilities are thus
cubes { = 3): a root and two stopping factors (one for each word, on dfiesides),

P(@ @) P(@ @) +P(@ @)

p p p

— — —_——
= Proor(@) Pstor(@, L) (1 — Ps1op(@, R)) Parraca(@, R, @) Pstor (@), L) Psrop (@, R)
———— —_— —————

1 1 1

1—p 1-p 1-p

— — ——
+  Proot(@) Pstor(@,R) (1 — Ps10p(@), L)) Parracu(@, L, @) Pstor (@, R) Ps1op(@, L)
————— —_— —————

1 1 1
= pP+(1-pp°

Forp € [0,1) andn € Z7, p" + (1 — p)* < 1, with strict inequality ifp ¢ {0,1} and
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n > 1. Clearly, asn grows above one, optimizers will more strongly prefer axigeso-
lutionsp € {0, 1}, despite lacking evidence in the data. Since the expomnéstelated
to numbers of input words and independent modeling comgsnamecipe of short inputs
— combined with simpler, partial models — could help allégiaome of this pressure to-
wards arbitrary determinism.
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Complete System
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Chapter 12
An Integrated Training Strategy

The purpose of this chapter is to integrate the insights fedinprevious parts — i.e.,
(i) incremental learning and multiple objectives, (ii) mtmation-induced constraints, and
(i) staged training with scaffolding on both input datadadependency-and-boundary
model complexity — into a unified grammar induction pipeli&ipporting peer-reviewed
publication isBreaking Out of Local Optima with Count Transforms and Md&etombi-
nation: A Study in Grammar Inductian EMNLP 2013 [308], which won the “best paper”
award.

12.1 Introduction

Statistical methods for grammar induction often boil downsblving non-convex opti-
mization problems. Early work attempted to locally maxiethe likelihood of a corpus,
using EM to estimate probabilities of dependency arcs batweord bigrams [244, 243].
Paskin’s parsing model has since been extended to makeem&sga learning more fea-
sible [172, 133]. But even the latest techniques (Chs. 1Pedd be quite error-prone and
sensitive to initialization, because of approximate, leearch.

In theory, global optima can be found by enumerating all@é&reests that derive a cor-
pus, though this is usually prohibitively expensive in pice A preferable brute force ap-
proach is sampling, as in Markov-chain Monte Carlo (MCMCJl aandom restarts [144],
which hit exact solutions eventually. Restarts can be gtayis in a parameter space that

161
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undo all previous work. At the other extreme, MCMC may clingtneighborhood, reject-
ing most proposed moves that would escape a local attre&amnpling methods thus take
unbounded time to solve a problem (and can't certify optitpgbut are useful for finding
approximate solutions to grammar induction [68, 202, 227].

This chapter proposes an alternative (deterministic)cbelaeuristic that combines lo-
cal optimization via EM withonrrandom restarts. Its new starting places are informed by
previously found solutions, unlike conventional restaotg may not resemble their prede-
cessors, unlike typical MCMC moves. One good way to consswich steps in a parameter
space is by forgetting some aspects of a learned model. Anilvy merging promising
solutions, since even simple interpolation [150] of logatima may be superior to all of the
originals. Informed restarts can make it possible to explbcombinatorial search space
more rapidly and thoroughly than with traditional methobisa.

12.2 Abstract Operators

Let C' be a collection of counts — the sufficient statistics frometha candidate solution
to an optimization problem could be computed, e.g., by stiiogtand normalizing to
yield probabilities. The counts may be fractional and sohg could take the form of
multinomial distributions. A local optimizet. will convert C' into C* = Lp(C) — an
updated collection of counts, resulting in a probabilistidel that is no less (and hopefully
more) consistent with a data setthan the original’:

UnlessC™* is a global optimum, it should be possible to make furtherrmmpments. But if
L is idempotent (and ran to convergence) tigh (C)) = L(C). Given onlyC and Lp,
the single-node optimization network above would be theimmah search pattern worth
considering. However, if another optimizéf — or a fresh starting poin€” — were
available, then more complicated networks could becomtilise
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12.2.1 Transforms (Unary)

New starts could be chosen by perturbing an existing salutis in MCMC, or indepen-
dently of previous results, as in random restarts. The enggibcus is on intermediate
changes t@’, without injecting randomness. All of its transforms inwelselective forget-
ting or filtering. For example, if the probabilistic modeéths being estimated decomposes
into independent constituents (e.g., several multinashihlen a subset of them can be re-
set to uniform distributions, by discarding associatedtetromC'. In text classification,
this could correspond to eliminating frequent or rare tekigam bags-of-words. Circular
shapes will be used to represent such model ablation opgrato

c—0O— @)

An orthogonal approach might separate out various countsly their provenance. For
instance, ifD consisted of several heterogeneous data sources, theauhts drom some
of them could be ignored: a classifier might be estimated ftstnews text. Squares will
be used to represent data-set filtering:

c—L]— ®)

Finally, if C' represents a mixture of possible interpretations dver— e.g., because it
captures the output of a “soft” EM algorithm — contributioitem less likely, noisier
completions could also be suppressed (and their weighistribdted to the more likely
ones), as in “hard” EM. Diamonds will represent plain (s&)gteps of Viterbi training:

C—0— 4)

12.2.2 Joins (Binary)

Starting from different initializers, sag; and Cs, it may be possible for. to arrive at
distinct local optima(’; # C;. The better of the two solutions, according to likeliha®gl
of D, could then be selected — as is standard practice when samnpli

The joining techniques presented in this chapter could tetdan eithe€’; or C;, by
entertaining also a third possibility, which combines tve tandidates. A mixture model
can be constructed by adding together all counts ftgjrand C; into C. = CT + C5.
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Original initializersC;, C, will, this way, have equal pull on the merged modedgardless

of nominal size (becausé;, C; will have converged using a shared training &%, The
best ofC}, C5 andC; = L(C.) can then be returned. This approach may uncover more
(and never returns less) likely solutions than choosingrandg, C; alone:

C¥=L(C (5)
e J1 (C1) >
<
C* * Z
>
C,—| L ‘
’ P J =)

A short-hand notation will be used to represent the combieérork diagrammed above,

Ch (6)
o (] o I 3

12.3 The Task and Methodology

less clutter:

The transform and join paradigms will now be applied to graanmduction, since it is

an important problem of computational linguistics thaiwes notoriously difficult objec-
tives [245, 82, 119inter alia]. The goal is to induce grammars capable of parsing unseen
text. Input, in both training and testing, is a sequencekdés labeled as: (i) a lexical item
and its categoryyw, c,,); (ii) @ punctuation mark; or (iii) a sentence boundary. Qut
unlabeled dependency trees.

12.3.1 Models and Data

All parse structures will be constrained to be projectivia, DBMs (Chs. 10-11): DBMs
0 through 3 are head-outward generative parsing modelgdt distinguish complete sen-
tences from incomplete fragments in a cor@s D,,,, comprises inputs ending with

Lif desired, a scaling factor could be used to iastowards either’;, e.g., based on a likelihood ratio.



12.3. THE TASK AND METHODOLOGY 165

punctuation;Dy..; = D — Deomp IS €Verything else. The “complete” subset is further par-
titioned into simple sentence®mp € Deomp, With No internal punctuation, and others,
which may be complex. As an example, consider the beginrfiag article from (simple)
Wikipedia: (i) Linguistics (ii) Linguistics (sometimes called philology) is the sciened th
studies language(iii) Scientists who study language are called linguisgce the title
does not end with punctuation, it would be relegate®tq,. But two complete sentences
would be inD,,,,, with the last also filed undéPy;,,,,,, as it has only a trailing punctuation
mark. Previous chapters suggested two curriculum learsiragegies: (i) one in which
induction begins with clean, simple dat®;..,, and a basic model, DBM-1 (Ch. 10);
and (i) an alternative bootstrapping approach: startir still more, simpler data —
namely, short inter-punctuation fragments up to lengta 15, D, > DL =~ — and

a bare-bones model, DBM-0 (Ch. 11). In this examfi,;; would hold five text snip-
pets: (i)Linguistics (ii) Linguistics (iii) sometimes called philologyiv) is the science
that studies languageand (v)Scientists who study language are called lingui§ialy the
last piece of text would still be considered complete, isotpits contribution to sentence
root and boundary word distributions from those of incortgligagments. The sparser
model, DBM-0, assumes a uniform distribution for roots afamplete inputs and reduces
conditioning contexts of stopping probabilities, whichnk® well with split data. Both
DBM-0 and the full DBM? will be exploited, drawing also on split, simple and raw véew
of input text. All experiments prior to final multilingual aluation will use WSJ as the
underlying tokenized and sentence-broken copusnstead of gold parts-of-speech, 200
context-sensitive unsupervised tags (from Ch. 9) will heygked in for the word categories.

2This chapter will use the short-hand DBM to refer to DBM-3,igbhis equivalent to DBM-2 ifD has no
internally-punctuated sentences (iB.= Dspii¢), and DBM-1 if all inputs also have trailing punctuatiore(i.
D = Dsimp); DBM( will be the short-hand for DBM-O0.
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12.3.2 Smoothing and Lexicalization

All unlexicalized instances of DBMs will be estimated withdd one” (a.k.a. Laplace)
smoothing, using only the word categary to represent a token. Fully-lexicalized gram-
mars (L-DBM) are left unsmoothed, and represent each tokdroth a word and its cate-
gory, i.e., the whole paifw, c,,). To evaluate a lexicalized parsing model, a delexicalized-
and-smoothed instance will always be obtained first.

12.3.3 Optimization and Viterbi Decoding

This chapter uses “early-switching lateen” EM (Ch. 5) tartranlexicalized models, al-
ternating between the objectives of ordinary (soft) andliav algorithms, until neither
can improve its own objective without harming the other’kisTapproach does not require
tuning termination thresholds, allowing optimizers to tamumerical convergence if nec-
essary, and will handle only the shorter inputs< 15), starting with soft EM { = SL,
for “soft lateen”). Lexicalized models will cover full data < 45) and employ “early-
stopping lateen” EM, re-estimating via hard EM until soft EMbjective suffers. Alternat-
ing EMs would be expensive here, since updates take (a) @&t time, and hard EM’s
objective (L = H) is the one better suited to long inputs (see Ch. 4).

The decoders will always force an inter-punctuation fragite derive itself (as in
Ch. 7). In evaluation, suchopsé constraints may help attagmmetimesndphilologyto
called (andthe science.to is). In training, strongergtrict) constraints also disallow at-
tachment of fragments’ heads by non-heads, to corineguistics calledandis (assuming
each piece got parsed correctly), though constraints willimpact training with shorter
inputs, since there is no internal punctuatiorDif;; Of Dgipy,.

12.4 Concrete Operators

Let's now instantiate the operators sketched oujlia.2 specifically for the grammar in-
duction task. Throughout, single steps of Viterbi trainimdj be repeated employed to
transfer information between subnetworks in a model-iedelent way: when a module’s
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outputis a set of (Viterbi) parse trees, it necessarily aimstsufficient information required
to estimate an arbitrarily-factored model down-str&am.

12.4.1 Transform #1: A Simple Filter

Given a model that was estimated from (and therefore paesésita seD, the simple
filter (F') attempts to extract a cleaner model, based on the simpheplete sentences of
Dsinmp- It is implemented as a single (unlexicalized) step of Vdtéraining:

¢ o

The idea here is to focus on sentences that are not too catgdiget grammatical. This
punctuation-sensitive heuristic may steer a learner tsvaasy but representative training
text and has been shown to aid grammar induction (see Ch. 10).

12.4.2 Transform #2: A Symmetrizer

The symmetrizer ) reduces input models to sets of word association scoreblur$

all details of induced parses in a data $etexcept the number of times each (ordered)
word pair participates in a dependency relation. Symmnedion is also implemented as a
single unlexicalized Viterbi training step, but now withoposed parse trees’ scores, for a
sentence irD, proportional to a product over non-root dependency aramefplus how
often the left and right tokens (are expected to) appearexipd:

C—E0— ®)

The idea behind the symmetrizer is to glean information fstleton parses. Grammar in-
ducers can sometimes make good progress in resolving gtelirparse structures despite
being wrong about the polarities of most arcs (see Figurb:3uhinformed). Symmetriza-
tion offers an extra chance to make heads or tails of syeteadtitions, after learning which
words tend to go together.

At each instance where a wo@ attaches?) on (say) the right, this implementation
attributes half its weight to the intended constructi@ﬁ\v@, reserving the other half for the

3Klein and Manning [172§3] advocated a related approach: initializing EM trainirighvan M-step.
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symmetric structurg®) attaching@ to its left: @ﬂ@. For the desired effect, these aggre-
gated counts are left unnormalized, while all other couattsvord fertilities and sentence
roots) get discarded. To see why word attachment score auared into probabilities,
consider sentencéd @ and(© (2. The fact that?) co-occurs with@ introduces an asym-
metry into@'’s relation with©: P(@ | ©) = 1 differs fromP(© | @) = 1/2. Normalizing
might force the interpretatio@m@ (and also@m@)), not because there is evidence in the
data, but as a side-effect of a model's head-driven natuge {actored with dependents
conditioned on heads). Always branching right would be aakis, however, for example
if @ is a noun, since either @ or (© could be a determiner, with the other a verb.

12.4.3 Join: A Combiner

The combiner must admit arbitrary inputs, including modelsestimated fronD, unlike
the transforms. Consequently, as a preliminary step, eguit €; is converted into parse
trees ofD, with countsC?, via Viterbi-decoding with a smoothed, unlexicalized vens
of the corresponding incoming model. Actual combinatiothisn performed in a more
precise (unsmoothed) fashiofi; are the (lexicalized) solutions starting fraif; andC;

is initialized with their sum)y ., C*. Counts of the lexicalized model with lowest cross-
entropy orD become the outpt:

C 9)
Cs

12.5 Basic Networks

Let’s now propose a non-trivial subnetwork for grammar ictthn, based on the transform
and join operators, which will be reused in larger networks.

4In this chapter’s diagrams, lexicalized modules are shathak.
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12.5.1 Fork/Join (FJ)

Given a model that parses a base dataZjgtthe fork/join subnetwork will output an
adaptation of that model faP. It could facilitate a grammar induction process, e.g., by
advancing it from smaller to larger — or possibly more comple data sets.

First, two variations of the incoming model, basedy) are forked off: (i) a filtered
view, which focuses on cleaner, simpler data (transform #&iJl (ii) a symmetrized view
that backs off to word associations (transform #2). Nextremgnar induction oveD.

A full DBM instance is optimized starting from the first forlend a reduced DBMis
bootstrapped from the second. Finally, the two new induetsi af parse trees, fdp, are
merged (lexicalized join):

(10)

L-DBM
H’D

The idea here is to prepare for two scenarios: an incominguaar that is either good
or bad forD. If the model is good, DBM should be able to hang on to it andenaiprove-
ments. But if it is bad, DBM could get stuck fitting noise, wias DBM, might be more
likely to ramp up to a good alternative. Since it is impossiiol know ahead of time which
is the true case, both optimization paths are pursued sameiusly, allowing a combiner
to make the decision, later.

Note that the forks start (and end) optimizing with soft EMhidlis because soft EM
integrates previously unseen tokens into new grammarsriigtin hard EM, as evidenced
by the failed attempt to reproduce the “baby steps” strateit}y Viterbi training (see Fig-
ure 4.2b). A combiner then executes hard EM, and since autdfutansforms are trees,

the end-to-end process is a chain of lateen alternationstidwds and ends with hard EM.

l
split

to Dé;}t, by taking transformed parse trees of inter-punctuatiagrirents up to length

[ (base data sef),) to initialize training over fragments up to length- 1:

A “grammar inductor” will be used to represent subnetwohk transition fronD
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C —TT— (12)

The FJ network instantiates a grammar inductor with= 14, thus training on inter-
punctuation fragments up to length 15, as in previous waitiag from an empty set
of counts,C' = (). Smoothing causes initial parse trees to be chosen unijahrandom,
as also suggested by Cohen and Smith [67]:

15

) —TTOT— (12)

12.5.2 lterated Fork/Join (IFJ)

The second basic network daisy-chains grammar inducttarding from the single-word

inter-punctuation fragments i®. ., then retraining orDZ ;;, and so forth, until finally

stopping atD;.;,, as before:

14 15

— ST T T (13)

This system is diagrammed as not taking an input, since thgriductor’s output is fully
determined by unique parse trees of single-token stringy$s iferative approach to opti-
mization is akin to deterministic annealing [268], and iggaed after “baby steps” (Ch. 3).

Unlike the basic FJ, where symmetrization was a no-op (siheee were no counts
in C = ()), IFJ makes use of symmetrizers — e.g., in the third indycsttiose input is
based on strings with up to two tokens. Although it should &syeo learn words that
go together from very short fragments, extracting corretaqities of their relations could
be a challenge: to a large extent, outputs of early inductag be artifacts of how the
generative models factor (s€4.2) or how ties are broken in optimization (see Appendix
of Ch. 11). One might therefore expect symmetrization toroeial in earlier stages but
to weaken any high quality grammars, nearer the end; it willip to combiners to handle
any such phase transitions correctly (or gracefully).

12.5.3 Grounded lterated Fork/Join (GIFJ)

So far, basic networks have been either purely iterativad)(b¥ static (FJ). These two
approaches can also be combined, by injecting FJ’s sokiiioio IFJ’'s more dynamic
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stream. The new transition subnetwork will join outputs cdrgmar inductors that either
(i) continue a previous solution (as in IFJ); or (ii) stareo¥rom scratch (*grounding” to
an FJ). The full GIFJ network can then be obtained by unmliive template below from
[ = 14 back to one:

C o 14
l 1 Cl+1 (14)

12.6 Performance of Basic Networks

Basic networks’ performance was compared on their finahitngi sets, nggm (see Ta-
ble 12.1, which also tabulates results for a cleaner subgst] ). The first network
starts fromC' = (), helping establish several straw-man baselines. lIts eimjitglizer
corresponds to guessing (projective) parse trees unijoantandom, which has 21.4%

accuracy and sentence string cross-entropy of 8.76bpt.

12.6.1 Fork/Join (FJ)

FJ's symmetrizer yields random parses of \@Qrﬁ,]which initialize training of DBM. This
baseline (B) lowers cross-entropy to 6.18bpt and scoré¥a.7-J’s filter starts from parse
trees of ngfmp only, and trains up a full DBM. This choice makes a strongsehiae (A),
with 5.89bpt cross-entropy, at 62.2%.

The join operator uses counts from A and®, andC5, to obtain parse trees whose
own countsC’| and (Y initialize lexicalized training. From each, an optimizer arrives
at C*. Grammars corresponding to these counts have higher erasspies, because of
vastly larger vocabularies, but also better accuracies?2 &3d 62.3%. Their mixturé’,
is a simple sum of counts i} and C5: it is not expected to be an improvement but
happens to be a good move, resulting in a grammar with higteerracy (64.0%), though
not better Viterbi cross-entropy (7.27 falls between 7.8 @.30bpt) than both sources.
The combiner’s third alternative, a locally optim@t , is then obtained by re-optimizing
from C.. This solution performs slightly better (64.2%) and will thee local optimum
returned by FJ’s join operator, because it attains the lberess-entropy (7.04bpt).
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Ws‘zglit Ws%i‘?np
Instance Label|  Model || fsents . farees | DDA hsents  frees | DDA~ TA'| Description
DBM 654 | 6.75] 837 605 62] 851 42 Supervised (MLE of W$J
0=C — 8.76 | 10.46| 21.4 8.58 10.52  20./ 3|9 Random Projective Parses
SL(S(C)) = C2 DBMg 6.18 | 6.39| 57.0 5.90 6.11 576 10 Unlexicalized
SL(F(C)) =C1 DBM 5,89 1 5.99| 622 5.79 5.90 60.9 12/0 A ? Baselines
H(C%) =C5 | L-DBM 7.28 730 59.2 6.87! 6.89 58.6 10.

7
9
4
0
48
H(C])=C; | L-DBM || 7.07 ' 7.08| 623| 672 673 608 12 Baseline
Cy+Cs=Cy | L-DBM | 720 ' 7.27| 640| 682 68§ 625 128 Combination
H(Cy)=C% | LDBM || 702, 704| 642|| 664 664 627 128 Fork/iJoin
o
6
0
7
0

1
I
I
I
|
L-DBM 6.95, 6.96 70.5 6.55 6.56 68.2 14.0 Iterated Fork/Join (IFJ)
I
I
T
I

L-DBM 6.91 6.92| 714 6.521 6.5 69.2 15 Grounded Iterated Fork/Join
L-DBM || 6.83 1 6.83| 723|| 641 641 702 17.
[-DBM | 692" 693 719]] 653 65§ 69.8 16.
L-DBM | 6.83' 6.83| 729| 641 641 706 18

Grammar Transformer (GT)
IFJ } w/lterated

GT Combiners

Table 12.1: Sentence string and parse tree cross-entr@pigst), and accuracies (DDA),
on inter-punctuation fragments up to length 15 (\&,ﬁ)l and its subset of simple, complete
sentences (W§§]]p, with exact tree accuracies — TA).

12.6.2 lIterated Fork/Join (IFJ)

IFJ’s iterative approach results in an improvement: 70.5%ueacy and 6.96bpt cross-
entropy. To test how much of this performance could be obthby a simpler iterated net-
work, several ablated systems that don'’t fork or join, tlee, classic “baby steps” schema
(chaining together 15 optimizers), were tried, using boBMdand DBM,, with and with-
out a transform in-between. However, all such “linear” natvé scored well below 50%.
These results suggest that an ability to branch out intemdfft promising regions of a so-
lution space, and to merge solutions of varying quality inétter models, are important
properties of FJ subnetworks.

12.6.3 Grounded Iterated Fork/Join (GIFJ)

Grounding improves GIFJ's performance further, to 71.4%usacy and 6.92bpt cross-
entropy. This result shows that fresh perspectives frormopérs that start over can make
search efforts more fruitful.
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12.7 Enhanced Subnetworks

Modularity and abstraction allow for compact representatiof complex systents An-
other key benefit is that individual components can be unoedsand improved in isola-
tion, as will be demonstrated next.

12.7.1 An Iterative Combiner (IC)

The basic combiner introduced a third optiaff;, into a pool of candidate solutions,
{C},C5}. This new entry may not be a simple mixture of the originakduse of non-
linear effects from applyind. to C} + C%, but could most likely still be improved. Rather
than stop at’, when it is better than both originals, one could recombimnveth a next
best solution, continuing until no further improvement isde. Iterating can’t harm a given
combiner’s cross-entropy (e.g., it lowers FJ's from 7.0471@0bpt), and its advantages
can be realized more fully in the larger networks (albeitwiit any end-to-end guaran-
tees): upgrading all 15 combiners in IFJ would improve panfance (slightly) more than
grounding (71.5/s.71.4%), and lower cross-entropy (from 6.96 to 6.93bpt). &u@n this
approach is still a bit timid.

A still more greedy way is to proceed so long@sis not worse thabothpredecessors.
Let’'s now state this chapter’'s most general iterative comb(IC) algorithm: Start with a
solution poolp = {C;}-,. Next, construct’ by addingC* = L(>_", C;) to p and
removing the worst of. + 1 candidates in the new set. Finallyzif= p’, return the best
of the solutions ip; otherwise, repeat from := p’. At n = 2, one could think of taking
L(C} + C3) as performing a kind of bisection search in some (strangsjespWith these
new and improved combiners, the IFJ network performs hette®% (up from 70.5 — see
Table 12.1), lowering cross-entropy (down from 6.96 to 6@3. A distinguished notation

C (15)
o ()

SFor instance, the grounded network involves more than oneeal lateen optimizations, not counting
individual Viterbi stepsi4 - ((2-5) + 3) = 182.

will be used for the ICs:
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12.7.2 A Grammar Transformer (GT)

The levels of this chapter’'s systems’ performance at gramnaauction thus far suggest
that the space of possible networks (say, with ug ttomponents) may itself be worth
exploring more thoroughly. This exercise will be left, mgsto future work, with the
exception of two relatively straight-forward extensions grounded systems.

The static bootstrapping mechanism (“ground” of GIFJ) camiproved by pretraining
with simple sentences first — as in the curriculum for leagrdBM-1 (Ch. 10), but now
with a variable length cut-off(much lower than the original 45) — instead of starting from

DBM
e T S 1o
simp -

The output of this subnetwork can then be refined, by recogaii with a previous dynamic
solution. A mini-join of a new ground’s counts witty will be performed, using the filter

0 directly:

transform (single steps déxicalizedViterbi training on clean, simple data), ahead of the
main join (over more training data):

17

This template can also be unrolled, as before, to obtainakeretwork (GT), which
achieves 72.9% accuracy and 6.83bpt cross-entropy (sligiss accurate with basic com-
biners, at 72.3% — see Table 12.1).

12.8 Full Training and System Combination

All systems described so far stop trainingZat;,. A two-stage adaptor network will be
used to transition their grammars to a full data $&f;

(18)
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System DDA(@10)

Concavity and Initialization [119] 53.164.3)
Posterior Sparsity [117] 53.%4.3)
Robust CCGs [30] 53.371.5)
Tree Substitution Grammars [3B] 55(87.7)
Unambiguity Regularization [324] 57.0r1.4)
Punctuation (Ch. 7 58.471.4)

Unsupervised Tags (Ch. 9) 59(%1.4)

#3 Bootstrapping (Ch.11) 61.271.4)
#2 . IFJ | 62.7 (70.3)
41 w/Full Tralnlng{ GT 63.4 (70.3)
#1+#2+#3 System Combination CS 64.4 (72.0

Supervised DBM (also With)osedecoding)\ 76.3(85.4)

Table 12.2: Directed dependency accuracies (DDA) on Se@bof WSJ (all sentences
and up to length ten) for recent systems, our full networks @nd GT), and three-way
combination (CS) with the previous state-of-the-art.

The first stage exposes grammar inducers to longer inpuer-fiinctuation fragments
with up to 45 tokens); the second stage, at last, reassetdylesnippets into actual sen-
tences (also up tb= 45).5 After full training, the IFJ and GT systems parse Section 23
of WSJ at 62.7 and 63.4% accuracy, better than the previatesst-the-art (61.2% — see
Table 12.2). To test the generalized IC algorithm, theseetlstrong grammar induction
pipelines were merged into a combined system (CS). It sdugdeest: 64.4%.

#3
e o

The quality of bracketings corresponding to (non-trivedans derived by heads of depen-
dency structures coming out of the combined system is cativeawith the state-of-the-art

in unsupervisedonstituengparsing. On the WSJ sentences up to length 40 in Section 23,
CS attains similaf;-measure (54.2s.54.6, with higher recall) to PRLG [254], which is

SNote that smoothing in the final (unlexicalized) Viterbistaasks the fact that model parts that could not
be properly estimated in the first stage (e.g., probalslitiepunctuation-crossing arcs) are being initialized
to uniform multinomials.
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System F

Binary-Branching Upper Bound 85.7
‘Left-Branching ~~ Baseling 12.0

CCM [171] | 33.7

Right-Branching Baseling 40.7

F-CCM [145] | 45.1

HMM [254] | 46.3

LLCCM [127] | 476 P R

CCL [283] | 52.8|| 54.6 51.1

PRLG [254]| 54.6 | 60.4| 49.8

CS  System Combination 54.2| 55.6| 52.8
Supervised DBM Skyline 59.83 65]7 54.1

Dependency-Based Upper Bound 8%.2 100 77.3

Table 12.3: Harmonic mear¥y) of precision (P) and recall (R) for unlabeled constituent
bracketings on Section 23 of WSJ (sentences up to lengthatObheé combined sys-
tem (CS), recent state-of-the-art and the baselines.

the strongest system of which | am aware (see Table 12.3).

12.9 Multilingual Evaluation

The final check is to see how this chapter’s algorithms géizerautside English WSJ, by
testing in 23 more set-ups: all 2006/7 CoNLL test sets. Mesent work evaluates against
this multilingual data, though still with the unrealistissumption of POS tags. But since
inducing high quality word clusters for many languages widag beyond the scope of this
chapter, here too gold tags are plugged in for word categ¢instead of unsupervised tags,
asing12.3-12.8). A comparison will be made to the two strongestesys available during
the writing of this chapte?:MZ [203] and SAJ (Ch. 10), which report average accuracies

"These numbers differ from Ponvert et al.’s [254, Table 6]tfa full Section 23 because we restricted
theireval -ps.py script to a maximum length of 40 words, in our evaluation, ttech other previous work:
Golland et al.s [127, Figure 1] for CCM and LLCCM; Huang ets]145, Table 2] for the rest.

8Another high-scoring system [201] of possible intereshieader recently came out, exploiting prior
knowledge of stopping probabilities (estimated from laR§eS-tagged corpora, via reducibility principles).
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Directed Dependency Accuracies (DDA)a10)
CoNLL Data| Mz 1 SAJ || IFJ 1 GT CS
Arabic 2006 26.5, 10.9| 33.3, 8.3|| 9.3 (30.2)

7 || 27.9! 44.9|| 26.1! 25.6|| 26.8us.)
Basque 7 26.8: 33.3 23.5: 24.2|| 24.4(32.8)
Bulgarian 7 46.0: 65.2 35.8: 64.2|| 63.4(9.1)
Catalan 71 47.00 62.1|| 65.0 68.4| 68.0 (79.2)
Chinese 6| — , 63.2]| 56.0, 55.8| 58.4(0.8)

7| — | 57.0| 49.0, 48.6| 52.5@6.0)
Czech '6 49.5: 55.1 44.5: 43.9| 44.0(2.3)
48.01 54.2 | 42.91 24.5| 34.3(1.1)

7
Danish  '6|| 38.61 22.2|| 37.8/ 17.1] 21.429s)
Dutch 6 || 44.2, 46.6| 40.8 51.3|| 48.0 @ws.7)
English  '7| 49.2' 29.6]| 39.3 57.6 58.2 (75.0)
German '6 44.8: 39.1 34.1: 54.% 56.2 (71.2)
Greek 6( 20.21 26.9| 23.7 45.0 45.4 (2.2)
Hungarian 7| 51.81 58.2| 24.8 52.9 58.3 (67.6)
ltalian 7 || 43.3, 40.7|| 56.8, 31.1| 34.9 (249
Japanese ‘6 50.8, 22.7|| 32.6 63.7| 63.0 (68.9)
Portuguese '6 50.6: 72.4 38.0I 72.7 74.5 (81.1)
Slovenian '6 18.1: 35.2 42.1: 50.8 50.9 (57.3)
Spanish  '6|| 51.9, 28.2| 57.0 61.7 | 61.4 3.2
Swedish  '6|| 48.2, 50.7| 46.6, 48.6|| 49.7(2.1)

'6

Turkish — 1344 28.0! 32.9] 29.2@32)
7 | 15.71 44.8| 42.11 41.7| 37.9w24)

Average: 40.01 42.9| 40.0 47.6 48.6 (579

Table 12.4: Blind evaluation on 2006/7 CoNLL test sets (alitences) for the full net-
works (IFJ and GT), previous state-of-the-art systems ofeifek andZabokrtsky [203],
Mz, and DBMs (from Ch. 10)sAJ, and three-way combination of IFJ, GT asdJ (CS,
including results up to length ten).

of 40.0 and 42.9% for CoNLL data (see Table 12.4). The new4wdined IFJ and GT sys-
tems score 40.0 and 47.6%. As before, combining these netwath an implementation
of the best previous state-of-the-art system (SAJ) yieldsther improvement, increasing
final accuracy to 48.6%.
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12.10 Discussion

CoNLL training sets were intended for comparing supervisgstems, and aren’t all suit-
able for unsupervised learning: 12 languages have undé0Q@&entences (with Arabic,
Basque, Danish, Greek, Italian, Slovenian, Spanish ankisfuparticularly small), com-
pared to WSJ’s nearly 50,000. In some treebanks sentenee®@r short (e.g., Chinese
and Japanese, which appear to have been split on punciyaimhin others extremely
long (e.g., Arabic). Even gold tags aren't always helpfaliteeir number is rarely ideal for
grammar induction (e.g., 4%.200 for English). These factors contribute to high variance
of this chapter’s (and previous) results (see Table 12.4yeheless, looking at the more
stable average accuracies reveals a positive trend, méaimga simpler fully-trained sys-
tem (IFJ, 40.0%), to a more complex system (GT, 47.6%), tbegyssombination (CS,
48.6%). Grounding seems to be more important for the CoNlt, g®ssibly because of
data sparsity or availability of gold tags.

12.11 Related Work

The surest way to avoid local optima is to craft an objecthet tloesn’t have them. For
example, Want et al. [331] demonstrated a convex traininthatefor semi-supervised
dependency parsing; Lashkari and Golland [180] introduzembnvex reformulation of
likelihood functions for clustering tasks; and Corlett &&hn [73] designed a search algo-
rithm for encoding decipherment problems that guarantegsickly converge on optimal
solutions. Convexity can be ideal for comparative analylsg&liminating dependence on
initial conditions. But for many NLP tasks, including graraminduction, the most rele-
vant known objective functions are still riddled with lo@gtima. Renewed efforts to find
exact solutions [90, 128] may be a good fit for the smaller amgler, earlier stages of this
chapter’s iterative networks.

Multi-start methods [300] can recover certain global extaealmost surely (i.e., with
probability approaching one). Moreover, random restaetsimiform probability measures
can be optimal, in a worst-case-analysis sense, with phpathcessing sometimes leading
to exponential speed-ups [144]. This approach is rarelyhesiged in NLP literature. For
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instance, Moore and Quirk [225] demonstrated consistaiistantial gains from random
restarts in statistical machine translation (but also satgyl better and faster replacements
— see below); Ravi and Knight [2635, Figure 8] found random restarts for EM to be
crucial in parts-of-speech disambiguation. However, otbeiews are few and generally
negative [168, 205].

Iterated local search methods [142, 1B&@er alia] escape local basins of attraction by
perturbing candidate solutions, without undoing all poera work. “Large-step” moves can
come from jittering [137], dithering [256, Ch. 2] or smoathi[27]. Non-improving “side-
ways” moves offer substantial help with hard satisfiabiptpblems [286]; and injecting
non-random noise [285], by introducing “uphill” moves viaxtoures of random walks and
greedy search strategies, does better than random noisealsimulated annealing [169].
In NLP, Moore and Quirk’s random walks from previous locatiofa were faster than uni-
form sampling and also increased BLEU scores; Elsner anddyd®6] showed that local
search can outperform greedy solutions for document cingtand chat disentanglement
tasks; and Mei et al. [215] incorporated tabu search [12Q, Ch. 3] into HMM training
for automated speech recognition.

Genetic algorithms are a fusion of what's best in local deaned multi-start meth-
ods [143], exploiting a problem’s structure to combine dgbarts of any partial solu-
tions [140, 122]. Evolutionary heuristics proved usefultive induction of phonotac-
tics [21], text planning [217], factored modeling of morpdgically-rich languages [88]
and plot induction for story generation [214]. Multi-objee genetic algorithms [105] can
handle problems with equally important but conflictingeri& [312], using Pareto-optimal
ensembles. They are especially well-suited to languag&hwéwvolves under pressures
from competing (e.g., speaker, listener and learner) cainss, and have been used to
model configurations of vowels and tone systems [£85This chapter’s transform and
join mechanisms also exhibit some features of genetic Beantl make use of competing
objectives: good sets of parse trees must make sense bataliteed and with word cate-
gories, to rich and impoverished models of grammar, anddir lbong, complex sentences
and short, simple text fragments.

9A notable recent exception is the application of a milliondam restarts to decipherment problems [26].
OFollowing the work on “lateen EM” (Ch. 5), Pareto-optimglitas been applied to other multi-metric op-
timization problems that arise in natural language leaynior example statistical machine translation [276].
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This selection of text filters is a specialized case of momega “data perturbation”
techniques — even cycling over randomly chosen mini-batdhat partition a data set
helps avoid some local optima [190]. Elidan et al. [94] sis§gé how example-reweighing
could cause “informed” changes, rather than arbitrary dgmneo a hypothesis. Their (ad-
versarial) training scheme guided learning toward impdayeneralizations, robust against
input fluctuations. Language learning has a rich historyevfaighing data via (coop-
erative) “starting small” strategies [95], beginning fra@mpler or more certain cases.
This family of techniques has met with success in semi-stipedl named entity classi-
fication [72, 341! parts-of-speech induction [61, 62], and language modélii§, 22],
in addition to unsupervised parsing [44, 301, 68, 323].

12.12 Conclusion

This chapter proposed several simple algorithms for combigrammars and showed their
usefulness in merging the outputs of iterative and stadiognar induction systems. Unlike
conventional system combination methods, e.g., in madhamslation [338], the ones here
do not require incoming models to be of similar quality to makprovements. These
properties of the combiners were exploited to reconcilengnars induced by different
views of data [32]. One such view retains just the simpleesgrgs, making it easier to
recognize root words. Another splits text into many intangtuation fragments, helping
learn word associations. The induced dependency tree$iearselves also be viewed not
only as directed structures but also as skeleton parseftataimg the recovery of correct
polarities for unlabeled dependency arcs.
By reusing templates, as in dynamic Bayesian network (DB&heworks [173§6.2.2],

it became possible to specify relatively “deep” learninghgtectures without sacrificing
(too much) clarity or simplicity. On a still more speculainote, there are two (admittedly,
tenuous) connections to human cognition. First, the benefinot normalizing proba-
bilities, when symmetrizing, might be related to human laage processing through the

The so-called Yarowskgautiousmodification of the original algorithm for unsupervised wesense
disambiguation.
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base-rate fallacy [17, 162] and the availability heurif4i@, 326], since people are notori-
ously bad at probability [13, 160, 161]. And second, intétemt “unlearning” — though
perhaps not of the kind that takes place inside of our transe— is an adaptation that
can be essential to cognitive development in general, aeeged by neuronal pruning in
mammals [74, 193]. “Forgetful EM” strategies that resetsaib of parameters may thus,
possibly, be no less relevant to unsupervised learningiifgrartial EM,” which only sup-
presses updates, other EM variants [229], or “dropoutitrgif{138, 332, 329], which can
be important in supervised settings.

Future parsing models, in grammar induction, may benefit bgeting head-dependent
relations separately from direction. As frequently empldyn tasks like semantic role la-
beling [43] and relation extraction [315], it may be easgefitst establish existence, before
trying to understand its nature. Other key next steps mdydecexploring more intelligent
ways of combining systems [317, 247] and automating theadpediscovery process. Fur-
thermore, there are reasons to be optimistic that both ¢camgforms and model recombi-
nation could be usefully incorporated into sampling meth@ithough symmetrized mod-
els may have higher cross-entropies, hence prone to @jaotivanilla MCMC, they could
work well as seeds in multi-chain designs; existing aldpnis, such as MCMCMC [114],
which switch contents of adjacent chains running at difietemperatures, may also ben-
efit from introducing the option to combine solutions, in gida to just swapping them.



Chapter 13
Conclusions

Unsupervised parsing and grammar induction are notogocisallenging problems of
computational linguistics. One immediate complicatioattarises in solving these tasks
stems from the non-convexity of typical likelihood objeets that are to be optimized. An-
other is poor correlation between the likelihoods attaimgthese unsupervised objectives
and actual parsing performance. Yet a third is the high degfalisagreement between
different linguistic theories and the arbitrariness of lsmme common syntactic construc-
tions are analyzed, which further complicates evaluatetause of these and many other
issues, such as the fact that hierarchical syntactic streict underdetermined by raw text,
the MATCHLINGUIST task, as it had been at times (playfully?) called by Smith &isd
ner [294, 291], exhibits many tell-tale signs of an ill-pdgeoblem. Nonetheless, the work
reported in this dissertation represents a number of daritons — to science, methodol-
ogy and engineering of state-of-the-art systems — sparthageneral fields of linguistics,
non-convex optimization and machine learning, and, of seuansupervised parsing and
grammar induction specifically. Of these, contributionsnproving unsupervised parsing
performance are the easiest to describe, since they carabéfepd, so | will start there.
This dissertation advanced the state-of-the-art in degr@rydgrammar induction from
42.2% accuracy in 2009, measured on all sentences of a stiadglish news corpus [66],
to 64.4% in 2013, while simultaneously eliminating prewslyuaccepted sources of super-
vision, such as biased initializers, manually tuned inpagth cutoffs, gold part-of-speech
tags, and so forth. This performance jump corresponds t8 eeldtive reduction in error
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towards the “skyline” supervised dependency parsing aogur76.3%, that is attainable
with the dependency-and-boundary models (DBMs) proposdtis thesis; the phrase
bracketings associated to dependency parse structurgsedhthy DBMs happen to also be
of state-of-the-art quality, by unsupervised constitygansing metrics (unlabelef,), at
52.8% recall and 55.6% precision. Simultaneously, stiteaart macro-average of accu-
racies across all 19 CoNLL languages’ complete held-outsits increased from 32.6%
in 2011, the first such comprehensive evaluation of gramnuarders, to 48.6% in 2013.
In addition to pushing up performance numbers, this thesisrs several methodolog-
ical innovations that, | hope, will be of a more lasting natufhe first broad class of these
contributions has to do with evaluation. To help guard agfaiwerfitting, | led by exam-
ple, introducing into the unsupervised parsing commurigy gtandard of usingeld-out
test setstesting againsall sentence lengthsand also evaluating acroai multilingual
corpora[42, 236], spanning many languages from disparate familiee work described
in this dissertation was the earliest to employ comprekertsind evaluation of this kind.
The second broad class of contributions to methodologydds with eliminating many
formerly standard and accepted sources of supervisiohévatsnuck into grammar induc-
tion over the years. The most prominent of these are reliangeart-of-speech tags, biased
initializers, and manually tuned training subsets and iigaition criteria for EM. This thesis
contains a collection of empirical proofs, showing thatrsshkort-cuts are, in fact, inferior
to using unsupervised word clusters (Ch. 9), uninformetigiizers (Chs. 2—4), nearly all
available data (Ch. 11) and multiple objectives that vaédgaoposed moves (Chs. 5, 10).
For the larger field of natural language processing, it ategiges: (i) an exposition of fac-
torial experimental designs and multi-hypothesis siatiinalyses of results (Chs. 5-7),
which are standard throughout the natural and social segifit) a new million-plus-word
English text corpus which is novel in overlaying syntactiasture and web markup (Ch. 6);
and (iii) a fully-unsupervised context-sensitive “paftspeech” tagger for English (Ch. 9).
Among the contributions of this dissertation to the sciesfdenguistics are several sta-
tistical observations about the structure of natural laggy which include the facts that:

1During the same time periogdupervised constituemiarsing scores on this evaluation set had gone up
from 91.8 to 92.5 [247, 287, 182]: a 0.7 absolute and 8.5%ivelaeduction inabeled bracketing”; error.

%http://nlp.stanford.edu/pubs/markup-data.tar.bz2: dp.*

Shttp://nlp.stanford.edu/pubs/goldtags-data.tar.bz2: untagger.model
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(i) syntactic dependency arc lengths tend to follow logamalrdistributions, with the stan-
dard log-normal serving as a good prior for the parametelns 2§ (ii) first words of sen-
tences tend to have no dependents, whereas last words éedytd be leaves (Ch. 8); and
(iif) web markup is correlated with syntax, often resultingm (optionally) clipping off the
left- and right-most subtrees of a dependency parse, wiobasésrtypically a noun (Ch. 6).
Another key observation is that the very same constraingyotactic structure that tend to
hold for web markup are even more accurate if applied to atimeaof other types of not-
so-subtly bracketed text, e.g., word sequences demaioatspitalization changes (Ch. 8)
and punctuation marks (Ch. 7). Of course, the fact that,Xanmle, punctuation correlates
with syntactic structure is not new [240, 39, 157, 85]. Wisatew in this thesis, however,
is a set of clear, simple and general rules, in the form of l@teparsing constraints, that
usually govern such relations. Universal tendencies iegfit structure are important for
many aspects of computational linguistics — such as in supervised parsing, where a
supervised parser might be self-trained [208] on vast atsaafrweb data, subject to these
regularities — in addition to constraining unsupervisecspay and grammar induction.

Aside from showing how to exploit markup, punctuation angditzdization as partial
bracketing constraints [245] to improve dependency gramnuuction (Part 1), a core
contribution of this dissertation to unsupervised parsae family of dependency-and-
boundary models (Chs. 10-11). Unlike the EVG, DMV or gramoatbigrams before
them, DBMs implement a truly head-outward generative pedbat is specifically tai-
lored for unsupervised learning, taking advantage of mbsevable state, like words at
fringes of phrases, as if solving a jigsaw puzzle. Moredw&i\is are uniquely equipped to
handle different classes of input, such as complete seegeara incomplete fragments. By
maintaining distinct but overlapping grammars, DBM-2 apdcan learn sentence lengths
and root words where it is easy, from simple complete septerand local head-dependent
relations from the unrepresentative short text fragmeartgying the best of both worlds.
It is precisely this flexibility that allows for bootstrapyg of grammar inducers using nearly
all available training data, by learning from inter-puration fragments, chopping up even
the toughest sentences to extract simple, manageabls@irdexpose more of the fringes.

Most of the remaining contributions in this thesis are airategeneral machine learning
and non-convex optimization. They include several novsigtepatterns for avoiding and
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escaping local optima (Chs. 3, 5, 12) by exploiting multydkews of data [32]. In addition
to showing how ubiquitous alternative unsupervised objesf166] can be used to termi-
nate or resume local search, this dissertation illustfat@sintelligent non-random restarts,
informed by generic transforms of previously found solnsipcan be incorporated in com-
prehensive search networks, helping optimization algor# like EM find good solutions
despite a prevalence of local optima (Part V). Many of tesniques generalize beyond
local search with hill-climbers to global optimization \8ampling methods. For example,
unary transforms provide informed restarts — medium-sip¥es in a parameter space
that are not so big as to undo all previous work, like conwerati random restarts, but not
so small at to be typically proposed and accepted in MCMC —etviaiould work well for
seeding multi-chain samplers; in turn, binary and higheamgforms offer ways to combine
systems, reconciling solutions to find improvements andqally speeding up algorithms
like MCMCMC [114], which ordinarily just swap the content$ two adjacent chains.
Turning to future directions, to anyone silly enough to catramon-trivial fraction of
their life to such a venture, my advice is to stop interpigtime grammar induction prob-
lem statement in the most strict sense of unsuperviseditggrine., withoutany labeled
examples. This approach, “unsupervised learning for thke shunsupervised learning,”
makes the task needlessly difficult (though also more chgiltey and interesting). Fully
unsupervised settings are artificial from multiple persipes, e.g.: (i) having little to do
with the science of human language acquisition, since jgdeptn languages not in a vac-
uum but rather through grounded interactions with the readldy and (ii) imposing an
unrealistic constraint on engineering applications oSy, since it is not too difficult to
manually annotate a handful of sentences of a desired lgegaragenre, which might have
to be done in any case for rudimentary quality control puegosnstead, | propose a very
lightly supervised approach to parsing, with minimal exglieires of annotation effort, as
also suggested by Smith and Eisner [294] and recently demaded for part-of-speech
tagging [111]. For example, starting with a single (say, imedength) annotated sentence
would help with evaluation. Without a single example parse,tgrammar inducers are left
having to guess many idiosyncratic, stylistic choices oéf@nence treebank [282, 322],
such as whether modal or main verbs are heads of sentences, mat only understates
their performance but also makes identifying potentiabathmic improvements harder,
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thereby retarding progress. By introducing a constraimt,, ¢hat a sample sentence be
parsed correctly, it should be possible to resolve most®hthjor issues that complicate
fully unsupervised grammar induction, due to a disconndttt actual parsing accuracies.
If we extended the task to the more general, mixed case, vilogiea bit of labeled and
lots of unlabeled data are available, many of the problemssglague grammar induction
might go away, and much of the work put forward in this disssh could be expanded
to address any remaining issues, most notably local optifais, the fact that DBMs
also uncover good constituent parse trees suggests yaeangw that could be leveraged
to make progress: alternating learning of dependency arabptstructure representations,
whenever non-convex optimization with respect to the athstuck. Perhaps an even more
interesting, third direction might include a reclusterimfgwords into categories based on
new and improved parse trees. Combined with an incremeatalrig strategy like “baby
steps,” such an approach might well learn low-level catiegasf individual words jointly
with their relations in a higher-level hierarchy. A holistreatment of unsupervised pars-
ing and part-of-speech tagging seems both appropriatecangddverdue, since these two
intertwined challenges of syntactic structure discovegyiatimately related [113], while
their intrinsic objectives are not [134]. Due to the limitscbpe of a Ph.D. program, | did
not get a chance to explore these and many other promisiagnesavenues myself. But |
believe that | have provided the field with the tools that dughmake next steps relatively
painless, should a future cohort of grammar induction mesegis choose to pursue them.
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