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ABSTRACT

Automatically clustering web pages into semantic groups
promises improved search and browsing on the web. In this
paper, we demonstrate how user-generated tags from large-
scale social bookmarking websites such as del.icio.us can be
used as a complementary data source to page text and an-
chor text for improving automatic clustering of web pages.
This paper explores the use of tags in 1) K-means clustering
in an extended vector space model that includes tags as well
as page text and 2) a novel generative clustering algorithm
based on latent Dirichlet allocation that jointly models text
and tags. We evaluate the models by comparing their output
to an established web directory. We find that the naive in-
clusion of tagging data improves cluster quality versus page
text alone, but a more principled inclusion can substantially
improve the quality of all models with a statistically signifi-
cant absolute F-score increase of 4%. The generative model
outperforms K-means with another 8% F-score increase.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—clustering ; H.1.2 [Models and
Principles]: User/Machine Systems—human information
processing

General Terms

Algorithms, Experimentation, Human Factors, Measurement

1. INTRODUCTION
Modern web search engines are tasked with returning the

few most relevant results based on an often ambiguous user
query and billions of web documents. Over ten years, rank-
ing techniques harnessing link, anchor text, and user click-
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through data as well as simply page text have been devel-
oped to address this challenge. However, a major challenge
is the inherent ambiguity of the user query. These queries
are rarely more than a few words in length and may rep-
resent many potential information needs. One of the most
promising (and common) approaches to handle this ambi-
guity is through automatic clustering of web pages.

The usefulness of clustering for resolving this ambiguity
relies on the cluster hypothesis [32]: “the associations be-
tween documents convey information about the relevance of
documents to requests.” Work by Voorhees [34] and Hearst
[20] has suggested that the cluster hypothesis is true. There
have been a number of successful applications of the hy-
pothesis, including search result clustering [39]; alternative
user interfaces [12]; document retrieval using topic-driven
language models [25, 35]; and improved information presen-
tation for browsing [27]. Topics may also be associated with
temporal trends; for example, users might search for “sleep
medication” at night, and “caffeine” during the day [5].

Viewed in a different light, the cluster hypothesis can be
seen as a way to increase diversity in search results. Diver-
sity is the extent to which the results returned by a search
engine pertain to different information needs. If an ambigu-
ous user query can have many meanings, a search engine can
assume that documents from different topical clusters rep-
resent different information needs. Thus, an engine which
returns results from many topical clusters is likely to have
greater diversity. Recent work by Song et al. [30] has sug-
gested that this is a reasonable way to increase diversity,
especially in the highly ambiguous world of image retrieval.

This paper addresses one central question: How can tag-
ging data be used to improve web document clustering?
This is part of a major trend in information retrieval to
make more and better use of (the increasingly prevalent)
user-provided data. Social bookmarking websites such as
del.icio.us and StumbleUpon enable users to tag any web
page with short free-form text strings, collecting hundreds
of thousands of keyword annotations per day [21]. The set
of tags applied to a document is an explicit set of keywords
that users have found appropriate for categorizing that doc-
ument within their own filing system. Thus tags promise
a uniquely well suited source of information on the simi-
larity between web documents. While others have argued
that tags hold promise for ranked retrieval, [3, 23, 36], in-
cluding at least one approach that uses clustering [40], this



paper is the first to systematically evaluate how best to use
tags for the important task of clustering documents on the
web. High quality clustering based on user-contributed tags
has the potential to improve all of the previously stated ap-
plications of the cluster hypothesis, from user interfaces to
topic-driven language models to increasing diversity of re-
sults.

This paper makes the following contributions. In Sec-
tion 3.1, we show significant gains in the quality of automatic
clustering of web documents by the K-means algorithm when
it is also provided tagging data. In Section 3.2, we show that
tags are different from“just more” page text by demonstrat-
ing that their naive inclusion fails to achieve the full extent
of these gains. We then present Multi-Multinomial LDA, an
extension of the latent Dirichlet allocation (LDA) clustering
algorithm in Section 4 that explicitly models text and tags,
significantly outperforming K-means on a broad clustering
task. In Section 5.1, we consider whether tags are a quali-
tatively different type of annotation than the anchor text of
backlinks. We conclude that the benefits of including tag-
ging data still stand with the inclusion of anchor text. In
Section 5.2, we look at whether tagging only helps for clus-
tering a large collection of general documents, or whether
it can help a more specific collection (e.g., documents hav-
ing to do with programming). We find that tagging data is
even more effective for more specific collections. Finally, we
conclude with a discussion of tagging data’s implications for
information retrieval in document clustering and beyond.

2. PROBLEM STATEMENT
Our goal is to determine how tagging data can best be

used to improve web document clustering. However, cluster-
ing algorithms are difficult to evaluate. Manual evaluations
of cluster quality are time consuming and usually not well
suited for comparing across many different algorithms or set-
tings [18]. Several previous studies instead use an automated
evaluation metric based on comparing an algorithm’s output
with a hierarchical web directory [31, 28]. Such evaluations
are driven by the intuition that web directories, by their
construction, embody a “consensus clustering” agreed upon
by many people as a coherent grouping of web documents.
Hence, better clusters are generated by algorithms whose
output more closely agrees with a web directory. Here, we
utilize a web directory as a gold standard so that we can
draw quantitative conclusions about how to best incorpo-
rate tagging data in an automatic web clustering system.

We define the web document clustering task as follows:
1. Given a set of documents with both words and tags

(defined in Section 2.4), partition the documents into
groups (clusters) using a candidate clustering algo-
rithm (defined in Section 2.1).

2. Create a gold standard (defined in Section 2.2) to com-
pare against by utilizing a web directory.

3. Compare the groups produced by the clustering algo-
rithm to the gold standard groups in the web directory,
using an evaluation metric (defined in Section 2.3).

This setup gives us scores according to our evaluation met-
ric that allow us to compare candidate clustering algorithms.
We do not assert that the gold standard is the best way to
organize the web—indeed there are many relevant group-
ings in a social bookmarking website necessarily lost in any
coarser clustering. However, we argue that the algorithm

which is best at the web document clustering task is the
best algorithm for incorporating tagging data for clustering.

2.1 Clustering Algorithm
A web document clustering algorithm partitions a set of

web documents into groups of similar documents. We call
the groups of similar documents clusters. In this paper, we
look at a series of clustering algorithms, each of which has
the following input and output:
Input A target number of clusters K, and a set of docu-

ments numbered 1, . . . , D. Each document consists of
a bag of words from a word vocabulary W and a bag
of tags from a tag vocabulary T .

Output An assignment of documents to clusters. The as-
signment is represented as a mapping from each doc-
ument to a particular cluster z ∈ 1, . . . , K.

This setup is similar to a standard document clustering task,
except each document has tags as well as words.

Two notable decisions are implicit in our clustering al-
gorithm definition. First, many clustering algorithms make
soft rather than hard assignments. With hard assignments,
every document is a member of one and only one cluster.
Soft assignments allow for degrees of membership and mem-
bership in multiple clusters. For algorithms that output
soft assignments, we map the soft assignments to hard as-
signments by selecting the single most likely cluster for that
document. Secondly, our output is a flat set of clusters. In
this paper, we focus on flat (nonhierarchical) clustering algo-
rithms rather than hierarchical clustering algorithms. The
former tend to be O(kn) while the latter tend to be O(n2) or
O(n3) (see Zamir and Etzioni [38] for a broader discussion
in the context of the web). Since our goal is to scale to huge
document collections, we focus on flat clustering.

In our experiments, we look at two broad families of clus-
tering algorithms. The first family is based on the vec-
tor space model (VSM), and specifically the K-means al-
gorithm. K-means has the advantage of being simple to un-
derstand, efficient, and standard. The second family is based
on a probabilistic model, and specifically derived from LDA.
LDA-derived models have the potential to better model the
data, though they may be more complicated to implement
and slower (though not asymptotically).

2.2 Gold Standard: Open Directory Project
We derive gold standard clusters from the Open Directory

Project (ODP) [1]. ODP is a free, user-maintained hierar-
chical web directory. Each node in the ODP hierarchy has a
label (e.g., “Arts” or “Python”) and a set of associated doc-
uments.1 To derive a gold standard clustering from ODP,
we first choose a node in the hierarchy: the root node (the
default for our experiments), or “Programming Languages”
and “Society” (for Section 5.2). We then treat each child
and its descendants as a cluster. For example, say two chil-
dren of the root node are “Arts” and “Business.” Two of our
clusters would then correspond to all documents associated
with the “Arts” node and its descendants and all documents
associated with the “Business” node and its descendants, re-
spectively.

A gold standard clustering using ODP is thus defined by

1Documents can be associated with multiple nodes in the
hierarchy, but this happens very rarely in our data. When
we have to choose whether a document is attached to one
node or another, we break ties randomly.
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Figure 1: An example of clustering.

a particular node’s K′ children. When we give the cluster-
ing algorithm a value K, this is equal to the K′ children
of the selected node. In general, the best performing value
of K will not be K′. This heuristic is adopted to simplify
the parameter space and could be replaced by one of several
means of parameter selection, including cross-validation on
a development set. We sometimes use the labels in the hi-
erarchy to refer to a cluster, but these labels are not used
by the algorithms. When referring to the clusters derived
from the gold standard, we will sometimes call these clus-
ters classes rather than clusters. This is in order to help
differentiate clusters generated by a candidate clustering al-
gorithm and the clusters derived from the gold standard. It
is also worth noting that the algorithms we consider are un-
supervised and are therefore applicable to any collection of
tagged documents (as opposed to documents which conform
to the categories in ODP).

2.3 Cluster-F1 Evaluation Metric
We chose to compare the generated clusters with the clus-

tering derived from ODP by using the F1 cluster evaluation
measure [26]. Like the traditional F1 score in classification
evaluation, the F1 cluster evaluation measure is the har-
monic mean of precision and recall, where precision and re-
call here are computed over pairs of documents for which
two label assignments either agree or disagree.

2.3.1 Example

Consider the example clustering shown in Figure 1. Two
clusters are shown, and each document is denoted by its
class in ODP: A for “Arts,” G for “Games,” R for “Recre-
ation.” A2 (for example) denotes a document which is in
the ODP class “Arts” that the clustering algorithm has de-
cided is in the second cluster. We think of pairs of doc-
uments as being either the same class or differing classes
(according to our gold standard, ODP), and we think of the
clustering algorithm as predicting whether any given pair
has the same or differing cluster. The clustering in Fig-
ure 1 has predicted that (A1, A2) → same cluster and that
(R2, R4) → different cluster . If we enumerate all of the
`

n

2

´

= 28 pairs of documents in Figure 1, we get four cases:
True Positives (TP) The clustering algorithm placed the

two documents in the pair into the same cluster, and
our gold standard (ODP) has them in the same class.
For example, (R1, R3). There are 5 true positives.

False Positives (FP) The clustering algorithm placed the
two documents in the pair into the same cluster, but
our gold standard (ODP) has them in differing classes.
For example, (R1, G2). There are 8 false positives.

True Negatives (TN) The clustering algorithm placed
the two documents in the pair into differing clusters,

and our gold standard (ODP) has them in differing
classes. For example, (R2, A1). There are 12 true neg-
atives.

False Negatives (FN) The clustering algorithm placed
the two documents in the pair into differing clusters,
and our gold standard (ODP) has them in the same
class. For example, (R2, R4). There are 3 false nega-
tives.

We then calculate precision as TP
TP+FP

= 5

13
, calculate recall

as TP
TP+FN

= 5

8
, and F1 as:

2×precision×recall
precision+recall

≈ 0.476.

2.3.2 Notes on F1

We selected F1 because it is widely understood and bal-
ances the need to place similar documents together while
keeping dissimilar documents apart. We experimented with
several other cluster evaluation metrics, including average
pairwise precision, RAND index, and information theoretic
measures such as pointwise mutual information and vari-
ation of information, finding the results to be consistent
across measures.

F1 is a robust metric appropriate for our choice to provide
the value K to our clustering algorithms (see Section 2.1).
In particular, having the number of clusters K′ in the gold-
standard as input K does not ease the task of placing simi-
lar documents together while keeping dissimilar documents
apart. Indeed, there may be many small, specific groupings
of the top-level ODP categories—more than the 16 top-level
subcategories—which a clustering algorithm would be forced
to conflate. These conflations come at the expense of intro-
ducing false positives, possibly lowering the F1 score.

Because the clustering algorithms we consider are random-
ized, their output can vary between runs. To assign a stable
F1 score to a particular algorithm, we report the mean F1
score across 10 runs of the algorithm with identical parame-
ters but varying random initialization. In our experiments,
we report statistical significance where appropriate. When
we refer to a change in F1 score as significant, we mean that
the variation between the underlying runs for two algorithms
is significant at the 5% level by a two-sample t-test.

2.4 Dataset
Our tagged document collection is a subset of the Stanford

Tag Crawl Dataset [21]. The Tag Crawl consists of one con-
tiguous month of the recent feed on del.icio.us, a popular so-
cial bookmarking website, collected starting May 25th 2007.
Each post on the recent feed is the result of a user associat-
ing a URL with one or more short text strings, such as web
or recipe. Aggregating across posts, we recovered a dataset
of 2,549,282 unique URLs. For many URLs, the dataset also
includes a crawl of the page text and backlink page text.

To evaluate the quality of clusterings of the Tag Crawl
dataset, we limited consideration to only a subset of 62,406
documents that is also present in ODP. Because these pages
were all tagged by a user within the last year, they include
some of the most recent and relevant pages in the directory.
We discarded URLs in ODP’s top-level “Regional” category,
as its organizational structure is largely based on the geo-
graphical region pertaining to the site. Of the remaining
documents, only 15,230 were in English and had their page
text crawled as part of the Tag Crawl dataset. The docu-
ments are distributed as in Table 1. The documents were
further divided into a 2,000 document development set for



ODP Name #Docs Top Tags by PMI

Adult 36 blog illustration art erotica sex

Arts 1446 lost recipes knitting music art

Business 908 accounting business lockpicking agency

Computers 5361 web css tools software programming

Games 291 un rpg fallout game games

Health 434 parenting medicine healthcare medical

Home 654 recipes blog cooking coffee food

Kids 669 illusions anatomy kids illusion copyright

News 373 system-unfiled daily cnn media news

Recreation 411 humor vacation hotels reviews travel

Reference 1325 education reference time research dictionary

Science 1574 space dreams psychology astronomy science

Shopping 310 custom ecommerce shop t-shirts shopping

Society 1852 buddhism christian politics religion bible

Sports 146 sport cycling nfl football sports

World 756 speed bandwidth google speedtest maps

Table 1: Intersection of ODP with the Stanford
2007 Tag Crawl dataset. The “regional” category
has been elided.

parameter tuning and a 13,230 document test set for evalu-
ating the final configurations reported here.

In our discussion, we differentiate between types and to-
kens. A word or tag token is an instance of a term being
observed either in or annotated to a document, respectively.
A word or tag type is a single unique term that is observed
or annotated to at least one document in the collection, re-
spectively. For example, a document with the text“the fuzzy
dog pet the other fuzzy dog” and the tags (“dog”, “fuzzy”,
“fuzzy”) has eight word tokens, five word types, two tag types
and three tag tokens.

Each document in the intersection of del.icio.us and ODP
is represented as two sets of term occurrence counts—one
for words and another for tags. Words were extracted from
the Tag Crawl dataset and were tokenized with the Stan-
ford Penn Treebank tokenizer, a fairly sophisticated finite
state tokenizer. During processing, all word tokens appear-
ing less frequently than the 10 millionth most common dis-
tinct word type were dropped as a first-cut term selection
criterion [24, 37] as well as for reasons of computational effi-
ciency. On average, a document contains 425 distinct word
types and 1,218 word tokens. The tag occurrence counts
make up the other data of each document. The complete
set of tags was crawled from del.icio.us for each document
without additional processing, yielding an average of 131 dis-
tinct tag types and 1,307 tag tokens out of a tag vocabulary
of 484,499 unique tags (including many non-English tags).
Because these documents in the ODP intersection tend to
be generally useful websites, they tend to be more heavily
tagged than most URLs in del.icio.us [21].

3. K-MEANS FOR WORDS AND TAGS
In this section, we examine how tagging data can be ex-

ploited by the K-means [26] algorithm, a simple to imple-
ment and highly scalable clustering algorithm that assumes
the same vector space model as traditional ranked retrieval.
K-means clusters documents into one of K groups by itera-
tively re-assigning each document to its nearest cluster. The
distance of a document to a cluster is defined as the distance
of that document to the centroid of the documents currently
assigned to that cluster [26]. Distance is the cosine distance

implied by the standard vector space model: all documents
are vectors in a real-valued space whose dimensionality is
the size of the vocabulary and where the sum of the squares
of each document vector’s elements is equal to 1. Our imple-
mentation initializes each cluster with 10 randomly chosen
documents in the collection.

A key question in clustering tagged web documents using
K-means is how to model the documents in the VSM. We
examine five ways to model a document with a bag of words
Bw and a bag of tags Bt as a vector V :
Words Only In step one, V is defined as 〈w1, w2, . . . w|W |〉

where wj is the weight assigned to word j (based on
some function fw of the frequency of words in W and/or
Bw). For example, wj can be the number of times
word j occurs in Bw (term frequency or tf weighting).
In step two, V is l2-normalized so that ||V ||2 = 1.

Tags Only Analogous to words only, except we use the bag
of tags Bt rather than the bag of words Bw and the
tag vocabulary T rather than the word vocabulary W
in step one.

Words + Tags If we define Vw to be the words only vec-
tor, above, and Vt to be the tags only vector, above,

then the Words+Tags vector Vw+t = 〈
q

1

2
Vw,

q

1

2
Vt〉.

In other words, we concatenate the two l2-normalized
vectors, giving words and tags equal weight. The in-
tuition underlying this choice is that tags provide an
alternative information channel that can and should
be counted separately and weighted independently of
any word observations.

Tags as Words Times n Analogous to words only, except
in step one, instead of Bw we use Bw∪(Bt×n). In other
words, we combine the two bags, but we treat each
term in the tag bag Bt as n terms. Instead of W we
use W∪T as our vocabulary. For example, a document
that has the word “computer” once and the tag “com-
puter” twice would be represented as the word “com-
puter” three times under the Tags as Words Times 1
model, and five times under the Tags as Words Times
2 model. This representation is sometimes used for
titles in text categorization [11].

Tags as New Words We treat tags simply as additional
(different) words. V is defined as:
〈w1, w2, . . . w|W |, w|W |+1, w|W |+2, . . . w|W |+|T |〉
where wj is the weight assigned to word j for j ≤ |W |
or the weight assigned to tag j − |W | for j > |W |.
This is equivalent to pretending that all words are of
the form word#computer and all tags are words of the
form tag#computer. Then V is l2-normalized.

These options do not cover the entire space of possibilities.
However, we believe they represent the most likely and com-
mon scenarios, and give an indication of what representa-
tions are most useful. Nonetheless, it should be noted that
one could optimize the relative weight given to words versus
tags to maximize per-task performance.

In addition to deciding to model words or tags or both,
we also need to answer the following questions:

1. How should the weights be assigned? Should more
popular tags be weighted less strongly than rare tags?
(Discussed in Section 3.1.)

2. How should we combine the words and tags of a docu-
ment in the vector space model? Which of the vector
representations presented above is most appropriate?



tf tf-idf
Words .131 .152
Tags .201 .154

Words+Tags .209 .168

Table 2: F-scores of the vector space model doc-
ument development collection (higher is better).
Rows correspond to features and columns present
the weighting function used.

(Discussed in Section 3.2.)
3. In the VSM, do tags help in clustering? (Discussed in

Sections 3.1 and 3.2.)

3.1 Term Weighting in the VSM
In this subsection, we study the first question above: how

should the weights be assigned? We study this question for
the first three document models (Words Only, Tags Only,
and Words+Tags). In particular, we consider two common
weighting functions: raw term frequency (tf) and tf-idf. In
computing term frequency, each dimension of the vector is
set in proportion to the number of occurrences of the cor-
responding term (a word or tag) within the document. For
tf-idf, each dimension is the term frequency downweighted
by the log of the ratio of the total number of documents
to the number of documents containing that term. For the
Words+Tags scheme, we did not bias the weights in favor
of words or tags (we normalized the combined vector with
no preference towards either words or tags).

Table 2 demonstrates the impact of tf versus tf-idf weight-
ing on the K-means F1 score for 2,000 documents set aside
for this analysis. Note that K-means on Words+Tags
significantly outperforms K-means on words alone under
both term frequency and tf-idf. And the best perform-
ing model—term frequency weighting on Words+Tags—
significantly outperforms tf-idf weighting on Words+Tags.
However, the performance difference of term frequency on
both Words+Tags does not significantly outperform the
clustering on tags alone. As in the analysis of Haveliwala et
al., [18], we believe that tf-idf weighting performs poorly in
this task because it over-emphasizes the rarest terms, which
tend not to be shared by enough documents to enable mean-
ingful cluster reconstruction.

The results of this initial experiment suggest that term
frequency weighting is an effective and simple means of as-
signing weights in our document vectors. We next address
how to combine words and tags, using term frequency to
assign weights to each vector element.

3.2 Combining Words and Tags in the VSM
Which of the five ways to model a document presented at

the beginning of this section work best in the VSM? Table 3
shows the averaged results of ten runs of our best weighting
(tf weighting) on the 13,230 documents not used for selecting
the term weighting scheme. The Words and Words+Tags
score are similar to the numbers in Table 2—their differ-
ence reflects the change in dataset between the two experi-
ments. The inclusion of tags as words improves every con-
dition over baseline, but all are significantly outperformed
by the Words+Tags model. This suggests convincingly that
tags are a qualitatively different type of content than “just
more words” as has been suggested recently [6]. By sim-

K-means
Words .139

Tags as Words ×1 .158
Tags as Words ×2 .176
Tags as New Words .154

Words+Tags .225

Table 3: F-scores for K-means clustering (tf) with
several means of combining words and tags on the
full test collection. All differences are significant
except Tags as Words ×1 versus Tags as New Words.

ply normalizing the tag dimensions independently from the
word dimensions of the underlying document vectors, K-
means can very effectively incorporate tagging data as an
independent information channel.

4. GENERATIVE TOPIC MODELS
In the previous section, we saw the large impact to be

had by appropriately including tagging information in K-
means. Here we take that observation one step further by
constructing a clustering model whose explicit probabilistic
semantics is appropriate for modeling the nature of words
and tags as independent sets of observations.

The model is a variation of latent Dirichlet allocation [8],
a generative probabilistic topic model that is widely used
in the machine learning community. LDA models each doc-
ument as a mixture of hidden topic variables, where each
topic is associated with a distribution over words. In this
way, LDA is able to capture the notion that topics should be
distinct even when documents themselves are not so clearly
delineated. LDA adds fully generative probabilistic seman-
tics to pLSI [22], which is itself a probabilistic version of La-
tent Semantic Indexing [13]. LSI and pLSI have seen use in
the information retrieval community, but only recently have
researchers used LDA in IR, such as by Wei and Croft who
show in [35] that it can be used to estimate cluster-specific
language models to improve retrieval results.

We ask three questions about LDA-derived models:
1. Can we do better than LDA by creating a model (de-

fined in Sections 4.1 and 4.2) that explicitly accounts
for tags and words as separate annotations of a docu-
ment? (Discussed in Section 4.3.)

2. Do the same weighting and normalization choices from
the VSM (Section 3) hold for generative models like
LDA-derived models, or do they differ?2 (Discussed in
Section 4.3.)

3. Do LDA-derived models better describe the data and
hence perform better on the tagged web document
clustering task than clustering algorithms based on
VSM? (Discussed in Section 4.4.)

4.1 MM-LDA Generative Model
In the context of tagging data, we extend LDA to jointly

account for words and tags as distinct sets of observations.
Our model takes its inspiration from a similar model for text
and images proposed by Blei and Jordan [7]. We call our al-
gorithm Multi-Multinomial LDA. The best way to describe
MM-LDA is to outline the process it assumes has gener-
ated the dataset. We then maximize the likelihood of the

2Note that term weights have no natural interpretation in a
conventional LDA-derived model, so we only compare meth-
ods of combining tags and words.
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Figure 2: Graphical representation of MM-LDA.

data with respect to that process’s parameters to reconstruct
each document’s cluster association probabilities as well as
the probability of each word and tag per cluster. MM-LDA
generates a collection of tagged documents from K topics
by the process below and shown in Figure 2:

1. For each topic k ∈ 1 . . . K, draw a multinomial dis-
tribution βk of size |W | from a symmetric Dirichlet
distribution with parameter ηw. Each βk represents
the probability of seeing all word types given topic k.

2. Similarly, draw a multinomial γk of size |T | from a
symmetric Dirichlet with parameter ηt to represent the
probability of seeing all tag types given topic k.

3. For each document i ∈ 1 . . . D in the collection, draw a
multinomial θi of size |K| from a Dirichlet distribution
with parameter α. Each θi represents the probability
of a word in that document having been drawn from
topic i.

4. For each word index j ∈ 1 . . . Ni in document i:
(a) Draw a topic zj ∈ 1 . . . K from θi.
(b) Draw a word wj ∈ 1 . . . |W | from βzj

.
5. For each tag index j ∈ 1 . . . Mi in document i:

(a) Draw a topic zj ∈ 1 . . . K from θi.
(b) Draw a tag tj ∈ 1 . . . |T | from γzj

.
Steps one, three, and four, in isolation, are equivalent to
standard LDA. In step two, we construct distributions of
tags per topic analogously to the construction of the word
distributions per topic. In the final step, we sample a topic
for each tag in the same way sampling a topic for each word.

4.2 Learning MM-LDA Parameters
One of several approaches can be used to learn the param-

eters βk, γk, θi. Variational inference [7] and Gibbs sampling
[16] are two general techniques that have been used to learn
the analogous parameters in LDA. We chose to extend a
Gibbs sampling algorithm like the one analyzed by Wei and
Croft [35] because its running time is asymptotically com-
petitive with that of K-means. The algorithm is as follows:
we iterate repeatedly through the documents in random or-
der. For each word (and then for each tag) in random order,
we resample a single topic zj based on the current topic
probabilities for that document and the probability of each
proposed cluster assignment having generated the observed
word. The Dirichlet prior parameters η and α effectively be-
come pseudocount smoothing on the β and θ distributions,
respectively, which we do not resample. This process repeats
until convergence of the model’s perplexity—a measure of its
confusion on its input data—or earlier if a maximum of 100
iterations is reached. On the development set of 2000 doc-
uments, our LDA implementation runs in about 22 minutes

(MM-)LDA
Words 0.260

Tags as Words ×1 0.213
Tags as Words ×2 0.198
Tags as New Words 0.216

Words+Tags 0.307

Table 4: F-scores for (MM-)LDA across different tag
feature modeling choices.

(MM-)LDA K-means
Words 0.260 .139
Tags 0.270 .219

Words+Tags 0.307 .225

Table 5: F-scores for (MM-)LDA and K-means on
13,320 documents. Including tags improves both
models significantly versus words alone. MM-LDA
(bold) significantly outperforms all other conditions.

whereas K-means runs in about 6 minutes. This 4:1 ratio
holds up for the larger data sets as well.

We tested a wide range of smoothing parameters α, ηw, ηt

for the MM-LDA model over 10 runs on the 2000 document
validation set. We found that the model was fairly insensi-
tive to the chosen values, except if the word or tag smoothing
parameter was substantially smaller than the topic smooth-
ing parameter (less than 2

3
the other parameter). We chose

0.7 for the smoothing parameter for the word, tag, and topic
distributions and used this value throughout.

4.3 Combining Words and Tags with MM-LDA
Does modeling words and tags separately improve per-

formance in MM-LDA over a standard LDA model? Just
as renormalizing the tag and word vector components sep-
arately improved K-means performance, the inclusion of
tags as an alternative type of observation allows MM-LDA
to flexibly model the tags and words that co-occur in the
dataset. As an alternative, we could have employed a stan-
dard LDA model and added tags directly as words (Tags
as Words ×1); added them as words with multiplicity two
(Tags as Words ×2); or added them into an expanded re-
gion of the word feature space (Tags as New Words). By
contrast, MM-LDA (Tags+Words) keeps distinct multino-
mial distributions for the occurrence of tags and words un-
der a particular topic. Table 4 presents F-scores of LDA and
MM-LDA under these model variations.

MM-LDA’s Words+Tags model significantly outperforms
all other configurations. Interestingly, the addition of tags
to the word vectors decreases the performance of the algo-
rithm relative to words alone. We believe this decrease is
due in part to the very different distributional statistics ob-
served for words versus tags. In particular, for our dataset
there tend to be about 4 times as many word types as tag
types and yet a similar number of tokens for each. When
combined, the word multinomials for many topics may be-
come disproportionately peaked around common tags at the
expense of flexibility in modeling either.

4.4 Comparing K-Means and MM-LDA
How does the probabilistic model of MM-LDA perform

compared to the VSM of K-means? In this section, we com-
pare MM-LDA to K-means quantitatively and qualitatively.



Tag-Augmented K-means

tags words
1 linux security php opensource vpn unix linux ircd php beware kernel exe
2 games go game sports firefox gaming dmg munsey ballparks suppes racer game
3 music research finance audio mp3 lyrics music research redirect nottingham meta laboratory
4 news business newspaper politics media magazine v business leadership d news j
5 politics activism travel movies law government aquaculture terrapass geothermal anarchist wwoof cpsc
6 science physics biology astronomy space chemistry science wildman foraging collembola physics biology
7 css python javascript programming xml webdesign squeakland sql coq css python flash
8 food recipes cooking shopping tea recipe recipes food cooking recipe stylist tea
9 blog blogs fashion design art politics flf blog comments posted my beuys
10 education art college university school teaching learning gsapp students education school cutecircuit
11 health medical healthcare medicine solar psychology health napkin cafepress.com medical care folding
12 java programming development compiler c opensource java c programming goto code language
13 software windows opensource mac freeware osx software windows mac download os thinkfree
14 dictionary reference language bible writing english dictionary english words syw dictionaries spanish
15 internet dns search seo google web internet shutdown sportsbook epra kbs npower
16 history library books literature libraries philosophy library tarot peopling ursula guin bowdoin

Multi-Multinomial LDA (MM-LDA)

tags words
1 web2.0 tools online editor photo office icons uml powerpoint lucid dreams dreaming
2 guitar scanner chemistry military earthquake groupware grub outlook bittorrent rendering recovery boot
3 health medical medicine healthcare process gardening exe health openpkg okino dll polytrans
4 bible christian space astronomy religion christianity gaelic bible nt bone scottish english
5 politics activism environment copyright law government war shall power prisoners their article
6 social community web2.0 humor fun funny press f prompt messages ignoring each
7 reference science education research art books science research information university search site
8 java database programming development mysql sql java sql mysql schizophrenia testing test
9 dictionary language english reference translation thesaurus english writing dictionary spanish words bppv
10 travel search maps google reference map search deadline call flf conference paper
11 time clock timezones world train md5 quantum thu pfb am pm mf
12 food recipes cooking business shopping finance my food tea wine me recipes
13 news blog music blogs technology system/unfiled comments blog he posted news pm
14 programming software webdesign web css design you can if or not use
15 photography photo compression zip photos photoblog flash camera eos light e-ttl units
16 mac apple osx games unicode game dmg u x mac b v

Table 6: Highest scoring tags and words from clusters generated by the K-means (above) and MM-LDA
(below) from one run of the 2000 document development set. The K-means terms are selected by top tf-idf
and the MM-LDA terms are selected by highest interest value.



4.4.1 Quantitative Comparison

We clustered documents using the K-means and LDA
models on the 13,320 document test collection under three
conditions: just Words, just Tags, or jointly Words+Tags.
For K-means, we used tf weighting, which includes the best
performing model for K-means, Words+Tags. Table 5 shows
that the inclusion of tagging data significantly improves the
performance of MM-LDA versus tags or words alone. The
improvement from moving from Words to Words+Tags was
significant for both models. In contrast to K-means, LDA’s
improvement from Tags to Words+Tags was also significant.
MM-LDA’s Words+Tags model is significantly better than
all other models. From this we conclude that, under some
conditions, MM-LDA is better able to exploit the comple-
mentary information in the word and tag channels.

4.4.2 Qualitative Comparison

Qualitatively, both K-means and MM-LDA learn coher-
ent clusters in the document collections, as demonstrated by
the top scoring words and tags associated with each cluster
in Table 6. In addition to associating documents to topics,
each algorithm outputs per-cluster affinities to words and
to tags. When analyzing the generated affinities, it is im-
portant to take into account the underlying model assumed
by each algorithm. K-means operates in document vector
space, so we extract its top-scoring words and tags per clus-
ter by selecting those terms with the highest tf-idf weighted
score. By contrast, MM-LDA outputs multinomial prob-
ability distributions, which tend to be highly peaked and
inappropriate for tf-idf weighting. For MM-LDA, we select
a term t for cluster c if it has one of the highest values of
interest, defined as be p(t|c) − p(t). The interest operator
balances the desire to select terms that have high absolute
probability in their cluster with low probability overall.

5. FURTHER STUDIES
Lastly, we consider two questions independent of the clus-

tering algorithm family:
1. Does the addition of anchor text to regular plain text

make tags redundant? Do our algorithms that take
into account tags still outperform anchor text + plain
text together? (Discussed in Section 5.1.)

2. If we look at multiple levels of specificity of clusters, for
example, clustering programming language documents
rather than clustering general documents, does tagging
data help? More or less? (Discussed in Section 5.2.)

5.1 Tags Are Different Than Anchor Text
Do the advantages of tagging data hold up in the presence

of anchor text? Anchor text — the text of and around in-
coming web hyperlinks — has helped in some tasks that use
web document corpora like web search [14] and text classi-
fication [15]. Like tags, anchors act as free-form document
annotations provided by a third party. For each URL in
the tag crawl dataset, we extracted words within 15 tokens
of hyperlinks to that URL in up to 60 pages returned by a
Google API backlink query. This window size was consis-
tent with the best results for anchor text window size for
similarity search found in [18].

We experimented with two means of combining page text,
anchor text, and tags. Anchors as Words adds all words in
the extracted anchor text windows to each document’s word

(MM-)LDA K-means
Words .260 .139

Anchors as Words .270 .120
(Anchors as Words)+Tags .281 .214

Words+Anchors .248 .128
Words+Anchors+Tags .306 .224

Table 7: Inclusion of tags in (MM-)LDA and K-
means increases F1 score on the test collection even
in the presence of anchor text.

vector analogously to the Tags as Words model in Section 3.
Words+Anchors weights anchor text words separately from
the document words, like the Words+Tags model. The re-
sults of these model variants on the top-level ODP clustering
task, as well as when Tags are added as an independent in-
formation channel to each of them, are presented in Table 7.

We found that both MM-LDA and K-means gain from
the inclusion of tagging data as compared to clustering on
Anchors as Words or Words+Anchors alone. However, the
results from the inclusion of anchor text are mixed. While
performance of LDA improved when anchors were added
as new words (Anchors as Words), K-means performance
was slightly depressed because of the vector space model’s
sensitivity to the weights of the now-noisier terms. Neither
model did well with Anchors+Words, reflecting the difficulty
of extracting a quality anchor text signal for text clustering,
especially from a relatively small web crawl. We believe
that these numbers might be improved by down-weighting
anchor words as a function of their distance from the URL
or exploiting more advanced term weighting techniques as
in [18]. However, even under such transformations, we argue
that the inclusion of tagging data would still improve cluster
quality.

5.2 Clustering More Specific Subtrees
Does the impact of tags depend on the specificity of the

clustering? Clustering the top-level ODP subtrees is a dif-
ficult task because many coherent subtopics exist for each
top-level ODP category. We believe real-world applications
may benefit from clustering either a wide variety of docu-
ments, as in the top-level ODP clustering task, or documents
that are focused, such as those returned by a search query.

To investigate the applicability of tag-based clustering for
more specific document collections, we selected two repre-
sentative ODP subtrees that each had a substantial number
of documents in our dataset. The Programming Languages
subcategory is the set of documents labeled with a subcate-
gory of ODP’s Top/Programming/Languages category. The
gold-standard labels for this subset of 1,094 documents are:
Java, PHP, Python, C++, JavaScript, Perl, Lisp, Ruby, and
C. Documents in this subset tend to share many specific
terms related to programming (e.g. words such as loop, and
compile), so clustering this subcategory is not unlike clus-
tering some types of search results.

The Social Sciences subcategory (SS) is the set of doc-
uments labeled with a subcategory of ODP’s Top/Society
tree. The 1,590 documents in this subset are each labeled
as one of: Issues, Religion & Spirituality, People, Politics,
History, Law, or Philosophy. This collection represents a
diverse set of topics unified by a common theme with many
overlapping terms, but in a broader vocabulary space than
the PL subset.



(MM-)LDA K-means

Programming
Languages

Words .288 .189
Tags .463 .567

Words+Tags .297 .556

Social
Sciences

Words .300 .196
Tags .310 .307

Words+Tags .302 .308

Table 8: F-scores for (MM-)LDA and K-means on
two representative ODP subtrees. For these tasks,
clustering on tags alone can outperform alternatives
that use word information.

Both clustering algorithms performed at least as well in
these ODP subsections as they did for the directory as a
whole, as shown in Table 8. Tags appear to be better indi-
cators than words in isolation, and, indeed they are so much
better that jointly modeling tags and words can actually
depress performance. This surprising phenomenon stems in
part from the fact that users tend to tag pages at a level
of specificity appropriate for their own information needs,
which often correspond to the types of distinctions made
within ODP subsections. For example, within the Java sub-
category of “Programming Languages”, the most common
tag, “java”, covers 488/660 = 73.9% of pages. By contrast,
in the top-level “Computers” subcategory, the most common
tag “software” covers only 2562/11894 = 21.5% of pages.
Because the size of the tag vocabulary within these ODP
subsections is substantially reduced from the full tag vocab-
ulary, a higher proportion of the remaining tags are direct
indicators of sub-category membership than in the top-level
clustering task. We believe that the extra signal present in
the words plays a lesser role and, indeed, can reduce the
quality of the overall clustering. This factor applies to both
models, even when K-means outperforms LDA, as on the
Programming Languages cluster, where a smaller set of fo-
cused tags plays to the strengths of the vector space model’s
independence assumptions.

6. RELATED WORK
The impact of social bookmarking data has been explored

in several other contexts within information retrieval and
the web, including in ranked retrieval e.g., [3, 21, 23, 36]
and analysis of blogs [9, 19]. Others have used tags in some
clustering contexts, such as Begelman et al. [4] who conclude
that clustering of tags should be used in tagging systems, for
example, to find semantically related tags.

In modeling, the most closely related work to ours is Zhou
et al.’s recent paper [40], which (like ours) looks at the po-
tential to generatively model social annotation to improve
information retrieval. That work’s evaluation focuses on a
specific, promising, application of improving language model
based information retrieval. As a result, it produces evi-
dence that good generative models for social annotation can
in fact have a positive impact on ranked result quality for
language model based information retrieval systems. Our
work uses a more general evaluation metric, similarity to a
gold standard (inspired by Haveliwala et al. [18]), and fur-
ther assumes that search engines have access to anchor text.
We believe our more general evaluation metric may make our
results more applicable to the broader group of applications
outlined in Section 1 while still making them convincingly
applicable to language model based information retrieval,

due to Zhou et al.’s work. Lastly, our MM-LDA generative
model is more directly descended from Blei et al.’s work
on annotation [7] than is the model in [40], which we hope
makes our work more applicable to the popular current area
of image retrieval with tags (see, for example, [2, 33, 29]).

A host of applications have grown out of the ability to clas-
sify web pages into web directories, including topic-sensitive
web link analysis [17] and focused crawling [10]. Our work
is related to this work in that we use ODP as a gold stan-
dard for our evaluation. However, it is different in that our
goal is not to predict ODP classes (for which we might use a
supervised method) or to create a hierarchy similar to ODP
(for which we might use hierarchical clustering) but rather
to improve information retrieval through clustering.

7. DISCUSSION
Many of the newest and most-relevant parts of the web are

constantly being tagged on large social bookmarking web-
sites. In this work we have also found that many pages of
interest are often those with the most tags. In fact, the pages
that are informative and relevant enough to be in both the
tag crawl dataset and in ODP have, on average, as many tag
annotations as words. And because tagging happens more
quickly than links for new content, tags promise to become
an increasingly important signal for ranking new pages of
high static quality. The baseline clustering algorithms ex-
tended in this work are themselves high-performers on tra-
ditional document clustering tasks. By exploiting tagging
data when available, these techniques promise to improve
web document clustering in general, and especially so for
the most relevant parts of the web.

In future work, we hope to apply the tag-extended clus-
tering algorithms explored here to directly support search
or browsing. We are also interested in the histories and vo-
cabularies of individual users, and hope to explore the time
series nature of the tag stream in more detail through more
targeted probabilistic graphical models.

As a final note, it is perhaps worth contrasting modern
tagging with other types of indexing vocabularies. The tra-
ditional comparison in the field has been between controlled
indexing languages—characterized by a specific indexing vo-
cabulary structured in advance—and full text indexing, in
which the documents themselves provide all indexing terms.
In some ways, tagging sits between these two extremes. As
in a controlled indexing language, human beings select the
terms in a tagging system that characterize a document well.
Tags therefore have a level of semantic precision that full
text indexing lacks. Yet in other ways, tagging is more like
free text indexing in that there is no pre-defined vocabulary
or hierarchy, tags can freely have multiple meanings, and
different tags can be used for the same topic. Tagging is
like free text indexing in some other important respects, as
well: with ample tagging data, tags have frequency counts,
just like words, and the range of tags applied to popular
documents is more exhaustive than what is typical in a con-
trolled vocabulary. In sum, we can at least hope that be-
cause tags represent human semantic classification, tagging
has the potential to improve the precision of searches as well
as the quality of inferred document clusters, while the ex-
haustivity of tagging means that the technique will avoid
the biggest limitation of traditional use of controlled index-
ing vocabularies.



8. CONCLUSION
This work has demonstrated that social tagging data pro-

vides a useful source of information for the general problem
of web page clustering, a task core to several IR applications.
We have shown that tagging data improves the performance
of two automatic clustering algorithms when compared to
clustering on page text alone. A simple modification to the
widely used K-means algorithm enables it to better exploit
the inclusion of tagging data. A novel algorithm—MM-
LDA, an extension to latent Dirichlet allocation for use with
parallel sets of observations—makes even better use of the
complementary similarity information held in a document’s
words and tags on a general web clustering task.

9. REFERENCES

[1] Open directory project. http://dmoz.org/.

[2] M. Aurnhammer, P. Hanappe, and L. Steels.
Integrating collaborative tagging and emergent
semantics for image retrieval. Proc. of the
Collaborative Web Tagging Workshop (WWW’06).

[3] Shenghua Bao, Guirong Xue, Xiaoyuan Wu, Yong Yu,
Ben Fei, and Zhong Su. Optimizing web search using
social annotations. In WWW ’07.

[4] G. Begelman, P. Keller, and F. Smadja. Automated
tag clustering: Improving search and exploration in
the tag space. Proc. of the Collaborative Web Tagging
Workshop (WWW’06).

[5] S.M Beitzel, E.C. Jensen, A. Chowdhury,
D. Grossman, and O. Frieder. Hourly analysis of a
very large topically categorized web query log. In
SIGIR ’04.

[6] B. Berendt and C. Hanser. Tags are not Metadata, but
“Just More Content”–to Some People. ICWSM ’07.

[7] D.M. Blei and M.I. Jordan. Modeling annotated data.
In SIGIR ’03.

[8] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
2003.

[9] C.H. Brooks and N. Montanez. Improved annotation
of the blogosphere via autotagging and hierarchical
clustering. In WWW’06.

[10] Soumen Chakrabarti, Martin van den Berg, and
Byron Dom. Focused crawling: a new approach to
topic-specific web resource discovery. In WWW ’99.

[11] W.W. Cohen and Y. Singer. Context-sensitive learning
methods for text categorization. In SIGIR ’99.

[12] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W.
Tukey. Scatter/Gather: a cluster-based approach to
browsing large document collections. In SIGIR ’92.

[13] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

[14] Nadav Eiron and Kevin S. McCurley. Analysis of
anchor text for web search. In SIGIR ’03.

[15] Johannes Fürnkranz. Exploiting structural inform-
ation for text classification on the WWW. In IDA ’99.

[16] T.L. Griffiths. Finding scientific topics. Proceedings of
the National Academy of Sciences, 101:5228–5235, ’04.

[17] T. Haveliwala. Topic-sensitive pagerank. In WWW
’02.

[18] T. Haveliwala, A. Gionis, D. Klein, and P. Indyk.
Evaluating strategies for similarity search on the web.
In WWW ’02.

[19] C. Hayes and P. Avesani. Using tags and clustering to
identify topic-relevant blogs. In ICWSM, 2007.

[20] Marti A. Hearst and Jan O. Pedersen. Reexamining
the cluster hypothesis: scatter/gather on retrieval
results. In SIGIR ’96.

[21] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can
social bookmarking improve web search. In WSDM
’08.

[22] Thomas Hofmann. Probabilistic latent semantic
indexing. In SIGIR ’99.

[23] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme.
Information retrieval in folksonomies: Search and
ranking. The Semantic Web: Research and
Applications, 4011:411–426, 2006.

[24] T. Liu, S. Liu, Z. Chen, and W.Y. Ma. An evaluation
on feature selection for text clustering. In ICML ’03.

[25] X. Liu and W.B. Croft. Cluster-based retrieval using
language models. In SIGIR’04.

[26] C. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval. Cambridge
University Press, 2008.

[27] K.R. McKeown, R. Barzilay, D. Evans,
V. Hatzivassiloglou, J.L. Klavans, A. Nenkova,
C. Sable, B. Schiffman, and S. Sigelman. Tracking and
summarizing news on a daily basis with Columbia’s
Newsblaster. In HLT’02.

[28] S. Osinski and D. Weiss. A concept-driven algorithm
for clustering search results. IEEE Intelligent Systems,
20(3):48–54, 2005.

[29] T. Rattenbury, N. Good, and M. Naaman. Towards
automatic extraction of event and place semantics
from Flickr tags. In SIGIR ’07.

[30] K. Song, Y. Tian, W. Gao, and T. Huang. Diversifying
the image retrieval results. In MULTIMEDIA ’06.

[31] A. Strehl, J. Ghosh, and R. Mooney. Impact of
similarity measures on web-page clustering. In AAAI
Workshop on AI for Web Search (AAAI 2000).

[32] C. J. Van Rijsbergen. Information Retrieval, 2nd
edition. Dept. of Computer Science, University of
Glasgow, 1979.

[33] L. von Ahn and L. Dabbish. Labeling images with a
computer game. In CHI ’04.

[34] Ellen M. Voorhees. The cluster hypothesis revisited.
Technical report, Ithaca, NY, USA, 1985.

[35] X. Wei and W.B. Croft. LDA-based document models
for ad-hoc retrieval. In SIGIR ’06.

[36] Y. Yanbe, A. Jatowt, S. Nakamura, and K. Tanaka.
Can social bookmarking enhance search in the web?
In JCDL ’07.

[37] Y. Yang and J.O. Pedersen. A comparative study on
feature selection in text categorization. In ICML ’97.

[38] Oren Zamir and Oren Etzioni. Web document
clustering: a feasibility demonstration. In SIGIR ’98.

[39] H.J. Zeng, Q.C. He, Z. Chen, W.Y. Ma, and J. Ma.
Learning to cluster web search results. In SIGIR ’04.

[40] D. Zhou, J. Bian, S. Zheng, H. Zha, and C.L. Giles.
Exploring social annotations for information retrieval.
In WWW ’08.


