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Abstract

In this paper, we offer broad insight
into the underperformance of Arabic con-
stituency parsing by analyzing the inter-
play of linguistic phenomena, annotation
choices, and model design. First, we iden-
tify sources of syntactic ambiguity under-
studied in the existing parsing literature.
Second, we show that although the Penn
Arabic Treebank is similar to other tree-
banks in gross statistical terms, annotation
consistency remains problematic. Third,
we develop a human interpretable gram-
mar that is competitive with a latent vari-
able PCFG. Fourth, we show how to build
better models for three different parsers.
Finally, we show that in application set-
tings, the absence of gold segmentation
lowers parsing performance by 2-5% F1.

Introduction

To investigate the influence of these factors,
we analyze Modern Standard Arabic (henceforth
MSA, or simply “Arabic”) because of the unusual
opportunity it presents for comparison to English
parsing results. The Penn Arabic Treebank (ATB)
syntactic guidelines (Maamouri et al., 2004) were
purposefully borrowed without major modifica-
tion from English (Marcus et al., 1993). Further,
Maamouri and Bies (2004) argued that the English
guidelines generalize well to other languages. But
Arabic contains a variety of linguistic phenom-
ena unseen in English. Crucially, the conventional
orthographic form of MSA text isinvocalized, a
property that results in a deficient graphical rep-
resentation. For humans, this characteristic can
impede the acquisition of literacy. How do addi-
tional ambiguities caused by devocalization affect
statistical learning? How should the absence of
vowels and syntactic markers influence annotation
choices and grammar development? Motivated by
these questions, we significantly raise baselines
for three existing parsing models through better

It is well-known that constituency parsing mod-grammar engineering.
els designed for English often do not generalize
easily to other languages and treebahksxpla-

Our analysis begins with a description of syn-

nations for this phenomenon have included thigctic amlalgunz |nhunvocgllzgd _'IVISA ter>]<§2).
relative informativeness of lexicalization (DubeyNetheS ow that the ATB is similar to other tree-

and Keller, 2003: Arun and Keller, 2005), insensianks in gross statistical terms, but that annotation

tivity to morphology (Cowan and Collins, 2005;consistency remains low relative to Englis}3).

Tsarfaty and Sima’an, 2008), and the effect OWe then use linguistic and annotation insights to

variable word order (Collins et al., 1999). Cer—de\’eIOp a mgnually anno_tated grammar for Arabic
tainly these linguistic factors increase the difi(84). To facilitate comparison with previous work,

culty of syntactic disambiguation. Less frequentl)yvi exhaus_nvely 3V?luatﬁ this ?drammar anql tW_O
studied is the interplay among language, annotQNer parsing models when gold segmentation Is

tion choices, and parsing model design (Levy anass_um?d%)'_ Finally, we pr(_)vidg arealistic eval-
Manning, 2003; Kibler, 2005). uation in which segmentation is performed both

in a pipeline and jointly with parsings6). We
'The apparent difficulty of adapting constituency mod-guantify error categories in both evaluation set-
els to non-configurational languages has been one motivati(%{]ngs To our knowledge ours is the first analysis

for dependency representations (lagind Zenanek, 2004; A ; X
Habash and Roth, 2009). of this kind for Arabic parsing.



2 Syntactic Ambiguity in Arabic . Word Head Of _Complement POS
1| glinna“Indeed, truly” VP Noun VBP
Arabic is a morphologically rich language witha 2 i anna “That” SBAR Noun IN
root-and-pattern system similar to other Semitic 3 ot in*If” SBAR verb IN
4 of an“to” SBAR Verb IN

languages. The basic word order is VSO, but
SVO, VOS, and VO configurations are also pos¥able 1: Diacritized particles and pseudo-verbs that, after

sible? Nouns and verbs are created by selectingfthographic normalization, have the equivalent surface form
o1 an. The distinctions in the ATB are linguistically justified,

a consonantal root (usually tri!iteral or quadri"t_‘but complicate parsing. Table 8a shows that the best model
eral), which bears the semantic core, and addingcovers SBAR at only 71.0% F1.

affixes and diacritics. Particles are uninflected.

. ol . . VP VP
Diacritics can also be used to specify grammatical
relations such as case and gender. But diacritics'® s veo SBAR
are not present in unvocalized text, which is the =~ ® =2 o W e
- <he added /\ sheadded | | |
standard form of, e.g., news media documénts. PURC VER NPT Tooeo
Let us consider an example of ambiguity caused e I e
by devocalization. Table 1 shows four words et e S
Saddam (b) Stanford

whose unvocalized surface formps an are indis-

tinguishable. Whereas Arabic linguistic theory as-

Signs (1) and (2) to the class of pseudo Vaﬂps _Figure 1: The Stanford parser (Kleir! and Manning, 2902)
S adia i d h ist . th b is unable to recover the verbal reading of the unvocalized

Lgil 957 9 inna and her sisters since they can be g ,face formy an (Table 1).

inflected, the ATB conventions treat (2) as a com-

plementizer, which means that it must be the head . _ _

of SBAR. Because these two words have identica0re frequently than is done in English.

complements, syntax rules are typically unhelp- Process nominals name the action of the tran-

ful for distinguishing between them. This is es-=Sitive or ditransitive verb from which they derive.

pecially true in the case of quotations—which ard he verbal reading arises when theSdar has an

common in the ATB—where (1) will follow a verb NP argument which, in vocalized text, is marked
like (2) (Figure 1). in the accusative case. When timaSdar lacks

Even with vocalization, there are linguistic cat-2 determiner, the constituent as a whole resem-

egories that are difficult to identify without se-bles the ubiquitous annexation construst.s ¥
mantic clues. Two common cases are the attribiPafa. Gabbard and Kulick (2008) show that
tive adjective and the process nominakuacl| there is significant attachment ambiguity associ-
maSdar, which can have a verbal readifigAt- ated withiDafa, which occurs in 84.3% of the
tributive adjectives are hard because they are di€es in our development set. Figure 4 shows
thographically identical to nominals; they are in2 constituent headed by a process nominal with
flected for gender, number, case, and definitenesd) embedded adjective phrase. All three mod-

Moreover, they are used as substantives mud@is evaluated in this paper incorrectly analyze the
_— _ _ ~ constituent afDafa; none of the models attach the
2Unlike machine translation, constituency parsing is no

significantly affected by variable word order. However, when‘%‘ttrIbUtlve ?‘dJeCUVGS properly. .
grammatical relations like subject and object are evaluated, FOr parsing, the most challenging form of am-

parsing performance drops considerably (Green et al., 200q3iguity occurs at the discourse level. A defining

In particular, the decision to represent arguments in verb- L. . .
initial clauses as VP internal makes VSO and VOS configu(-:haraCterIStIC of MSA is the prevalence dis-

rations difficult to distinguish. Topicalization of NP subjectscourse markers to connect and subordinate words

in SVO configurations causes confusion with VO (pro-drop)and phrases (Ryding, 2005). Instead of offsetting
3Techniques for automatic vocalization have been studied

(zitouni et al., 2006; Habash and Rambow, 2007). However,]eW topics V\{'th punctuation, writers of MS_A n-
the data sparsity induced by vocalization makes it difficult tesert connectives such aswa and < fa to link

train statistical models on corpora of the size of the ATB, sqya\w elements to both preceding clauses and the
vocalizing and then parsing may well not help performance, hole. A It Arabi
“Traditional Arabic linguistic theory treats both of these!€Xt as @ whole. As a result, Arabic sentences are

types as subcategories of nqua¥!. usually long relative to English, especially after

(a) Reference



Length English (WSJ) Arabic (ATB) ATB CTB6 Negra WSJ

<20 41.9% 33.7% Trees 23449 28278 20602 43948

<40 92.4% 73.2% Word Types 40972 45245 51272 46348

<63 99.7% 92.6% Tokens 738654 782541 355096 1046829

<70 99.9% 94.9% Tags 32 34 499 45

B Phrasal Categories| 22 26 325 27
Table 2: Frequency distribution for sentence lengths in the Test OOV 16.8%  22.2% 305%  13.2%
WSJ (sections 2—23) and the ATB (p1-3). English parsing Per Sentence
evaluations usually report results on sentences up to lengttPepth @/ 0?) 387/0.74 50L/144 358/0.89 4.18/0.74
40. Arabic sentences of up to length 63 would need to be Breadth 1 / g?) 146/731 10.2/4.44 7.50/4.56 12.1/4.65
evaluated to account for the same fraction of the data. WeLength ¢/ o?) 315/220 27.7/189 172/109 238/112
propose a limit of 70 words for Arabic parsing evaluations. ~Constituentsg) 32.8 32.5 8.29 19.6

u Const. /u Length 1.04 1.18 0.482 0.820

Pca;mfc‘t’iii‘:h Cng 4';_?6(" Table 4: Gross statistics for several different treebanks. Test
2Swa preposition IN 6 set OOV rate is computed using the following splits: ATB
and abbreviation NN 6 (Chiang et al., 2006); CTB6 (Huang and Harper, 2009); Ne-

conjunction CC 160 gra (Dubey and Keller, 2003); English, sections 2-21 (train)
afa connective particle RP 67 and section 23 (test).
“so then” abbreviation NN 22
' response conditioning particle  RP 11
subordinating conjunction IN 3

- 6 . - -
Table 3: Dev set frequencies for the two most significantdisylelds' But to its great advantage, it has a high

course markers in Arabic are skewed toward analysis as/&ti0 Of non-terminals/terminalg/(Constituents /
conjunction. u Length). Evalb, the standard parsing metric, is

biasedtoward such corpora (Sampson and Babar-

, . ,2003). Al ising is the low test set OOV
segmentation (Table 2). The ATB gives severaﬁZy ) Also surprising is the low test se

. - _fate given the possibility of morphological varia-
?'ﬁerf?t analyfses t%.thetg.e w%rdts _tto m(;lllctate t?]'ffion in Arabic. In general, several gross corpus
s O o 200 &5 "%atistics favor the ATB, so other factors must con-
coordinating and discourse separator TUNCHonSs Qfy, e 1o parsing underperformance.
wa (akaall ol 9) iNnto one analysis: conjunction
(Table 3). A better approach would be to disting 2 |nter-annotator Agreement
guish between these cases, possibly by drawi
on the vast linguistic work on Arabic connectives | ) =

vised learning task. In the initial release of the

(Al-Batal, 1990). We show that noun-noun vs. ) o
ATB, inter-annotator agreement was inferior to

discourse-level coordination ambiguity in Arabic her LDC banks (M . | 2008). T
is a significant source of parsing errors (Table 8cft er treebanks ( aamouri etg_., )- To
Improve agreement during the revision process,
a dual-blind evaluation was performed in which
10% of the data was annotated by independent
teams. Maamouri et al. (2008) reported agree-
31 GrossStatistics ment between the teams (measured with Eyalb) at

93.8% F1, the level of the CTB. But Rehbein and
Linguistic intuitions like those in the previous sec~an Genabith (2007) showed that Evalb should
tion inform language-specific annotation choicesyot be used as an indication of real difference—
The resulting structural differences between tregyy similarity—between treebanks.

banks can account for relative differences in pars- |nstead, we extend thevariation n-gram

ing performance. We compared the AT® tree- method of Dickinson (2005) to compare annota-
banks for Chinese (CTB6), German (Negra), anflon error rates in the WSJ and ATB. For a corpus
English (WSJ) (Table 4). The ATB is disadvan-c |et M be the set of tuplegn, |), wheren is an
taged by having fewer trees with longer averagg.gram with bracketing labdl If any n appears

n . . . .
g&qnnotatlon consistency Is Important in any super-

3 Treebank Comparison

5LDC A-E catalog numbers: LDC2008E61 (ATBplv4), SGenerative parsing performance is known to deteriorate
LDC2008E62 (ATBp2v3), and LDC2008E22 (ATBp3v3.1). with sentence length. As a result, Habash et al. (2006) devel-
We map the ATB morphological analyses to the shortenedped a technique for splitting and chunking long sentences.
“Bies” tags for all experiments. In application settings, this may be a profitable strategy.



Corpus Sample Error % NP NP
Trees Nuclei| n-grams| Type n-gram NN/\NP NN/\NP

WSJ 2-23| 43948 25041 746 | 12.0% 2.10% ws NG DTNP as N Re

ATB 23449 20292 2100 | 37.0% 1.76% Sun‘“m [ o [ \
(SR V-1l summit . 5 DTNNP

| | o
Table 5: Evaluation of 100 randomly sampled variation nu- sharm - Al-Shelkn SAm g
clei types. The samples from each corpus were indepen- (@) Al-gheikh

dently evaluated. The ATB has a much higher fraction of (b)

nuclei per tree, and a higher type-level error rate.
Figure 2: An ATB sample from the human evaluation. The
ATB annotation guidelines specify that proper nouns should

. i, . . be specified with a flat NP (a). But the city na@®rm Al-
in a corpus position without a bracketing Iab(':'I'Sheikh is alsoiDafa, hence the possibility for the incorrect

then we also addn,NI L) to M. We call the set annotation in (b).
of unique n-grams with multiple labels M the
variation nycla of'C.' ' 4 Grammar Development

Bracketing variation can result from either an-
notation errors or linguistic ambiguity. HumanWe can use the preceding linguistic and annota-
evaluation is one way to distinguish between th#on insights to build a manually annotated Ara-
two cases. Following Dickinson (2005), we ran-bic grammar in the manner of Klein and Manning
domly sampled 100 variation nuclei from each(2003). Manual annotation results in human in-
corpus and evaluated each sample for the presertegpretable grammars that can inform future tree-
of an annotation error. The human evaluators wefgank annotation decisions. A simple lexicalized
a non-native, fluent Arabic speaker (the first auPCFG with second order Markovization gives rel-
thor) for the ATB and a native English speaker fo@atively poor performance: 75.95% F1 on the test
the WSJ. set® But this figure is surprisingly competitive

Table 5 shows type- and token-level error rate¥ith a recent state-of-the-art baseline (Table 7).
for each corpus. The 95% confidence intervals for In our grammar, features are realized as annota-
type-level errors are (5580, 9440) for the ATB andions to basic category labels. We start with noun
(1400, 4610) for the WSJ. The results clearly infeatures since written Arabic contains a very high
dicate increased variation in the ATB relative taProportion of NPsgenitiveMark indicates recur-
the WSJ, but care should be taken in assessing th¥e NPs with a indefinite nominal left daughter
magnitude of the difference. On the one handnd an NP right daughter. This is the form of re-
the type-level error rate is not calibrated for thecursive levels inDafa constructs. We also add an
number of n-grams in the sample. At the samannotation for one-leveliDafa (onel evelldafa)
time, the n-gram error rate is sensitive to samplegPnstructs since they make up more than 75% of
with extreme n-gram counts. For example, one dhe iDafa NPs in the ATB (Gabbard and Kulick,
the ATB samples was the determinessa dhalik  2008). For all other recursive NPs, we add a
“that.” The sample occurred in 1507 corpus pocommon annotation to the POS tag of the head
sitions, and we found that the annotations wer@ ecursiveNPHead).
consistent. If we remove this sample from the Base NPs are the other significant category of
evaluation, then the ATB type-level error rises td10minal phrases.markBaseNP indicates these
only 37.4% while the n-gram error rate increasegon-recursive nominal phrases. This feature in-
to 6.24%. The number of ATB n-grams also fallscludes named entities, which the ATB marks with
below the WSJ sample size as the largest WSyflat NP node dominating an arbitrary number of

sample appeared in only 162 corpus positions. NNP pre-terminal daughters (Figure 2).
For verbs we add two features. First we mark

"Unlike Dickinson (2005), we strip traces and only con-any node that dominates (at any level) a verb
sider POS tags when pre-terminals are the only intervening—
nodes between the nucleus and its bracketing (e.g., unaries, 8We use head-finding rules specified by a native speaker
base NPs). Since our objective is to compare distributions aff Arabic. This PCFG is incorporated into the Stanford
bracketing discrepancies, we do not use heuristics to prurarser, a factored model that chooses a 1-best parse from the
the set of nuclei. product of constituency and dependency parses.



Feature i‘;‘é‘;s T;‘ggs 76F816 IndhAF1 termined by the category of the word that follows
recursiveNPHead | 3287 38 77.46 -+0.60 it. Because conjunctions are elevated in the parse
genitiveMark 3471 38 77.88 +0.42 trees when they separate recursive constituents,
splitPUNC 4221 47 7798 +0.10 : - -

markContainsVerb | 5766 47 79.16 +1.18 we choose the right sister msteagl of the category
markBaseNP 6586 47 795 +0.34 of the next word. We create equivalence classes
markOnelevelidafg 7202 47 79.83  +0.33 for verb, noun, and adjective POS categories.
splitIN 7595 94 80.48 +0.65

containsSVO 9188 94 80.66 +0.18 . .

splitcC 9492 124 80.87 +0.21 5 Standard Parsing Experiments

markFem 10049 141 80.95 +0.08

We compare the manually annotated grammar,
Which we incorporate into the Stanford parser, to
both the Berkeley (Petrov et al., 2006) and Bikel
(Bikel, 2004) parsers. All experiments use ATB
phrase narkContainsVerb). This feature has a parts 1-3 divided according to the canonical split
linguistic justification. Historically, Arabic gram- suggested by Chiang et al. (2006). Preprocessing
mar has identified two sentences types: those th@fe raw trees improves parsing performance con-
begin with a nominal{cew ¥ alexti), and those gjgeraply? We first discard all trees dominated by
that begin with a verbdaall alextt). Butfor-  x \hich indicates errors and non-linguistic text.
eign learners are often surprised by the verblesg ihe phrasal level, we remove all function tags
predications that are frequently used in Arabicgng traces. We also collapse unary chains with
Although these are technically nominal, they hav&yentical basic categories like NB NP. The pre-
become known as “equational” sentenc@®rk-  terminal morphological analyses are mapped to
ContainsVerb is especially effective for distin- {ne shortened “Bies” tags provided with the tree-
guishing root S nodes of equational sentences. Wg k. Finally, we add “DT” to the tags for definite
also mark all nodes that dominate an SVO conyouns and adjectives (Kulick et al., 2006).
figuration gontainsSVO). In MSA, SVO usually  The orthographic normalization strategy we use
appears in non-matrix clauses. is simplel® In addition to removing all diacrit-
Lexicalizing several POS tags improves perforl-cs’ we strip instances diTwed s gai, col-
mance. splitIN captures the verb/preposition id‘lapse variants odlif 1 to barealif, 11 and map Ara-
ioms that are widespread in Arabic. Althoughyic punctuation characters to their Latin equiva-
this feature helps, we encounter one consequenggis  \We retain segmentation markers—which
of variable word order. Unlike the WSJ corpusyre consistent only in the vocalized section of the
which has a high frequency of rules like VB yeepank—to differentiate between egp “they”
VB PP, Arabic verb phrases usually have lexiz g wa+ “their” Because we use the vocalized
calized intervening nodes (e.g., NP subjects angycjon, we must remove null pronoun markers.
direct objects). For example, we might have |, tapie 7 we give results for several evalua-
VP—VB NP PP, wherethe NPis the subject(j,, metrics. Evalb is a Java re-implementation

This annotation choice weakegslitIN. of the standard labeled precision/recall metfic.
The ATB gives all punctuation a single tag. For

parsing, this is a mistake, especially in the case °Both the corpus split and pre-processing code are avail-

of interrogativessplitPUNC restores the conven- able athttp://nip.stanford.edu/projects/arabic.shtml.
100ther orthographic normalization schemes have been

tion of the WSJ. We also mark all tags that doméuggested for Arabic (Habash and Sadat, 2006), but we ob-
inate a word with the feminine endirigtaa mar-  serve negligible parsing performance differences between
buuTa (mar kFeminine). these and the simple scheme used in this evaluation.

11 . : . .
. . L taTweel (=) is an elongation character used in Arabic
To differentiate between the coordinating an@cript to justify text. It has no syntactic function. Variants

discourse separator functions of conjunctions (Taf alif are inconsistently used in Arabic texts. Raif with

ble 3), we mark each CC with the label of itshamza, normalization can be seen as another level of devo-
. . . . ) calization.

right sister gplitCC). The intuition here is that 12For English, our Evalb implementation is identical to the
the role of a discourse marker can usually be denost recent reference (EVALB20080701). For Arabic we

Table 6: Incremental dev set results for the manually ann
tated grammar (sentences of lengttv0).



Leaf Ancestor Evalb Tag

Model System Length Corpus Sent ExactLP LR F1 %
Baseline 70 | 0.791 0.825 358 |80.37 79.36 79.86 95.58
Stanford (v1.6.3) all 0.773 0.818 358| 78.92 77.72 78.32 95.49
GoldPOS 70 0.802 0.836 452| 81.07 80.27 80.67 99.95

Baseline (Self-tag) 70 | 0.770 0.801 278|77.92 76.00 76.95 94.64
all 0.752 0.794 278| 76.96 75.01 75.97 94.63
Bikel (v1.2) Baseline (Pre-tag) 70 | 0.771 0.804 295| 78.35 76.72 77.52 95.68

all 0.752 0.796 295| 77.31 75.64 76.47 95.68
GoldPOS 70 | 0.775 0.808 309|78.83 77.18 77.99 96.60
(Petrov, 2009) all — — — | 76.40 75.30 75.85 —
Berkeley (Sep. 09) Baseline 70 | 0.809 0839 335 |8232 8163 8197 | 95.07
all 0.796 0.834 336| 81.43 80.73 81.08 95.02
GoldPOS 70 | 0.831 0.859 496|84.37 84.21 84.29 99.87

Table 7: Test set results. Maamouri et al. (2009b) evaluated the Baksér using the same ATB split, but only reported dev
set results with gold POS tags for sentences of leag#t0. The Bikel GoldPOS configuration only supplies the gold POS
tags; it does not force the parser to use them. We are unaware ofgsidts for the Stanford parser.

g5~ G G » with the number of exactly matching guess trees.

5.1 Parsing Modds

80 The Stanford parser includes both the manually
annotated grammag4) and an Arabic unknown
word model with the following lexical features:

75

1. Presence of the determingrAl
2. Contains digits
training trees 3. Ends with the feminine affix p
5000 10000 15000 4, Vari_ous verbal (e.g.|, &) and adjectival
suffixes (e.g.Av)

Figure 3: Dev set learning curves for sentence lengtirg.
All three curves remain steep at the maximum training sether notable parameters are second order vertical
size of 18818 trees. . .

Markovization and marking of unary rules.

Modifying the Berkeley parser for Arabic is

The Leaf Ancestor metric measures the cost aftraightforward. After adding a ROOT node to
transforming guess trees to the reference (SamgH trees, we train a grammar using six split-and-
son and Babarczy, 2003). It was developed in ranerge cycles and no Markovization. We use the
sponse to the non-terminal/terminal bias of Evalldefault inference parameters.
but Clegg and Shepherd (2005) showed that it is Because the Bikel parser has been parameter-
also a valuable diagnostic tool for trees with comized for Arabic by the LDC, we do not change the
plex deep structures such as those found in thefault model settings. However, when we pre-
ATB. For each terminal, the Leaf Ancestor metridag the input—as is recommended for English—
extracts the shortest path to the root. It then conwe notice a 0.57% F1 improvement. We use the
putes a normalized Levenshtein edit distance bésg-linear tagger of Toutanova et al. (2003), which
tween the extracted chain and the reference. Thgves 96.8% accuracy on the test set.
range of the score is between 0 and 1 (higher is
better). We report micro-averaged (whole corpus)-2 Discussion
and macro-averaged (per sentence) scores alonBe Berkeley parser gives state-of-the-art perfor-
— _ _ mance for all metrics. Our baseline for all sen-
add a constraint on the removal of punctuation, which has

single tag (PUNC) in the ATB. Tokens tagged as PUNC anfle_nCe lengths is 5.23% F1 higher than the best pre-
not discarded unless they consist entirely of punctuation. vious result. The difference is due to more careful



S-NOM NP NP NP

/\ NN NP NP ADJP NN NP
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|
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its (c) Berkeley (d) Bikel

(@) Reference

Figure 4: The constituerRestoring of its constructive and effective role parsed by the three different models (gold segmen-
tation). The ATB annotation distinguishes between verbal and nomindingsof maSdar process nominals. Like verbs,
maSdar takes arguments and assigns case to its objects, whereas it also datesmgiminal characteristics by, e.g., taking
determiners and headinDafa (Fassi Fehri, 1993). In the ATBslswt asta’ adah is tagged 48 times as a houn and 9 times
as verbal noun. Consequently, all three parsers prefer the noraeadihg. Table 8b shows that verbal nouns are the hardest
pre-terminal categories to identify. None of the models attach the attritadjeetives correctly.

pre-processing. However, the learning curves ialternative to a pipeline that prevents cascading
Figure 3 show that the Berkeley parser does natrrors by placing all segmentation options into
exceed our manual grammar by as wide a mathe parse chart. Recently, lattices have been used
gin as has been shown for other languages (Petr@yccessfully in the parsing of Hebrew (Tsarfaty,
2009). Moreover, the Stanford parser achieves ti#006; Cohen and Smith, 2007), a Semitic lan-
most exact Leaf Ancestor matches and tagging aguage with similar properties to Arabic. We ex-
curacy that is only 0.1% below the Bikel model,tend the Stanford parser to accept pre-generated
which uses pre-tagged input. lattices, where each word is represented as a finite
In Figure 4 we show an example of variationstate automaton. To combat the proliferation of
between the parsing models. We include a ligearsing edges, we prune the lattices according to
of per-category results for selected phrasal labelg, hand-constructed lexicon of 31 clitics listed in
POS tags, and dependencies in Table 8. The éhe ATB annotation guidelines (Maamouri et al.,
rors shown are from the Berkeley parser outpu009a). Formally, for a lexicoh and segments
but they are representative of the other two pars-€ L, O ¢ L, each word automaton accepts the

ing models. languagd “(O+1)I*. Aside from adding a simple
rule to correctalif deletion caused by the prepo-

6 Joint Segmentation and Parsing sition J, no other language-specific processing is
performed.

Although the segmentation requirements for Ara- Qur evaluation includes both weighted and un-
bic are not as extreme as those for Chinese, Ar@zeighted lattices. We weight edges using a
bic is written with certain cliticized prepositions, unigram |anguage model estimated with Good-
pronouns, and connectives connected to adjaceniring smoothing. Despite their simplicity, uni-
words. Since these are distinct syntactic Unit%ram Weights have been shown as an effective fea-
they are typically segmented. The ATB segmenre in segmentation models (Dyer, 2089)The
tation scheme is one of many alternatives. Untibint parser/segmenter is Compared to a pipe“ne
now, all evaluations of Arabic parsing—includingthat uses MADA (v3.0), a state-of-the-art Arabic
the experiments in the previous section—have agegmenter, configured to replicate ATB segmen-
sumed gold segmentation. But gold segmentatia@tion (Habash and Rambow, 2005). MADA uses
is not available in application settings, so a setan ensemble of SVMs to first re-rank the output of
menter and parser are arranged in a pipeline. Segdeterministic morphological analyzer. For each
mentation errors cascade into the parsing pha Bor his weighii tes the PCEG an |
placing an arifiial it on parsing performance. O 1S 1 weklung ket PCFG anmpoper
Lattice parsing (Chappelier et al., 1999) is aralso make the distribution improper.



Tag # gold % Tag # gold %
VBG 182 4884 JIR 134 92.83 Parent Head Modifer Dif #gold F1
Label | # gold F1 VN 163 60.37 DTNNS 1069 94.29 NP NP TAG R 946 0.54
ADJP 1216 59.45 VBN 352 72.42 DTJJ 3361 95.07 S S S R 708 0.57
SBAR 2918 69.81 DTNNP 932 83.48 NNP 4152 95.09 NP NP ADJP R 803 0.64
FRAG 254 72.87 JJ 1516 86.09 NN 10336 95.23 NP NP NP R 2907 0.66
VP 5507 78.83 ADJ_NUM 277 88.93 DTNN 6736 95.78 NP NP SBAR R | 1035 0.67
S 6579 78.91 VBP 2139  89.94| NOUN_QUANT 352 98.16 NP NP PP R 2713 0.67
PP 7516 80.93 RP 818 91.23 PRP 1366 98.24 VP TAG PP R | 3230 0.80
NP 34025 84.95 NNS 907 91.75 cC 4076 98.92 NP NP TAG L 805 0.85
ADVP 1093 90.64 DTJIR 78 92.41 IN 8676 99.07 VP TAG SBAR R 772 0.86
WHNP | 787 96.00 VBD 2580 92.42 DT 525 99.81 S VP NP L 961 0.87
(&) Major phrasal (b) Major POS categories (c) Ten lowest scoring (Collins,
categories 2003)-style dependencies occur-

ring more than 700 times

Table 8: Per category performance of the Berkeley parser on sentengths< 70 (dev set, gold segmentationja) Of

the high frequency phrasal categories, ADJP and SBAR are thestdodparse. We showed {2 that lexical ambiguity
explains the underperformance of these categof®s?OS tagging accuracy is lowest feaSdar verbal nouns (VBG,VN)
and adjectives (e.g., JJ). Richer tag sets have been suggestamtifelimg morphologically complex distinctions (Diab, 2007),
but we find that linguistically rich tag sets do not help parsifoyCoordination ambiguity is shown in dependency scores by
e.g.,(SS SR and(NP NP NP R. (NP NP PP Rand(NP NP ADJP R are bothiDafa attachment.

H H . LP LR F1 | SegFl TagF1 Coverage
Inpl'It tOken7 the Segmentatlon IS then performedSTANFORD(GO|d) 81.64 80.55 81.09 100.0 95.81| 100.0%

deterministically given the 1-best analysis. MADA —  —  — | 9767 — | 96.42%
MADA+STANFORD 79.44 7890 79.17 | 97.67 9427 | 96.42%
STANFORDJOINT 76.13 72.61 74.33 9412 90.13| 94.73%

Since guess and gold trees may now have dif-STANFORDIOINT+UNI | 77.09 74.97 76.0]1 96.26 92.23| 95.87%
ferent yields, the question of evaluation is comMrape 9: Dev set results for sentences of lengtA0. Cov-
plex. Cohen and Smith (2007) chose a metric likerage indicates the fraction of hypotheses in which the char-

SParseval (Roark et al., 2006) that first aligns th cter yield exactly matched the reference. Each model was
N able to produce hypotheses for all input sentences. In these

trees and then penalizes segmentation errors Wiglperiments, the input lacks segmentation markers, hence the
an edit-distance metric. But we follow the moreslightly different dev set baseline than in Table 6.

direct adaptation of Evalb suggested by Tsarfaty

(2006), who viewed exact segmentation as the Ul conclusion

timate goal. Therefore, we only score guess/gold

pairs with identicalcharacter yields, a condition By establishing significantly higher parsing base-

that allows us to measure parsing, tagging, ariines, we have shown that Arabic parsing perfor-

segmentation accuracy by ignoring whitespace. mance is not as poor as previously thought, but

remains much lower than English. We have de-

Table 9 shows that MADA produces a highscribed grammar state splits that significantly im-

quality segmentation, and that the effect of cagarove parsing performance, catalogued parsing er-

cading segmentation errors on parsing is onlyors, and quantified the effect of segmentation er-

1.92% F1. However, MADA is language-specificrors. With a human evaluation we also showed

and relies on manually constructed dictionarieghat ATB inter-annotator agreement remains low

Conversely, the lattice parser requires no linguigelative to the WSJ corpus. Our results suggest

tic resources and produces segmentations of cortiat current parsing models would benefit from

parable quality. Nonetheless, parse quality ibetter annotation consistency and enriched anno-

much lower in the joint model because a latticeation in certain syntactic configurations.
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