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Abstract. PageRank, the popular link-analysis algorithm for rankimdp pages,
assigns a query and user independent estimate of “impertanonveb pages.
Query and user sensitive extensions of PageRank, which bassset of bi-
ased PageRank vectors, have been proposed in order to @éredhe ranking
function in a tractable way. We analaytically compare thesnt approaches to
personalizing PageRank and discuss the tradeoffs of each on

1 Preiminaries

In this section we summarize the definition of PageRank [d]iatroduce the notation
we will use subsequently.

Underlying the definition of PageRank is the following baagsumption. A link
from a pageu € Web to a pagev € Web can be viewed as evidence thais an
“important” page. In particular, the amount of importancaferred orw by « is pro-
portional to the importance af and inversely proportional to the number of pages
points to. Since the importance @fs itself not known, determining the importance for
every page € Web requires an iterative fixed-point computation.

We next describe an equivalent formulation in terms of a camevalk on the di-
rected Web graply. Letu — v denote the existence of an edge frarto v in G. Let
deg(u) be the outdegree of pagein G. Consider a random surfer visiting paget
timek. In the next time step, the surfer chooses a ngdeom amongu’s out-neighbors
{v|u — v} uniformly at random. In other words, at tinket 1, the surfer lands at node
v; € {vju — v} with probability1/ deg(u).

The PageRank of a pagés defined as the probability that at some particular time
stepk > K, the surfer is at page For sufficiently large/, and with minor modifi-
cations to the random walk, this probability is unique,sthated as follows. Consider
the Markov chain induced by the random walk@nwhere the states are given by the
nodes inGG, and the stochastic transition matrix describing the itemsfrom i to j is
given by P with P;; = 1/deg(¢). If P is aperiodic and irreducible, then the Ergodic
Theorem guarantees that the stationary distribution of¢hdom walk is unique [6]. In
the context of computing PageRank, the standard way of ergstirat P is irreducible
is to add a new set of complete outgoing transitions, withlisinzansition probabilities,
to all nodes, creating a complete (and thus an aperiodic and $fromgnected) transi-
tion graph! Let F be then x n rank-one row-stochastic matri® = ev”, wheree is

1 We ignore here the issue déngling nodes, e.g., nodes with outdegree 0. See [5] for a standard
way of dealing with this issue.



the n-vector whose elements areall= 1 andv is ann-vector whose elements are all
non-negative and sum to 1. We define a new, irreducible Mackain A” as follows?

A=[cP+(1-c)E)" (1)

In terms of the random walk, the effect &fis as follows. At each time step, with
probability (1 — ¢), a surfer visiting any node will jump to a random Web pageh@at
than following an outlink). The destination of the randomjuis chosen according to
the probability distribution given im. Artificial jumps taken because @f are referred
to asteleportation.

When the vectow is nonuniform, so that’ adds artificial transitions with nonuni-
form probabilities, the resultant PageRank vector can asdul to prefer certain kinds
of pages. For this reason, we refert@s thepersonalization vector.

2 Approachesto Personalizing PageRank

Let n be the number of pages on the web. k€t) denote then-dimensional per-
sonalized PageRank vector corresponding tortidimensional personalization vec-
tor v. (v) can be computed by solving the following eigenvalue problerhere
A=cPT +(1-c)ve™:

T = Az (2)
Rewriting the above, we see that
x=cPle 4+ (1-c)w (3)
x—cPTe=(1-cv 4)
(I —cPx =(1-c)v (5)

I — cP is strictly diagonally dominant, so thdt— cP is invertible. Therefore(/ —
cP)T =TI — cP7 is also invertible. Thus, we get that

x=(1-c)I—-cP) v (6)

LetQ = (1—c)(I —cPT)~1. By lettingv = e;, wheree; is theith elementary vectér
we see that théth column of the matrix@ is xz(e;), i.e., the personalized PageRank
vector corresponding to the personalization veetor

The columns of)) comprise a complete basis for personalized PageRank sector
as any personalized PageRank vector can be expressed agex combination of
the columns ofQ). For any personalization vecter, the corresponding personalized
PageRank vector is given layv. This formulation corresponds to the original approach
to personalizing PageRank suggested by Page et al. [7]ltbasdor personalization
on arbitrary sets of pages.

2 We define the chain in terms of the transpose so that we cansdisight (rather than left)
eigenvectors.
3i.e.,e; has a 1in theth component, and zeros elsewhere



Unfortunately, this first approach, which uses the compbetsis for personalized
PageRank, is infeasible in practice. Computing the densexr@ offline is impracti-
cal, as is computing(v) at query time using the Power Method.

However, we can compute low-rank approximationgXfdenoted as), that still
allow us to achieve a part of the benefit of fully personali2adeRank. Rather than us-
ing a full basis (i.e., the columns @f), we can choose to use a reduced basis, e.g., using
only k < n personalized PageRank vectors, each of which is a colummdoe gen-
erally, a convex combination of the columns)@®@f In this case, we cannot express all
personalized PageRank vectors, but only those correspgialiconvex combinations
of the PageRank vectors in the reduced basis set:

z(w) = Qw (7)

wherew is a stochastié-vector representing weights over théasis vectors.

The following three approaches each approxingateith some approximation,
although they differ substantially in their computatiorejuirements and in the granu-
larity of personalization achieved.

Topic-Sensitive PageRank. The Topic-Sensitive PageRank scheme proposed by Haveli-
wala [2] computes an x k approximation tay usingk topics, e.g., the 16 top level
topics of the Open Directory [1]. Columiof Q is given byx(v;), wherev; is a dense
vector generated using a classifier for tapjc¢ (v;); represents the (normalized) degree
of membership of pageto topicj. Note that in this scheme, each columr(pfnust be
generated independently, so thatust be kept fairly small (e.gk, = 16). This scheme
uses a fairly coarse basis set, making it more suitable falulating the rankings based
on the topic of the query and query context, rather than fdy tfpersonalizing” the
rankings to a specific individual. The use of a good set ofaggmtative basis topics
ensures that the approximatighwill be useful.

In Topic-Sensitive PageRank), is generated completely offline. Convex combina-
tions are taken at query time, using the context of the quecpinpute the appropriate
topic weights.

In terms of the random surfer model of PageRank, this schestigats the choice
of teleportation transitions so that the random surfer elpbrt to a topid’; with some
probabilityw;, followed by a teleport to a particular pageith probability (v;);.

Modular PageRank. The Modular PageRank approach proposed by Jeh and Widom [3]
computes am x k matrix using thek columns of@ corresponding to highly ranked
pages. In addition, that work provides an efficient schemedmputing thesé vec-

tors, in whichpartial vectors are computed offline and then composed at query time,
making it feasible to have > 10*.

Interms of the random surfer model of PageRank, this schestgats the choice of
teleportation transitions so that the random surfer captet to certain highly ranked
pages, rather than to arbitrarily chosen sets of pages.

A direct comparison of the relative granularity of this apgch to the topic-sensitive
approach is difficult; although the basis set of persondlRageRank vectors is much
larger in this scenario, they must come from personaliratiEctorsv with singleton



nonzero entries corresponding to highly ranked pages. Memvthe larger size of the
basis set does allow for finer grained modulation of rankings

BlockRank. The BlockRank algorithm proposed by Kamvar et al. [4] cotepam x k
matrix corresponding té “blocks”. E.g, in that work, each block corresponds to a host
such asvww-db.stanford.edu or nip.stanford.edu. That work computes a matri@

in which columnj corresponds tec(v;), wherev; represents théocal PageRank of
the pages in block. The BlockRank algorithm is able to exploit the Web's inhgre
block structure to efficiently compute many of these bloclemmted basis vectors, so
thatk > 103 is feasible.

In terms of the random surfer model of PageRank, this schestaats the choice
of teleportation transitions so that the random surfer elapbrt to blockB; with prob-
ability w;, followed by a teleport to a particular pagén block B; with probability
(v):, rather than to arbitrary sets of pages.

Again, a direct comparison of the granularity of this appfowith the previous
two is difficult. However, the BlockRank approach allows #olarge number of basis
vectors without the restriction that the underlying peedation vectors be derived
from highly ranked pages.
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