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Abstract

Multi-task learning is the problem of maxi-
mizing the performance of a system across a
number of related tasks. When applied to mul-
tiple domains for the same task, it is similar to
domain adaptation, but symmetric, rather than
limited to improving performance on a target
domain. We present a more principled, better
performing model for this problem, based on
the use of a hierarchical Bayesian prior. Each
domain has its own domain-specific parame-
ter for each feature but, rather than a constant
prior over these parameters, the model instead
links them via a hierarchical Bayesian global
prior. This prior encourages the features to
have similar weights across domains, unless
there is good evidence to the contrary. We
show that the method of (Daumé III, 2007),
which was presented as a simple “prepro-
cessing step,” is actually equivalent, except
our representation explicitly separates hyper-
parameters which were tied in his work. We
demonstrate that allowing different values for
these hyperparameters significantly improves
performance over both a strong baseline and
(Daumé llIl, 2007) within both a conditional
random field sequence model for named en-
tity recognition and a discriminatively trained
dependency parser.

Introduction

The goal ofmulti-task learnings to improve perfor-
mance on a set of related tasks, when provided wittor each domain, the obvious first attempt at domain
(potentially varying quantities of) annotated data foadaptation is to build a system from the union of the
each of the tasks. Itis very closely relateditimain
adaptation a far more common task in the naturalbaseline. In this paper we propose a more principled,
language processing community, but with two priformal model of domain adaptation, which not only

mary differences. Firstly, in domain adaptation theutperforms previous work, but maintains attractive

different tasks are actually just different domains.
Secondly, in multi-task learning the focus is on im-
proving performance acrosal tasks, while in do-
main adaptation there is a distinction betwsenrce
data andargetdata, and the goal is to improve per-
formance on the target data. In the present work we
focus on domain adaptation, but like the multi-task
setting, we wish to improve performance acrafis
domains and not a singtargetdomains. The word
domainis used here somewhat loosely: it may refer
to a topical domain or to distinctions that linguists
might term mode (speech versus writing) or regis-
ter (formal written prose versus SMS communica-
tions). For example, one may have a large amount
of parsed newswire, and want to use it to augment
a much smaller amount of parsed e-mail, to build a
higher quality parser for e-mail data. We also con-
sider the extension to the task where the annotation
is not the same, but is consistent, across domains
(that is, some domains may be annotated with more
information than others).

This problem is important because it is omni-
present in real life natural language processing tasks.
Annotated data is expensive to produce and limited
in quantity. Typically, one may begin with a con-
siderable amount of annotated newswire data, some
annotated speech data, and a little annotated e-mail
data. It would be most desirable if the aggregated
training data could be used to improve the perfor-
mance of a system on each of these domains.

From the baseline of building separate systems

training data, and we will refer to this as a second



performance characteristics in terms of training antb have a high value, and this will in turn influence

testing speed. We also show that the domain adaptifte top-level parameter to have a high value, which

tion work of (Daumé IlIl, 2007), which is presentedwill then influence the American newswire to have

as an ad-hoc “preprocessing step,” is actually equiva high value, because there will be no evidence in

alent to our formal model. However, our representathe American data to override the prior. Conversely,

tion of the model conceptually separates some of thitsome feature is highly indicative aééName=true

hyperparameters which are not separated in (Daunfié the British newswire, and osName=falsefor

lll, 2007), and we found that setting these hyperpahe American newswire, then the British parameter

rameters with different values from one another wawill have a high (positive) value while the American

critical for improving performance. parameter will have a low (negative) value, because
We apply our model to two tasks, named entityn both cases the domain-specific evidence will out-

recognition, using a linear chain conditional randonweigh the effect of the prior.

field (CRF), and dependency parsing, using a dis-

criminative, chart-based model. In both cases, we'2 Formal Model

find that our model improves performance over botfour domain adaptation model is based on a hierar-

baselines and prior work. chical Bayesian prior, through which the domain-
specific parameters are tied. The model is very
2 Hierarchical Bayesian Domain general-purpose, and can be applied to any discrim-
Adaptation inative learning task for which one would typically

21 Motivation puft a prior with amean over the parameters. We will
build up to it by first describing a general, single-
We call our modelhierarchical Bayesian domain domain, discriminative learning task, and then we
adaptation because it makes use of a hierarchicalll show how to modify this model to construct
Bayesian prior. As an example, take the case fyr hierarchical Bayesian domain adaptation model.
building a logistic classifier to decide if a word is|n a typical discriminative probabilistic model, the
part of a person’s name. There will be a paramrearning process consists of optimizing the log con-
eter (weight) for each feature, and usually there igjtional likelihood of the data with respect to the pa-
a zero-mean Gaussian prior over the parameter vahmeters,%ig(Z; 8). This likelihood function can
ues so that they don't get too largeln the stan- take on many forms: logistic regression, a condi-
dard, single-domain, case the log likelihood of theional Markov model, a conditional random field, as
data and prior is calculated, and the optimal pawell as others. It is common practice to put a zero-
rameter values are found. Now, let's extend thisnean Gaussian prior over the parameters, leading to

model to the case of two domains, one containinghe following objective, for which we wish to find
American newswire and the other containing Britishhe optimal parameter values:

newswire. The data distributions will be similar for 5

the two domains, but not identical. In our model, argmax| Loig(2;8) — Z 9_| @)

we have separate parameters for each feature in each 0 9 207

domain. We also have a top level parameter (al.sprom a graphical models perspective, this looks like
to be Iearr_1ed) fpr each feature. For each OIC?m"’"rlji’igure 1(a), wheret is the mean for the prior (in our
the Gaussian prior over the parameter values is no se, zerojo? is the variance for the priof are the

centered around these top level parameters inste% rameters, or feature weights, agis the data
0{ aroc;md zertcr:. A:[zerlo-m:aan Gaus;suan plrlo;rlfs the ow we will extend this single-domain model into
placed over the top level parameters. In IS €X3 - domain model (illustrated in Figure 1(b)).

ample,_lf some f_e_ature, sazyc_)rd: Nigel, only aP-  Each feature weigh8, is replicated once for each
pears in the Bm'Sh. newswire, the _CorreSponmeiomain, as well as for a top-level set of parame-
weight for the American newswire will have a SIM-yars. We will refer to the parameters for domain

ilar value. This happens because the evidence B as 64, with individual components, ;, the top-

the British domain will push the British parametery, q| parameters a8., and all parameters collec-

IThis can be regarded as a Bayesian prior or as weight re§ively as 8. All of the power of our model stems
ularization; we adopt the former perspective here. from the relationship between these sets of param-
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Figure 1:(a) No domain adaptation. The model paramet@rsre normally distributed, with mean (typically zero)
and variancer?. The likelihood of the dataz, is dependent on the model parameters. The form of the dsttébdition
depends on the underlying model (e.qg., logistic regressioa CRF).(b) Our hierarchical domain adaptation model.
The top-level parameter8,, are normally distributed, with mean (typically zero) and variance?. There is a plate
for each domain. Within each plate, the domain-specificrpatars,8y are normally distributed, with mea),. and
varianceog. (c) Our hierarchical domain adaptation model, with an extrzll@f structure. In this example, the
domains are further split into text and speech super-dosnaach of which has its own set of parametégg Gnd iy
for text andBsp andosp for speech) 8y is normally distributed with mea&y; if domaind is in the text super-domain,
and6s, if it is in the speech super-domain.

eters. First, we place a zero-mean Gaussian prigreater effect on the parameter value.

over the top level paramete. Then, these top  To achieve this, we modify the objective func-
level parameters are used as the mean for a Gausstam. We now sum over the log likelihood for all do-
prior placed over each of the domain-specific paranmains, including a Gaussian prior for each domain,
etersfy. These domain-specific parameters are thdmut which is now centered arour®d, the top-level

the parameters used in the original conditional logarameters. Outside of this summation, we have a
likelihood functions for each domain. The domain-Gaussian prior over the top-level parameters which
specific parameter values jointly influence an apprds identical to the prior in the original model:

priate value for the higher-level parameters. Con-

vers&_aly, the higher-level pa_lrameters will largely deyhier(@; 6) = )
termine the domain-specific parameters when there 6.2 0.2

is little or no evidence from within a domain, but can Lorig(Z4; 64) — Z (6ai —6:1)7 ) _ Z (6.)
be overriden by domain-specific evidence when it 20§ 202
clearly goes against the general picture (for instan¢ghere 02
Leedsis normally alocation but within thesports
domain is usually amrganization(football team)).

and o? are variances on the priors over
the parameters for all the domains, as well as the
top-level parameters. The graphical models repre-
The beauty of this model is that the degree of insentation is shown in Figure 1(b).
fluence each domain exerts over the others, for eachOne potential source of confusion is with respect
parameter, is based on the amount of evidence eatththe directed or undirected nature of our domain
domain has about that parameter. If a domain hamlaptation model, and the underlying model of the
a lot of evidence for a feature weight, then that evidata. Our hierarchical Bayesian domain adaptation
dence will outweigh the effect of the prior. However,model isdirected as illustrated in Figure 1. How-
when a domain lacks evidence for a parameter ttever, somewhat counterintuitively, the underlying
opposite occurs, and the prior (whose value is deteferiginal) model of the data can be eithdirected
mined by evidence in the other domains) will have ar undirected and for our experiments we use undi-



rected, conditional random field-based models. Th2&.3 Model Generalization

directed domain adaptation model can be viewegha model as presented thus far can be viewed
as a model of the parameters, and those paramelgr 5 two level tree, with the top-level parameters
weights are used by the underlying data model. 19t the root, and the domain-specific ones at the
Figure 1, the entire data model is represented by |gaves. However, it is straightforward to generalize
single node 7, conditioned on the paramete&or  he model to any tree structure. In the generalized
84. The form of that model can then be almost anyyesion, the domain-specific parameters would still

thing, including an undirected model. _ be at the leaves, the top-level parameters at the root,
~ From an implementation perspective, the objedy; new mid-level parameters can be added based
tive function is not much more difficult to implement 5, peliefs about how similar the various domains
than the original single-domain model. For all of ourye  For instance, if one had four datasets, two of
experiments, we optimized the log likelihood usingyhich contained speech data and two of which con-
L-BFGS, which requires the function value and pargined newswire, then it might be sensible to have
tial derivatives of each parameter. The new partiglyq sets of mid-level parameters, one for the speech
derivatives for the domain-specific parameters (BWia(a and one for the newswire data, as illustrated in
not the top-level parameters) utilize the same pagigyre 1(c). This would allow the speech domains

tial derivatives as in the original model. The onlyig influence one another more than the newswire do-
change in the calculations is with respect to the primains. and vice versa.

ors. The partial derivatives for the domain-specific

parameters are: 2.4 Formalization of (Daume Ill, 2007)
0Lier(2,0)  0%4(Z4,64) 6aj— 6., As mentioned earlier, our model is equivalent to that
904 = 904, - adz 3) presented in (Daumé Ill, 2007), and can be viewed

o as a formal version of his modeél.In his presenta-
and the derivatives for the top level parametérs ijon, the adapation is done through feature augmen-
are. tation. Specifically, for each feature in the original

0 Lhier(2;6) 6. — B4; 6., version, a new version is created for each domain, as
T 86 Z_ = (4)  well as a general, domain-independent version of the
' feature. For each datum, two versions of each orig-
This function is convex. Once the optimal paraminal feature are present: the version for that datum’s
eters have been learned, the top level paramete#emain, and the domain independent one.
can be discarded, since the runtime model for each The equivalence between the two models can be
domain is the same as the original (single-domairghown with simple arithmetic. Recall that the log
model, parameterized by the parameters learned ftikelihood of our model is:
that domain in the hierarchical model. However, itg (

. 2l
o o?

6 i_e*i 2 G*J 2
forig(%?ed)‘z( d7za§ . >_Z (20*3

may be useful to retain the top-level parameters fo

use in adaptation to further domains in the future. _ _
In our model there arel extra hyper-parameters We now introduce a new variablgy = 64 — 0., and

which can be tuned. These are the varianggsor plug it into the equation for log likelihood:

each domain. When this value is large then the priog . (Pgi)? (6,i)?

has little influence, and when set high enough will b Zorig(Za; Ya + 6,) lz 203 - IZ 202

equivalent to training each model separately. When
a g P y The result is the model of (Daumé Ill, 2007), where

this value is close to zero the prior has a strong inh he d ; it iah d
fluence, and when it is sufficiently close to zero the e yq are the omain-specitic eature welg s, an
4 are the domain-independent feature weights. In

it will be equivalent to completely tying the param- . i 2 2
eters, such thaly, ; = 6, for all domains. Despite his formulation, the variancegj = o for all do-

having many more parameters, for both of the taskZainsd-

on which we performed experiments, we found that |1iS Separation of the domain-specific and inde-
fendent variances was critical to our improved per-

our model did not take much more time to train tha Wh ) G . ior th
a baseline model trained on all of the data concaté2'™mance. en using a Gaussian prior there are

nated together. 2Many thanks to David Vickrey for pointing this out to us.



two parameters set by the user: the mgan{usu- #Train  #Test

ally zero), and the varianceg?. Technically, each Words _ Words

of these parameters is actually a vector, with an en- MUC-6 165082 15032

try for each feature, but almost always the vectors '\C/'(l)JI\CIZLZ 2%9;2%41 22322

are uniform and the same parameter is used for each - el

feature (there are exceptions, e.g. (Lee etal., 2007) gble 1: Number of wo_rds in the Fr_amlng and test sets for
Because Daumé Il (2007) views the adaptation a ach of the named entity recognition datasets.

merely augmenting the feature space, each of h&s o
. . oNLL has four classesperson organization lo-
features has the same prior mean and variance, rg-

gardless of whether it is domain specific or indepengatlon’ andmisc MUC data has seven classeer-

dent. He could have set these parameters diﬁerent&c’gngrg_arﬂgag?/grlg Ca}:]og]gfgiggtggfé:;n; a;r?
but he did no In our presentation of the model, y y b P

- . . son organization and location), but CoNLL has
we explicitly represent different variances for each ne additional class and MUG has four additional

domain, as well as the top level parameters. W
Classes.

founc_zl _that specifying d_|ffgrent values forth_e d"ma'f‘ The differences in the label sets led us to perform
specific versus domain independent variances sig-

L ) OHNO sets of experiments for the baseline and hier-
nificantly improved performance, though we foun

no gains from using different values for the differ-f'JIrChICaI Bayesian models. In the first set of exper-

. e . iments, at training time, the model allows any la-
ent domain specific variances. The values were s .
el from the union of the label sets, regardless of
based on development data.

whether that label was legal for the domain. At test
3 Named Entity Recognition tim_e, we wo_uld ign_ore guesses made by the model
] ) ] which were inconsistent with the allowed labels for
For our first set of experiments, we used a linear 5t qomairtt In the second set of experiments, we
chain, conditional random field (CRF) model,regtricted the model at training time to only allow
trained for named entity recognition (NER). The USeq4) |abels for each domain. At test time, the do-
of CRFs for sequence modeling has become stagy,in was specified, and the model was once again

dard so we will omit the model details; good explayegtricted so that words would never be tagged with
nations can be found in a number of places (Lafferty |5pel outside of that domain’s label set.

et al., 2001; Sutton and McCallum, 2007). Our fea-
tures were based on those in (Finkel et al., 2005). 3.2 Experimental Results and Discussion

31 Data In our experiments, we compared our model to sev-

) eral strong baselines, and the full set of results is in
We used three named entity datasets, from thgspie 2. The models we used were:

CoNLL 2003, MUC-6 and MUC-7 shared tasks.
CoNLL is British newswire, while MUC-6 and TARGET ONLY. Trained and tested on only the data
MUC-7 are both American newswire. Arguably for that domain.

MUC-6 and MUC-7 should not count as separat@, || para. Trained and tested on data from all do-
domains, but because they were annotated sepa- mains, concatenated into one large dataset.
rately, for different shared tasks, we chose to treat

them as such, and feel that our experimental resuItAéLL DATA_*' Same as AL DATA, but restricted .
justify the distinction. We used the standard train possible labels for each word based on domain.
and test sets for each domain, which for CoNLL corDAUMEOQ7. Trained and tested using the same tech-
responds to the (more difficult) testb set. For details ~ hique as (Daumé Ill, 2007). We note that they
about the number of training and test words in each ~ present results using per-token label accuracy,
dataset, please see Table 1. while we used the more standard entity preci-

One interesting challenge in dealing with both  sion, recall, and F score (as in the CoNLL 2003
CoNLL and MUC data is that the label sets differ. ~ shared task).

3Although he alludes to the potential for something similar ~ 4We treated them identically to the background symbol. So,

in the last section of his paper, when discussing the kemaeli for instance, labelling a word datein the CoNLL data had no
tion interpretation of his approach. effect on the score.




Named Entity Recognition HIER BAYES significantly outperformed all of the

Model | Precision Recall F1 baselines (not including R BAYES*) with greater
MUC-6 than 95% confidence.
TARGETONLY | 86.74  80.10 83.29 For both the HER BAYES and DAUMEO7 mod-
ALL DATA* 85.04 83.49 84.26
els, we found that performance was better for the
ALL DATA 86.00 82.71 84.32 . . . . .
DAUMEOT* 8783 8341 8556 variant which did not restrict possible labels based
DAUMEO7 87.81 8223 85.46 on the domain, while the & DATA model did ben-
HIER BAYES* 8859 8497 86.74 efit from the label restriction. For IR BAYES and
HIER BAYES 88.77 8514 86.92 DAuMEQ7, this result may be due to the structure
MUC-7 of the models. Because both models have domain-
TARGET ONLY 81.17 70.23 75.30 specific features, the models likely learned that these
ALL DATA* 81.66 76.17 78.82 labels were never actually allowed. However, when
ALL DATA 82.20 70.91 76.14 a feature does not occur in the data for a particular
DAUMEOQT7* 8333 7542 79.18 domain, then the domain-specific parameter for that
DAUMEO7 83.51 7563 79.37 feature will have positive weight due to evidence

HIER BAYES* 82.90  76.95 79.82 present in the other domains, which at test time can

HIER BAYES CSc?f\llle 7702 79.98 lead to assigning an illegal label to a word. This
TARGET ONLY T 8177 8513 information that a word may be of some other (un-
" known to that domain) entity type may help prevent
ALL DATA 86.34 84.45 85.38 . .
ALL DATA 86.58 83.90 85.22 _the model from mls_la_\bellng the Wor(_j. For example,
DAUMEOQ7* 86.09 8506 8557 in CoNLL, nationalities, such akaqi and Ameri-
DAUMEO7 86.35 85.26 85.80 can, are labeled amisc If a previously unseen na-
HIER BAYES* 86.33 85.06 85.69 tionality is encountered in the MUC testing data, the
HIER BAYES 86.51 85.13 85.81 MUC model may be tempted to label is deeation,

Table 2: Named entity recognition results for each of th®ut this evidence from the CoNLL data may prevent
models. With the exception of thesRGET ONLY model, that, by causing it to instead be labelmisg a label
all three datasets were combined when training each @fhich will subsequently be ignored.
the models. In typical domain adaptation work, showing gains
i is made easier by the fact that the amount of train-
DAUMEO7*. Same as BUMEQ7, but restricted i gata in theargetdomain is comparatively small.
possible labels for each word based on domaiRyjthin the multi-task learning setting, it is more
HIER BAYES. Our hierarchical Bayesian domainchallenging to show gains over the A DATA base-
adaptation model. line. Nevertheless, our results show that, so long as
HIER BAYES*. Same as HER BAYES, but re- the amount of data in each domain is not widely dis-

stricted possible labels for each word based oparate, it is possible to achieve gains on all of the
the domain. domains simultaneously.

For all of the baseline models, and for the togd Dependency Parsing
level-parameters in the hierarchical Bayesian modejl,
we usedo = 1. For the domain-specific parameters, "
we usedoy = 0.1 for all domains. We also tested our model on an untyped depen-

The HER BAYES model outperformed all base- dency parsing task, to see how it performs on a more
lines for both of the MUC datasets, and tied withstructurally complex task than sequence modeling.
the DauMEOQ7 for CoNLL. The largest improvement To our knowledge, the discriminatively trained de-
was on MUC-6, where R BAYES outperformed pendency model we used has not been previously
DAUMEOQ7*, the second best model, by86%. This published, but it is very similar to recent work on
improvement is greater than the improvement madgiscriminative constituency parsing (Finkel et al.,
by that model over the AL DATA* baseline. To as- 2008). Due to space restrictions, we cannot give a
sess significance we used a document-level pairedmplete treatment of the model, but will give an
t-test (over all of the data combined), and found thadverview.

1 Parsing Model



We built a CRF-based model, optimizing the like-parent, dependent (or none, if it is a stopping deci-
lihood of the parse, conditioned on the words andion), direction of attachment, whether there is a pre-
parts of speech of the sentence. At the heart ofious dependent in that direction, and the words and
our model is the Eisner dependency grammar chanparts of speech of the sentence. We used the same
parsing algorithm (Eisner, 1996), which allows forfeatures as (McDonald et al., 2005), augmented with
efficient computation of inside and outside scoresnformation about whether or not a dependent is the
The Eisner algorithm, originally designed for gen-irst dependent (information they did not have).
erative parsing, decomposes the probability of a de-
pendency parse into the probabilities of each attach-2 Data

ment of a dependent to its parent, and the prOb‘iﬁ‘—"or our dependency parsing experiments, we used

_tl)_irl]ities of Ea%q_parent séoppin%_tfikin% depﬁndehr?lt ‘DC2008T04 OntoNotes Release 2.0 data (Hovy
ese probabilities can be conditioned onthe chilqy, », 5006). This dataset is still in development,

parent, and direction of the dependency. We use d includes data from seven different domains, la-

a slight modi_fi_cation of the algori_thm which allows beled for a number of tasks, including PCFG trees.
each probability to also be conditioned on wheth he domains span both newswire and speech from
there is a previous dependent. While the unmodifieﬁ1u|tiple sources. We converted the PCEG trees

version of the algorithm includes stopping prObabiI"mto dependency trees using the Collins head rules

ities, conditioned on the parent and direction, theYCoIIins 2003). We also omitted the WSJ portion
have no |mpac_t on which parse for a particular STt the data, because it follows a different annotation
tence is most likely, because all words must eventls. - me from the other domaifsFor each of the

ally stop taking dependents. However, in the rnOdIFemaining six domains, we aimed for an 75/25 data

fied version, the stopping probability is also ConOIi'split, but because we divided the data using the pro-

tioned on yvhether or not there is a previous deper\'ﬁded sections, this split was fairly rough. The num-
dent, so this probability does make a difference.

) ) i ber of training and test sentences for each domain
While the Eisner algorithm computes locally nor-5r¢ gpecified in the Table 3, along with our results.

malized probabilities for each attachment decision,

our model computes unnormalized scores. From 3 Experimental Results and Discussion

a graphical models perspective, our parsing model _ _
is undirected, while the original model is directed. e compared the same four domain adaptation

The score for a particular tree decomposes the sarfig?dels for dependency parsing as we did for the
way in our model as in the original Eisner model"@med entity experiments, once again seting:

but it is globally normalized instead of locally nor- 1-0 @ddq = 0.1. Unlike the named entity experi-
malized. Using the inside and outside scores we cdRents however, there were no label set discrepencies

compute partial derivatives for the feature weightsPetween the domains, so only one version of each
as well as the value of the normalizing constanomain adaptation model was necessary, instead of

needed to determine the probability of a particulaf® two versions in that section.

parse. This is done in a manner completely analo- Our full dependency parsing results can be found
gous to (Finkel et al., 2008). Partial derivatives andn Table 3. Firstly, we found that &umeQ7, which
the function value are all that is needed to find th&ad outperformed the IA. DATA baseline for the

optimal feature weights using L-BFGS. sequence modeling task, performed worse than the

Features are computed over each attachment ants———— .
P "Specifically, all the other domains use the “new” Penn

stopping decision, and can be conditioned on thﬁeebank annotation style, whereas the WSJ data is stitlén t
- “traditional” annotation style, familiar from the past dele’s
5The dependencies themselves are sfitected in both  work in Penn Treebank parsing. The major changes are in
cases, itis just the underlying graphical model used to agenp hyphenation and NP structure. In the new annotation style,
the likelihood of a parse which changes from a directed modehany hyphenated words are separated into multiple toketis, w
to an undirected model. a new part-of-speech tag given to the hyphens, and leftward-
6In (Finkel et al., 2008) we used stochastic gradient descebranching structure inside noun phrases is indicated byofise
to optimize our weights because our function evaluationt@as a new NML phrasal category. The treatment of hyphenated
slow to use L-BFGS. We did not encounter this problem in thisvords, in particular, makes the two annotation styles issn
setting. tent, and so we could not work with all the data together.



Dependency Parsing

Training Testing BRGET ALL HIER
Range # Sent Range # Sent NG DATA DAUMEQO7  BAYES
ABC 0-55 1195 56-69 199 83.32%88.97%  87.30% 88.68%
CNN 0-375 5092 376-437 1521 85.53% 87.09%  86.41987.26%
MNB 0-17 509 18-25 245 77.06% 86.41%  84.70%86.71%
NBC 0-29 552 30-39 149 76.21%85.82%  85.01% 85.32%
PRI 0-89 1707 90-112 394 87.65%  90.28% 89.52%00.59%

VOA 0-198 1512 199-264 383 89.17%92.11%  90.67%  92.09%

Table 3: Dependency parsing results for each of the domaiptation models. Performance is measured as unlabeled
attachment accuracy.

baseline here, indicating that the transfer of inforBayesian priors to tie parameters across multiple,
mation between domains in the more structurallgimilar tasks. Evgeniou et al. (2005) present a sim-
complicated task is inherently more difficult. Ourilar model, but based on support vector machines,
model's gains over the A DATA baseline are to predict the exam scores of students. Elidan et
quite small, but we tested their significance using al. (2008) make us of amndirectedBayesian trans-
sentence-level paired t-test (over all of the data confer hierarchy to jointly model the shapes of differ-
bined) and found them to be significantmt 107°. ent mammals. The complete literature on related
We are unsure why some domains improved whilenulti-task learning is too large to fully discuss here,
others did not. It is not simply a consequence dbut we direct the reader to (Baxter, 1997; Caruana,
training set size, but may be due to qualities of th&997; Yu et al., 2005; Xue et al., 2007). For a more

domains themselves. general discussion of hierarchical priors, we recom-
mend Chapter 5 of (Gelman et al., 2003) and Chap-
5 Related Work ter 12 of (Gelman and Hill, 2006).

We already discussed the relation of our work t .
(Daumeé lll, 2007) in Section 2.4. Another piece o Conclusion and Future Work
similar work is (Chelba and Acero, 2004), who alsdn this paper we presented a new model for domain
modify their prior. Their work is limited to two do- adaptation, based on a hierarchical Bayesian prior,
mains, a source and a target, and their algorithm ha¢hich allows information to be shared between do-
a two stage process: First, train a classifier on th@ains when information is sparse, while still allow-
source data, and then use the learned weights froiftg the data from a particular domain to override the
that classifier as the mean for a Gaussian prior whéfformation from other domains when there is suf-
training a new model on just the target data. ficient evidence. We outperformed previous work
Daume Ill and Marcu (2006) also took a Bayesia®n a sequence modeling task, and showed improve-
approach to domain adaptation, but structured theifénts on dependency parsing, a structurally more
model in a very different way. In their model, it is complex problem, where previous work failed. Our
assumed that each datum within a domain is eitherraodel is practically useful and does not require sig-
domain-specific datum, or a general datum, and thetficantly more time to train than a baseline model
domain-specific and general weights were learnedsing the same data (though it does require more
Whether each datum is domain-specific or gener&nemory, proportional to the number of domains). In
is not known, so they developed an EM based algdbe future we would like to see if the model could be
rithm for determining this information while simul- adapted to improve performance on data from a new
taneously learning the feature weights. Their modélomain, potentially by using the top-level weights
had good performance, but came with a 10 to 1®hich should be less domain-dependent.
times slowdown at training time. Our slowest de-
pendency parser took four days to train, making thiécknowledgements
model close to infeasible for learning on that data. The first author is supported by a Stanford Graduate
Outside of the NLP community there has beeirellowship. We also thank David Vickrey for his
much similar work making use of hierarchical helpful comments and observations.
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