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Abstract—We apply Hidden Conditional Random Fields
(HCREFs) to the task of TIMIT phone recognition. HCRFs are dis-
criminatively trained sequence models that augment conditional
random fields with hidden states that are capable of representing
subphones and mixture components. We extend HCRFs, which
had previously only been applied to phone classification with
known boundaries, to recognize continuous phone sequences.
We use an N-best inference algorithm in both learning (to
approximate all competitor phone sequences) and decoding (to
marginalize over hidden states). Our monophone HCRFs achieve
28.3% phone error rate, outperforming maximum likelihood
trained HMMs by 3.6%, maximum mutual information trained
HMMs by 2.5%, and minimum phone error trained HMMs
by 2.2%. We show that this win is partially due to HCRFs’
ability to simultaneously optimize discriminative language models
and acoustic models, a powerful property that has important
implications for speech recognition.

I. INTRODUCTION

Phone recognition is the task of mapping speech to phones
without relying on a lexicon for phone-to-word mapping. It is
widely used for investigating new acoustic models, and also
plays a role in other tasks like real-time lip-syncing, in which
lip shape is synchronized with the speech signal [10].

Currently, the most widely used probability models for
acoustic modeling are Hidden Markov Models (HMM:s). Re-
searchers have trained HMMs both generatively by Maximum
Likelihood (ML) and discriminatively by Maximum Mutual
Information (MMI) [4] and Minimum Phone Error (MPE)
[11]. Still, they make strong independence assumptions and
suffer when facing non-independent features.

The conditional random field (CRF) [5] forms another
family of sequence labeling models that is attractive as a
potential replacement for HMMs. CRFs don’t have strong
independence assumptions and have the ability to incorporate
a rich set of overlapping and non-independent features. In
addition, CRFs are trained discriminatively by maximizing the
conditional likelihood of the labels given the observations.

Recently, there has been increasing interest in applying
CRFs to acoustic modeling. [8] used a hybrid MLP-CRF
system for phone recognition. They used MLPs to extract
phone posterior probabilities with phonological features as
observations. They then trained a CRF to find the most
probable phone sequences given the observations.

The MLP-CRF hybrid approach is powerful but requires
independently training separate MLP classifiers in addition to

Fig. 1. Hidden Conditional Random Fields. x’s are observations, y’s are
labels, and h’s are hidden variables

the CRF. An alternative approach combines all the machine
learning into a single model — the hidden conditional random
field (HCRF) [2]. The conditional random field is augmented
with hidden states that can model subphones and mixture com-
ponents (much like a traditional HMM) with MFCCs rather
than phonological features as the observations. [2] showed
that HCRFs outperform both generatively and discriminatively
trained HMMs on the task of phone classification. [15], [16]
explored augmentations to this model such as discriminative
methods for speaker adaptation in HCRFs. However, all of
these previous HCRF models focused on the phone classifica-
tion task, assuming known phone boundaries.

In this paper, we extend HCRFs to the task of phone
recognition — a task that does not assume that the phone
boundaries are known in advance. We use the standard vector
of 39 MFCC:s as observations and supply various feature func-
tions as inputs to the HCRFs. The hidden variables (subphone
state sequences and mixture components in each state) are
marginalized in learning and in inference.

We introduce HCRFs in section II, feature functions in
section IIl, and learning and inference in section IV. We
report our experiment results in sections V and discuss them
in section VL

II. HIDDEN CONDITIONAL RANDOM FIELDS

An HCREF is a markov random field conditioned on desig-
nated evidence variables in which some of the variables are
unobserved during training. The linear-chain HCRF used in
speech recognition is a conditional distribution p(Y|X) with

a sequential structure (see Figure 1).

Assume that we are given a sequence of observations
X = (xo, 1, ..., z7) and we would like to infer a sequence of
corresponding labels Y = (yo,y1, ..., yr); conventional CRFs



Fig. 2.

An instance of a Viterbi labeling from an HCRF for phone recognition, showing a phone sequence (po,p1) composed of a state sequence

S0, 50, S1, 82, S0, 81, S1, S2, s2 together with mixture components. s’s and m’s are hidden variables and are marginalized out in learning and inference.

model the conditional probability distribution function as:

p(Y|X) = ﬁexp{z NR(Y, X, )} ()

where F' is the feature vector, a function of the label sequence
Y and the input observation sequence X. A is the parameter
vector whose k™ element weights the k" element in the feature
vector F'. The normalizing constant Z is called the partition
function and is defined as:

Z(X)=> exp{d_NFY' X t)} )

Summing over all possible instances of Y, this normalizing
partition function contributes most of the computational ex-
pense within learning.

The cleanest way to apply CRFs to phone recognition
would be to have the sequence of labels Y = (yo,y1, ..., Y1)
correspond to a series of phones and the sequence of obser-
vations X = (xg,21,...,27) to a series of MFCC vectors.
However, two aspects of variation in phone realization cripple
this model.

First, the spectral and energy characteristics of a phone vary
dramatically as it is uttered. Following conventional HMM
systems, we capture this non-homogeneity by modeling each
phone as a sequence of 3 sub-phones (states). Thus our model
can use different parameters to describe the characteristics of
the beginning, middle, and end of each phone.

Second, the acoustic realization of a phone differs widely
across contexts. To accommodate such variation it is common
in speech recognition systems to use both context-dependent
phones and to use multiple mixture components. In our current
experiments we are using only monophone CRFs, but intro-
duce multiple components within each state to help address the
problem of variation. Each component has different parameters
to capture the different characteristic of the variable phone.

In summary, to capture surface variation, we introduce two
kinds of hidden variables into the standard CRF model in the
HCRF model. These hidden variables come from the states
(subphones) s of each phone and the mixture components
m for each state. It will be convenient to talk about both
these variables as a single hidden variable h, which is the
pair of states and components h; = (s¢, m;). Figure 2 shows
one instance of hidden variables, states S = (sg, s1, ..., ST)
and components M = (mg, my,...mr). In both inference and
learning tasks, these hidden variables are marginalized out.

For a sequence of hidden variables H = (hg, h1, ..., h7).
HCRFs model the conditional distribution function as:

PV = S e (LAY H XD} O

where the feature vector F' is a function of the label sequence
Y, the hidden variable sequence H, and the input observation
sequence X. Thus the difference between (1) and (3) is that
(3) marginalizes out the hidden variables. That is, to compute
the most probable phone sequence, one would sum over all
sequences of states (subphones) and mixture components. In
this study, we marginalize these state and component variables
in both inference and learning.
The constant partition function Z becomes:

Z(X)=> "> exp{d_MNF(Y' HX,t)} “)

Note that our models extend the original HCRF introduced
in [2] and [15], [16], in which the label y was a single phone
value rather than a phone sequence Y.

III. FEATURE FUNCTIONS

The observations X extracted from the speech signal are
39-dimensional MFCCs. In speech recognition MFCCs are
referred to as features. But in graphical models like HCRFs
we reserve the word features or feature functions to mean the
weighted functions of the input and output in the model. To
distinguish ‘MFCC features’ from ‘feature functions’, we will
refer to MFCCs as observations instead of features.

In this study, we used two different kinds of feature func-
tions (See Figure 3). Transition feature functions have the
hidden variables and labels at time ¢ — 1 and ¢ as arguments.
State feature functions have the observations and the hidden

variables, labels at time ¢ as arguments.
The transition feature functions we use in this study are
bigram and state transition functions.
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where §(.) is the indicator function, the y’s are phone labels,

and the s’s are the (subphone) states in each phone. The bigram
features capture the transition between each phone pair, i.e.,
the state transition between the end of each phone to the
start of the next phone. The state transition captures the state
transition within each phone.

The state feature functions are the component occurrence,
the first moment (observation value itself), and the second
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Fig. 3. Transition feature functions and state feature functions.

moment (squared values).

fs(,o'm.cc> =0d(s¢ =s,m =m) Vs, m
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where s’s stand for states in each phone. m’s stand for
components in each state. The component occurrence is the
indicator function for each specific component. The first
moment feature is used for the value of the observations
themselves. The second moment feature is used for the square
values of observations. The second moment feature functions
are important because in most cases, the models need to
emphasize some regions in the real value axis which can’t
be done only via the first moment features alone.

IV. ALGORITHMS

The two main tasks in phone recognition are learning
and inference (decoding). In both decoding and learning, we
marginalize out the hidden variables (since we want the most
likely phone sequence, not the most likely state sequence),
using an N-best inference algorithm.

A. Decoding: N-best Inference

We begin with the task of decoding, producing a sequence
of phones Y from a sequence of input observations X. In this
phone recognition task, we don’t actually want the Viterbi
path through the HCRF. This is because the single best path
includes a single particular sequence of states and mixtures.

Thus we need to find the best phone sequence, summing
over states and mixture components. Rather than do this in
a single pass, we do this by first generating the IN-best
sequences, and then run the forward algorithm over these to
generate the total probability of the phone sequences.

In learning, we also need to find the top N probable
phone sequences. The HCREF, like other discriminative models,
e.g. MMI HMMs, needs to normalize the probability of the
best phone sequence by the sum of all other sequences (the
partition function). Because it is exponentially expensive to
find all possible phone sequences, we use only the top N
most probable phone sequences as an approximation.

The application to learning will be discussed in section
IV-B; we begin here with the N-best decoding algorithm.

The exact sentence-dependent algorithm is an efficient al-
gorithm for finding the N most likely phone sequences [1].
Its forward phase maintains for each cell of the search (each
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Fig. 4. The phone-dependent N-best algorithm. The two dashed paths from
p1 to p2 are merged because they both have the same previous phone pl
despite having different state sequences.

state ¢ at each time point ¢) all possible phone sequences
leading into it. Any two state sequences with the same phone
sequences are merged into one hypothesis. This algorithm
guarantees finding the exact NN best phone sequences but
is very time consuming. Instead, we use an approximate
algorithm called phone-dependent /N-best [13].

The phone-dependent N-best algorithm assumes that the
start time for a phone depends only on the preceding phone and
not the whole preceding phone sequence (like the markov-one
assumption used in a bigram language model). This requires
storing a single path for each possible previous phone in each
cell (state ¢ and time t) of the search (see Figure 4). State
sequences with the same previous phone are merged into one
hypothesis. The computation becomes more efficient without
losing too much accuracy [13].

In decoding, we applied the phone-dependent N-best algo-
rithm by using HCRF models to get a N-best list. The forward
algorithm is then used to rescore the conditional probability
of each phone sequence in the N-best list. The decoder then
returns the sequence with the highest probability, following
equation (5) where L is the N-best list.

Y = argmax p(Y|X) ®)
YeL
We found that N = 10 gives better performance than N =
1, i.e., finding the most probable phone sequence directly.

B. Learning

When training HCRFs, we want to maximize the conditional
probability of the label sequence Y given the observation
sequence X. To simplify calculation, we maximize the log-
conditional distribution instead of equation (3) directly. The
objective function for optimization becomes

logp(Y|X) =log > exp{d A" F(Y,H, X, 1)}
H t

—log Y Y exp{d_NF(Y',H X,t)} (6
Y’ H t

Equation (6) requires summing over all possible phone
sequences in the second term. We approximated this equation
by using the phone-dependent N-best algorithm to find the N



best phone sequences. (A lattice would be a natural extension.)
Equation (6) then becomes

logp(Y|X) ~log» exp{> A F(Y,H, X, t)}

H t
—log Y > exp{d _MNF(Y' H X t)} (]
Y'eL H t
where L is the [NV-best list.

The learning problem is formulated as an unconstrained
optimization problem. We use Stochastic Gradient Descent
(SGD) for optimization, following [2] and [15]. The corre-
sponding gradient with respect to A, used in SGD can be
derived as follows

01 Y|X; A
%,J) = S H, X, )p(H]Y, X)
H
= 30 A H X 0p(Y HIX)
Y'eL H

=Euyvx[fe(Y,H, X,t)] — Ey/ g x [fe(Y' H,X,t)] (@8

When a local maximum is reached, the gradient equals zero.
As equation (8) shows, the expectation of features under the
distribution of hidden variables given the label and observation
variables is equal to the expectation of features under the
distribution of hidden and label given observation variables.
[17] gives the corresponding derivation for CRF training. In
CRFs, the empirical count of the features is equal to the
expectation of features given the model distribution when the
maximum is achieved. We can get the same result if we remove
the hidden variables H from equation (8).

For initialization, we followed [2], [15] in using HMM pa-
rameters as a starting point. Extending these previous models
(which used ML HMMs), in the current work we trained MPE
HMMs and transformed the parameters to give initializations
for the transition, component occurrence, first moment, and
second moment parameters in the corresponding HCRFs.

V. EXPERIMENTS
A. Corpus

We used the TIMIT acoustic-phonetic continuous speech
corpus [6] as our data set in this study. We mapped the 61
TIMIT phones into 48 phones for model training. The phone
set was further collapsed from 48 phones to 39 phones for
evaluation, replicating the method in [7] for comparison.

The training set in the TIMIT corpus contains 462 speakers
and 3696 utterances. We used the core test set defined in
TIMIT as our main test set (24 speakers and 192 utterances).
The randomly selected 50 speakers (400 utterances) in the
remaining test set are used as a development set for tuning
parameters for all four models. All speaker dependent utter-
ances are removed from training, development, and test sets.

B. Methods

We extracted the standard 12 MFCC features and log energy
with their deltas and double deltas to form 39-dimensional
observations. The window size and hopping time are 25ms and

TABLE I
PHONE ERROR RATES ON TIMIT CORE TEST SET OF GENERATIVELY AND
DISCRIMINATIVELY TRAINED HMMSs AND HCRFS.

Comps ML MMI MPE HCRFs
HMMs HMMs HMMs
8 35.9% 33.3% 32.1% 29.4%
16 33.5% 32.1% 31.2% 28.7%
32 31.6% 30.8% 30.5% 28.3%
64 31.1% 30.9% 31.0% 29.1%
TABLE II

PHONE ERROR RATES ON TIMIT CORE TEST SET OF ML INITIALIZED AND
MPE INITIALIZED HCRFS.

Comps ML -initialized MPE-initialized
4 31.2% 30.5%
8 30.6% 29.4%
16 29.7% 28.7%
32 29.0% 28.3%

10ms, respectively. We applied a Hamming window with pre-
emphasis coefficient 0.97. The number of filterbank channels
is 40 and the number of cepstral filters is 12.

We first trained ML HMMs and used them to train MMI
and MPE HMMs with the HTK toolkit. I-smoothing 100 and
a learning rate parameter 2 are used in MMI and MPE HMM
training. A bigram phone language model was trained by
maximum likelihood for all HMM systems. (A trigram phone
language model would be a natural extension.) Finally, the
MPE HMMs and the ML phone language model are used as
initialization for HCRF training.

In HCRF learning, 10-best phone sequences are found by
the phone-dependent N-best algorithm for each utterance.
In each of the 300 to 3,000 passes, 10 different utterances
are randomly selected from the training data to update all
parameters. The random selection makes parameter update
more frequent than using the whole training data and makes
the training converge faster. Parameters are averaged over all
passes to reduce variance. The final models are selected based
on the development set.

C. Results

In our first study, we compare the generatively (ML) and
discriminatively (MMI & MPE) trained HMMs with HCRFs.
All results are presented in accuracy, the edit distance be-
tween the reference and the hypothesis (including insertion,
deletion, and substitution errors). As Table I shows, MMI
and MPE HMMs are consistently better than ML HMMs for
all numbers of components. Our HCRFs outperform MMI
and MPE HMMs further. The best result is 28.3% with 32
components. All three discriminative training models degrade
due to overfitting with 64 components.

In our second study, we compare different initialization
methods for HCRF training (see Table II). Because the log
conditional probability is not convex, finding better local
optima is important for HCRF training. Starting from MPE
HMMs consistently gives about a 1% absolute improvement
over starting from ML HMMs.



TABLE III

DELETION, SUBSTITUTION, AND INSERTION ERRORS FOR ALL FOUR
MODELS WITH 32 COMPONENTS

TABLE IV
SIMULTANEOUSLY TRAINING THE ACOUSTIC AND LANGUAGE MODEL
PARAMETERS IMPROVES PERFORMANCE OVER JUST TRAINING THE

ACOUSTIC MODEL PARAMETERS.

Error ML MMI MPE HCRFs
HMMs HMMs HMMs Error Initial (MPE HCRF HCRF Acoustic
Deletion 9.5% 8.1% 8.8% 7.2% HMM) Acoustic only & LM
Substitution 19.1% 18.2% 17.8% 17.5% Deletion 8.8% 8.8% 7.2%
Insertion 3.0% 4.5% 3.9% 3.6% Substitution 17.8% 17.9% 17.5%
Total 31.6% 30.8% 30.5% 28.3% Insertion 3.9% 2.6% 3.6%
Total 30.5% 29.3% 28.3%

D. Error Analysis

In Table I, ML HMMs continue to improve performance
when the number of components increases up to 64. However,
MMI HMMs, MPE HMMs, and HCRFs degrade as the
number of component increases from 32 to 64. This is not
surprising given the limited TIMIT training data, since dis-
criminative training methods in general require more training
data than generative training methods [9].

We show insertion, deletion, and substitution errors in Table
III. The numbers are tuned by minimizing the phone error
rate by using a held-out development data set. All three
discriminatively trained models, MMI HMMs, MPE HMMs,
and HCRFs, have lower deletion and substitution errors but
higher insertion errors than generatively trained ML HMMs.
Of the three discriminatively trained models, HCRFs have
the lowest errors on all three different kinds of errors. The
discriminative methods tend to have more balanced deletion
and insertion errors, because they try to distinguish the corret
phone sequences from other sequences in the /NV-best list.

VI. DISCUSSION
A. MMI HMMs vs HCRFs

HMMs have been shown to be equivalent to HCRFs with
carefully designed feature functions [3]. By equivalence, we
mean that for each HCRF parameter set, there exists a param-
eter set for HMMSs that gives the same conditional probability.
And while HCRFs are trained by maximizing conditional
probability, as are MMI HMMs, the performance of our
HCRFs is better than that of MMI HMMs. An analysis of
this improvement might indicate whether HCRF training could
be used as an alternative to extended Baum Welch training
in HMMs. We thus summarize two main reasons for better
performance below.

First, optimizing the conditional probabilities of HCRFs
is an unconstrained optimization problem. The problem is
easy to solve and Stochastic Gradient Descent updates the
parameters more frequently than batch mode methods. The
Extended Baum Welch algorithm is used for MMI HMM train-
ing because it is a constrained optimization problem. Instead
of optimizing the conditional probability directly, which is
difficult, it tries to find an auxiliary function which is easy to
optimize. This suggests that HCRF training might be a better
method than Extended Baum Welch for HMM training.

Second, our HCRF training simultaneously optimizes the
acoustic model and the (phone bigram) language model, unlike
traditional ASR systems that train the acoustic and language
models separately. This is because the language model is

encoded as transition feature functions (shown in Figure 3),
and optimized simultaneously with the state feature functions.
This joint discriminative training improved the performance of
our model, as shown in Table IV. Training acoustic parameters
directly results in a phone error rate of 29.3% (i.e., a 1.2%
error rate reduction when compared to 30.5% achieved by
the initial MPE HMMs). Training acoustic and language
parameters simultaneously achieves 28.3%, i.e., an additional
1.0% reduction.

We hypothesize that the discriminatively trained language
model improves recognition by learning to distinguish phones
that are particularly confusable in the baseline acoustic model.
To test this hypothesis, we extracted from the phone confusion
matrix the pairs of phones that were most often confused
by our initial (MPE HMM) models (i.e., the models before
HCRF/discriminative language model training). The top 10
most confused phone pairs are shown in Table V; the set is
not surprising, as pairs like cl/vcl, er/r, m/n, and ih/ix/ax are
acoustically quite similar.

We then investigated whether the language model probabili-
ties were adjusted by our discriminative model in order to help
distinguish these difficult phones. We examined the transition
probability for every pair of phones in the initial (MPE HMM)
model, and saw how the probability changed in the final
HCRF model. Table VI shows the phone transitions whose
probability increased the most after discriminative training.
As our hypothesis predicts, all the phone transitions that gain
a lot of probability mass after discriminative language model
training involve at least one phone in those confusing phone
pairs (cl/vel, er/r, m/n, ih/ix/ax).

B. Large-margin HMMs vs HCRFs

Our best result (28.3%) is also competitive with the large-
margin HMMs (28.2%) in [14] for the same task. Large-
margin HMMs combine the idea of margin-based training with
HMMs, and were shown to be better than MMI and MCE
trained HMMs. We think the large margin idea can be also
applied to our HCRFs to improve performance further.

C. The MLP-CRF hybrid vs HCRF's

Another advantage of HCRFs over HMMs that we don’t
explore in this paper is the ease of adding new parameters and
corresponding feature functions in HCRFs. For example, [§]
show how to add phonological features as features functions in
a (non-hidden) CRF. Since phonologically features generally
change within each phone, incorporating the [8] phonologi-
cal features into HCRFs (which allow hidden state changes



THE 10 PAIRS OF PHONES MOST LIKELY TO BE CONFUSED IN OUR
BASELINE MPE-HMM SYSTEM.

TABLE V

THE 20 PHONE TRANSITIONS WHOSE PROBABILITY INCREASED THE MOST

Pairs Counts Pairs Counts
cl/vel 1266 ih/ix 967
ax/ix 833 s/z 700
er/r 501 eh/ih 437
m/n 386 ix/iy 379
ae/eh 360 d/it 274
TABLE VI

model and language model parameters allows the training of a
discriminative language model, which results in a 1% absolute
gain in phone error rate.

In current work we are investigating richer features that can
take advantage of the ability of HCRFs to incorporate new
global features not possible in HMMs. Some obvious next di-
rections are to extend monophone HCRFs to triphone HCRFs
in order to compare to state of the art phone recognizers and to
apply our training method as an alternative to Extended Baum
Welch for training MMI HMMs, based on the equivalence of

AFTER DISCRIMINATIVE LANGUAGE MODEL TRAINING.

Phone Log prob Phone Log prob

transitions difference transitions difference
r uw 0.722 ehr 0.660
er ix 0.657 ix 1 0.628
vel t 0.610 r ax 0.591
y ix 0.589 er ax 0.577
ax n 0.571 nd 0.568
aar 0.568 axr 0.546
m cl 0.542 cb 0.536
ncl 0.531 1ih 0.531
m vel 0.527 v vel 0.502
vel k 0.500 fcl 0.497

within each phone) should give an improvement over these
conventional CRFs.

D. Time complexity

Since HCRF systems use the same sufficient statistics of
data as HMM systems do, all four systems have similar
decoding time. In training, however, the three discriminative
models use either a lattice or N-best list and so require
significantly more computational time than the generative
model. Furthermore, two reasons make HCRF training more
time consuming than MMI and MPE HMM ftraining.

First, HCRFs simultaneously train acoustic and language
models. In phone recognition, since the number of parameters
in language models is smaller than that in acoustic models, the
difference between HCRFs and MMI or MPE HMMs is small.
But if HCRFs are extended to word recognition, the number of
language model parameters would increase significantly, and
training time for HCRFs would become an issue.

Second, we decode new NN-best lists at each pass of HCRF
training. By contrast, for MMI and MPE training, lattices are
generated once with initial models and used for all iterations. It
is possible that implementing lattices in HCRF models would
add enough hypotheses to avoid regenerating at each pass.

VII. CONCLUSION

In this paper, we applied Hidden Conditional Random Fields
to monophone recognition in the TIMIT corpus. Extending
previous work on HCRFs for phone classification with known
boundaries, we show that HCRFs work significantly better
than both generatively and discriminatively trained HMMs,
resulting in a 28.3% phone error rate with the same feature
sets. We show how to use N-best inference in both learning
and decoding, and give some analytic results on the differences
between HMM and HCRF models. We also show that the
ability of HCRFs to simultaneously optimize the acoustic

HCRFs and HMMs [3].
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