NUMERICAL SOLUTION of MARKOV CHAINS, p. 31-44

Adaptive Methods for the Computation of PageRank

* Sepandar Kamvéay Taher Haveliwald Gene Golub

1Scientific Computing and Computational Mathematics, Stanfiniversity Stanford, CA 94305 sdkamvar@stanford.edu
) 2 Department of Computer Science, Stanford University 8tdnCA 94305 taherh@stanford.edu
3Scientific Computing and Computational Mathematics, 8tdrifniversity Stanford, CA 94305 golub@stanford.edu

ABSTRACT

We observe that the convergence patterns of pages in th&BRakalgorithm have a nonuniform distribution.
Specifically, many pages converge to their true PageRardkiguivhile relatively few pages take a much longer
time to converge. Furthermore, we observe that these stowetging pages are generally those pages with high
PageRank. We use this observation to devise a simple digotid speed up the computation of PageRank, in
which the PageRank of pages that have converged are not petednat each iteration after convergence. This
algorithm, which we call Adaptive PageRank, speeds up thgctation of PageRank by nearly 30%.

1. Introduction

One of the best-known algorithms in web search is GooglegeRank algorithm [15]. PageRank
computes the principal eigenvector of the matrix descgliire hyperlinks in the web using the famous
Power Method [5]. Due to the sheer size of the web (over 3dnilhages), this computation can take
several days. Speeding up this computation is importanttfforreasons. First, computing PageRank
quickly is necessary to reduce the lag time from when a newldseacompleted to when that crawl
can be made available for searching. Secondly, recent aplpes to personalized and topic-sensitive
PageRank schemes [8, 17, 11] require computiagyPageRank vectors, each biased towards certain
types of pages. These approaches intensify the need fer fasthods for computing PageRank.

Accelerating the PageRank algorithm poses many challerkies, the convergence rate of the
Power Method is very fast (generallp\2|/|A1] = 0.85 [9]) due to the structure of the Google
matrix [9]. The Power Method on a web data set of over 80 mmllgages converges in about 50
iterations. Improving on this already fast convergence imta difficult problem. Further, many other
fast eigensolvers (e.g. inverse iteration) are not feadin this problem because the size and sparsity
of the web matrix makes inversion or factorization prolifely expensive.

In this paper, we make the following simple observation: ¢bavergence rates of the PageRank
values of individual pages during application of the Powegthdd is nonuniform. That is, many
pages converge quickly, with a few pages taking much longeonverge. Furthermore, the pages
that converge slowly are generally those pages with higleRagk.

We devise a simple algorithm that exploits this observatiorspeed up the computation of
PageRank, called Adaptive PageRank. In this algorithmPgeRank of pages that have converged
are not recomputed at each iteration after convergencardedscale empirical studies, this algorithm
speeds up the computation of PageRank by nearly 30%.

32 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

2. Preliminaries

In this section we summarize the definition of PageRank [1%] i@eview some of the mathematical
tools we will use in analyzing and improving the standardhitige algorithm for computing PageRank.

Underlying the definition of PageRank is the following baagsumption. A link from a page
u € Web to a pagev € Web can be viewed as evidence thais an “important” page. In particular,
the amount of importance conferred orby v is proportional to the importance af and inversely
proportional to the number of pagespoints to. Since the importance afis itself not known,
determining the importance for every paige Web requires an iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary coatjmut, we next describe an equivalent
formulation in terms of a random walk on the directed Web gr@pLetu — v denote the existence
of an edge fromu to v in G. Letdeg(u) be the outdegree of pagein G. Consider a random surfer
visiting pageu at time k. In the next time step, the surfer chooses a nediEom amongu’s out-
neighbors{v|u — v} uniformly at random. In other words, at timie+ 1, the surfer lands at node
v; € {vju — v} with probability1/ deg(u).

The PageRank of a pagés defined as the probability that at some particular timp ste> K,
the surfer is at page For sufficiently largefs, and with minor modifications to the random walk, this
probability is unique, illustrated as follows. Considee thlarkov chain induced by the random walk
on G, where the states are given by the node& jrand the stochastic transition matrix describing the
transition fromi to j is given byP with P;; = 1/ deg(7).

For P to be a valid transition probability matrix, every node mhate at least 1 outgoing transition;
i.e., P should have no rows consisting of all zeros. This hold§ itloes not have any pages with
outdegred, which does not hold for the Web grapB.can be converted into a valid transition matrix
by adding a complete set of outgoing transitions to pagels aitdegred). In other words, we can
define the new matri¥’’ where all states have at least one outgoing transition iridlh@ving way.
Let n be the number of nodes (pages) in the Web graphiLié then-dimensional column vector
representing a uniform probability distribution over atides:

7= [%]m. 1)

Let & be then-dimensional column vector where every element 1:
€= [1]n><1- (2)
Let d be then-dimensional column vector identifying the nodes with agoke):

4, — {1 if deg(i) =0,

0 otherwise
Then we construcP’ as follows:
D=d 57
P =P+ D.

In terms of the random walk, the effect &f is to modify the transition probabilities so that a surfer
visiting a dangling page (i.e., a page with no outlinks) @méy jumps to another page in the next time
step, using the distribution given by

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 33

g:cPTf;
w = ||Z]|1 — [|¥]]1;
J=7+ui

Algorithm 1: Computingy = AZ

By the Ergodic Theorem for Markov chains [6], the Markov chdefined byP’ has a unique
stationary probability distribution i’ is aperiodic and irreducible; the former holds for the Marko
chain induced by the Web graph. The latter holdiffs strongly connected, which is generatigt
the case for the Web graph. In the context of computing PagieRlae standard way of ensuring this
property is to add a new set of complete outgoing transitiasith small transition probabilities, to
all nodes, creating a complete (and thus strongly connectaition graph. In matrix notation, we
construct the irreducible Markov matrir” as follows:

E=¢-97

P'=cP' +(1-c¢)E

In terms of the random walk, the effect Bfis as follows. At each time step, with probability — ¢),
a surfer visiting any node will jump to a random Web page @athan following an outlink). The
destination of the random jump is chosen according to thibahitity distribution given in. Artificial
jumps taken because éf are referred to ateleportation

By redefining the vectof given in Equation 1 to be nonuniform, so thatand £/ add artificial
transitions with nonuniform probabilities, the resultBageRank vector can be biased to prefer certain
kinds of pages. For this reason, we refef’tas thepersonalizatiorvector.

For simplicity and consistency with prior work, the remanaf the discussion will be in terms of
the transpose matrixi = (P”)T’; i.e., the transition probability distribution for a surfat nodei is
given by row: of P”, and column of A.

Note that the edges artificially introduced Byand E never need to be explicitly materialized, so
this construction has no impact on efficiency or the spaditiie matrices used in the computations. In
particular, the matrix-vector multiplicatiaf\= A% can be implemented efficiently using Algorithm 1.
In the algorithms presented in this paper, all matrix miittggions are assumed to use Algorithm 1.

Assuming that the probability distribution over the sugfdocation at time0 is given by (9,
the probability distribution for the surfer’s location dme k is given by #z*) = A*z(©) The
unique stationary distribution of the Markov chain is defireslim;_... #*), which is equivalent
to limy .., A*#(®), and is independent of the initial distributiai®). This is simply the principal
eigenvector of the matrix = (P”)T', which is exactly the PageRank vector we would like to coraput

The standard PageRank algorithm computes the principeheggtor using the Power Method
(Algorithm 2). That is, it begins with the uniform distribah #(°) = # and computes successive
iteratesz®) = Az(*—1 until convergence. Haveliwala and Kamvar show in [9] that tbnvergence
rate of the Power Method, in terms of number of iterationsfast for this problem (generally,
[A2]/|A1] = .85). However, it is still important to accelerate the compioiat since each matrix
multiplication is so expensive (on the order of 10 billiorp#).

While many algorithms have been developed for fast eiggoveomputations, many of them are
unsuitable for this problem because of the size and sparbitye Web matrix (see Secti®? for a
discussion of this).

34 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

functionpageRank A, (9, %) {
repeat
Fk+1) = Az
§ = ||f(k+1) _ f(k)Hl;
until § < e¢;
return Z(++1);

}

Algorithm 2: PageRank

3. Experimental Setup

In the following sections, we will be describing experimemntin on the following data sets. The
STANFORD.EDU link graph was generated from a crawl of theanf or d. edu domain created
in September 2002 by the Stanford WebBase project. Thigliagh contains roughly 280,000 nodes,
with 3 million links, and requires 12MB of storage. We usethSFORD.EDU while developing
the Adaptive PageRank algorithm, to get a sense for its paeboce. For real-world, Web-scale
performance measurements, we used th@&EWEB link graph, generated from a large crawl of
the Web that had been created by the Stanford WebBase pnojéahuary 2001 [10]. ARGEWEB
contains roughly 80M nodes, with close to a billion linksdaequires 3.6GB of storage. Both link
graphs had dangling nodes removed as described in [15]. fdphg are stored using an adjacency
list representation, with pages represented by 4-bytgémntielentifiers. On an AMD Athlon 1533MHz
machine with a 6-way RAID-5 disk volume and 2GB of main memeggch application of Algorithm 1
on the 80M page hRGEWEB dataset takes roughly 10 minutes. Given that computing Rage
generally requires anywhere from 30-100 applications gioAithm 1, depending on the desired error,
the need for fast methods for graphs with billions of nodedaar.

We measured the rates of convergence of the PageRank antiveddageRank using the lnorm
of the residual vector; i.e.,

| 4z® — 2™,

We describe why the Lresidual is an appropriate measure in [13].

4. Distribution of Convergence Rates

Table | and Figure 1 show convergence statistics for thegiagbe SANFORD.EDU dataset. We say
that the PageRank; of pagei has converged when

o = 2P/ < 1075,

Table | shows the number of pages and average PageRankseftages that converge in less than
15 iterations, and those pages that converge in more thaardfions. Notice that most pages converge
in less than 15 iterations, and their average PageRank levi@r than those pages that converge in
more than 15 iterations.

Figure 1(a) shows the profile of the bar graph, where eachdpaesents a pageand the height
of the bar is the convergence timeof that page. The pages are sorted from left to right in order of

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 35

NUMBER OF PAGES | AVERAGE PAGERANK
t; <15 | 227597 2.6642e-06
t; > 15 | 54306 7.2487e-06
Total 281903 3.5473e-06

Table I. Statistics about pages in theaSiFOrRD.EDU dataset whose convergence times are quickl(15) and
pages whose convergence times are lapg>(15).

convergence times. Notice that most pages converge in Ukdigerations, but there are some pages
that require over 40 iterations to converge.

Figure 1(b) shows a bar graph where the height of each baesepts the number of pages that
converge at a given convergence time. Again, notice that paxges converge in under 15 iterations,
but there are some pages that over 40 iterations to converge.

Figure 1(c) shows a bar graph where the height of each bazgepts the average PageRank of the
pages that converge in a given convergence time. Noticdlibaé pages which converge in less than
15 iterations generally have a lower PageRank than thosespabjo converge in over 40 iterations.
This is illustrated in Figure 1(d) as well, where the height¢ach bar represents the average PageRank
of those pages that converge within a certain interval, (ibee bar labeled “7” represents the pages
that converge in anywhere from 1 to 7 iterations, and the &liaeled “42” represents the pages that
converge in anywhere from 36 to 42 iterations.)

Figures 2 and 3 show some statistics for theRIGEWEB dataset. Figure 2(a) shows the proportion
of pages whose ranks converge to a relative toleranc@afin each iteration. Figure 2(b) shows the
cumulative version of the same data; i.e., it shows the peage of pages that have converged up
through a particular iteration. We see that in 16 iteratidims ranks for over two-thirds of pages have
converged. Figure 3 shows the average PageRanks of pagiesitirarge in various iterations. Notice
that those pages that are slow to converge tend to have HigigeRank.

5. Adaptive PageRank Algorithm

The skewed distribution of convergence times shown in tegipus section suggests that the running
time of the PageRank algorithm can be significantly redugegliminating redundant computation. In
particular, we do not need to recompute the PageRanks oftesghat have already converged, and
we do not need to recompute the contribution of PageRank frages that have converged to other
pages. We discuss in this section how each of these reduiedaran be eliminated.

5.1. Algorithm Intuition

We begin by describing the intuition behind the Adaptive éRank algorithm. We consider next a
single iteration of the Power Method, and show how we canaedlue cost.

Consider that we have completgdterations of the power method. Using the iterat® , we now
wish to generate the iterai®“*+1). Let C be the set of pages that have converged to a given tolerance,
andN be the set of pages that have not yet converged,.

We can split the matrixl defined in Section 2 into two submatrices. l4&t be them x n submatrix
corresponding to the inlinks of those pages whose PageRanks have not yet convergedd ariae
the (n — m) x n submatrix corresponding to the inlinks of those pages tae¢ lalready converged.

36 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

50
40
[+
£
=
30t
(5]
c
(5}
1=y
g 20t
c
[s}
o
101
07 L
0 0.5 1 15 2 25 3
Pages vin®
()
x107°
9
sl
71
6t
x
G5t
i
[5)
g4t
o
3l
ol
0

0 10 20 30 40 50
Convergence Times

(©

35

N
&

Number of Pages

0.5

PageRank

=
o

w

N

[N

0 10 20 30 40 50
Convergence Time

(b)

18

16¢

1.4¢

1.2¢

i

o
©

o
o

0.4}

0.2}

7 14 21 28 35 42 49
Convergence Times

(d)

Figure 1. Experiments onTNFORD.EDU dataset. (a) Profile of bar graph where each bar repseagrage,

and its height represents its convergence timéb) Bar graph where x axis represents the discrete corveege

time ¢, and the height of; represents the number of pages that have convergence.t{o)eBar graph where the

height of each bar represents the average PageRank of tae fied converge in a given convergence time. (d)

Bar graph where the height of each bar represents the avBeggERank of the pages that converge in a given
interval.

Let us likewise split the current iterate of the PageRanktoreg®) into the m-vector :E’%“)

corresponding to the components®#f) that have not yet converged, and the— m)-Vector 'y,

=(F)

corresponding to the componentsif) that have already converged.

We may orderd andz(®) as follows:

f(k)

)) ®3)

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 37

o
e
IS
N

o o o
N ® ©

o
)
e

Proportion of Pages
°

Proportion of Pages (Cumulative)
o o o
w & o

o
N

B
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Convergence Time Convergence Time

(a) (b)

Figure 2. Experiments on theARGEWEB dataset. (a) Bar graph wheteaxis represents the convergence time

in number of iterations, and the height of karepresents the proportion of pages that have convergeneg.ti

(b) Cumulative plot of convergence times. Thaxis gives the time in number of iterations, and theaxis gives
the proportion of pages that have a convergence tinte

x10"°

Figure 3. Average PageRank vs. Convergence time (in nunftiggrations) for the IARGEWEB dataset. Note
that pages that are slower to converge to a relative tolerah€01 tend to have high PageRank.

and)
a= (4. @

We may now write the next iteration of the Power Method as:

)=
D Ac @)
However, since the elements ﬁg“) have already converged, we do not need to recomﬁg?t*el).
Therefore, we may simplify each iteration of the computatmbe:

D = ayz® (5)
ety = Al (6)

38 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

functionadaptivePR(A, #(9), %) {
repeat
et = AnE®);
s 2
[N, C] = detectConverged(Z*), *+1) ¢);
periodically,d = ||AZ*) — #||;
until 6 < e;
return Z(F+1;

}

Algorithm 3: Adaptive PageRank

The basic Adaptive PageRank algorithm is given in Algorithm

Identifying pages in each iteration that have convergedhéxpensive. However, reordering the
matrix A at each iteration is expensive. Therefore, we exploit tlea igiven above by periodically
identifying converged pages and constructitig without explicitly reordering identifiers. Sincéy
is smaller thanA, the iteration cost for future iterations is reduced. Wecdbs the details of the
algorithm in the next section.

5.2. Filter-Based Adaptive PageRank

Since the web matrix is several gigabytes in size, forming the submattix needed in Equation 5
will not be practical to do in each iteration. Furthermohere is in general no efficient way to simply
“ignore” the unnecessary entries (e.g., edges pointingtwerged pages) i if they are scattered
throughoutA. We describe in this section an efficient implementationhe Adaptive PageRank
scheme.

Consider the following reformulation of the algorithm theas described in the previous section.
Consider the matrixd as described in Equation 4. Note that the submatgixis never actually used
in computingz*t1) | Let us define the matriX’ as:

Au_<ﬁ§>. 7)

where we have replacedl> with an all-zero matrix of the same dimensionsAs. Similarly, let us

(k)
- (k) 6
SC/C = < (k)) (8)
e

definez’,” as:
Now note that we can express an iteration of Adaptive PageRan

S N O)

Since A’ has the same dimensions Asit seems we have not reduced the iteration cost; however,
note that the cost of the matrix-vector multiplication is@stially given by the number of nonzero

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 39

functionfilterAPR (A, (), 7) {

repeat
j’(k'.*'l) = A7) 1 T
periodically,

[N, C] = detectConverged(Z®), z(*+1) ¢);
[A”] = filter(A”, N, C);
(7] = filter(z®), C);
periodically,s = ||AZ*) — z¥||;
until 6 < ¢;
return z(+1);

}

Algorithm 4: Filter-Based Adaptive PageRank

entries in the matrixpotthe matrix dimensions.

The above reformulation gives rise to the filter-based AdaepPageRank scheme: if we can
periodically increase the sparsity of the matfixwe can lower the average iteration cost. Consider the
set of indice” of pages that have been identified as having converged. Weedbf matrixA” as

follows:
A = 0 IfZEC'., (10)
J A;; otherwise.

In other words, when constructing)’, we replace the rowin A with zeros ifi € C. Similarly, define

5 (k)
x" " as follows:

&Y. ifieC
(k) (:C)l mTeeC,
i= . 11
(@7c’) {0 otherwise. (1)

Note thatA” is much sparser thad, so that the cost of the multiplicatiod” # is much cheaper
than the cost of the multiplicatioAZ. In fact, the cost is the same as if we had an ordered matrik, an
performed the multiplicatiod ;. Now note that

gkt A//f(k)+x7,g€) (12)

represents an iteration of the Adaptive PageRank algoritim expensive reordering of page
identifiers is needed. The filter-based implementation citiive PageRank is given in Algorithm 4.

5.3. Modified Adaptive PageRank

The core of the Adaptive PageRank algorithm is in replachegatrix multiplicationAz(*) with
equations 5 and 6, reducing redundant computation by nohrpating the PageRanks of those pages
in C (i.e., those pages that have converged).

*More precisely, since the multiplicatioAZ is performed using Algorithm 1 using the matiXand the vecto®, the number
of nonzero entries inP determines the iteration cost. Note that subsequentlynwie discuss zeroing out rows 6f, this
corresponds implementationally to zeroing out rows of fherse matrixP.

40 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

functionmodifiedAPR(A, 9, 7) {
repeat

fg\];Jfl) — A (k)

NNIN + T
o o)
periodically,
[N, C] = detectConverged(Z®), z(*+1) ¢);

¥= ACNf(Ck):

periodically,d = ||AZ®) — z*||;
until § < ¢;
return 7(*+1);

}

Algorithm 5: Modified Adaptive PageRank

In this section, we show how to further reduce redundant edatipn by not recomputing the
components of the PageRanks of those pagés due to links from those pages n.
More specifically, we can write the matrikin equation 4 as follows:

e Ann Anc
Acn Acc

whereAy are the links from pages that have not converged to pagebkdliatnot convergedic n
are links from pages that have converged to pages that haeemeerged, and so on.
We may now rewrite equation 5 as follows:

Fo — AnnED + Aond®.

Since theXc does not change at each iteration, the compoxzﬂ@)&f(ck) does not change at each
iteration. Therefore, we only need to recompAI@Nf(ck) each time the matrid is reordered. This
variant of Adaptive PageRank is summarized in Algorithm 5.

As with the standard Adaptive PageRank scheme, explicitlezong of identifiers is not necessary
in the implementation. As shown in Algorithm 6, we can simfdym two matricesAcy and Ay n
that have their “deleted” columns and rows zeroed out, esirg their sparsity and thereby reducing
their effective size. We expect that this algorithm shoyleesi up the computation of PageRank even

further as the partial sum denotediaim Algorithm 6 is not recomputed in every iteration.

5.4. Advantages

We now discuss how the Adaptive PageRank scheme speedsagntipetation of PageRank. The key
parameter in the algorithm is how often to identify convergages and construct the “compacted”
matrix A” (or in the case of Modified AdaptivePageRanky., and A%); since the cost of
constructingA” from A is on the order of the cost of the multipl#, we do not want to apply
it too often. However, looking at the convergence stasistjoven in Section 4, it is clear that even
periodically filtering out the “converged edges” frafnwill be effective in reducing the cost of future
iterations for 3 reasons:

1. Reduced i/o for reading in the link structure

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 41

functionfilterMAPR (A, 70, %) {

repeat
FEHD = Ay nZ® + i + T
periodically,

N' =N, C'=¢C; I* Keep track of prev. values */
[N, C] = detectConverged(Z®), z*+1) ¢);
[AN N, A¢n] = filter (AN s, Aoy, N, C);
(7] = filter(2®), C);
7= Acnd®;
periodically,d = ||AZ®) — #||;
until 6 < e;
return z(k+1);

}

Algorithm 6: Filter-Based Modified Adaptive PageRank

2. Fewer memory accesses when executing Algorithm 1
3. Fewer flops when executing Algorithm 1

We expect the number of iterations required for convergéactay roughly constant, although the
average iterationostwill be lowered.

5.5. Misconvergence

It is possible that the convergence test determines incityréhat the PageRank of a page has
converged, when in fact, it hasn’t. For example, a pagey have the same value for several iterations,
and later on change significantly. In this case, the adaptiyerithms proposed will decide that the
pagei has converged, and fix thith component.

To combat this, we run the adaptive PageRank algorithm isgédahere in each phase, we begin
with the original version of the link structure, iterate ate@ number of times (in our case 8), prune
the link structure, and iterate some additional numberrmogs (again, 8). In successive phases, we
reduce the tolerance threshold used when pruning. In eaa$eppruning using the current threshold
is done once, during the 8th iteratidhis strategy tries to keep all pages at roughly the samédéve
error while computing successive iterates to achieve sqaeifsed final tolerance.

6. Experimental Results

A comparison of the total cost of the standard PageRankithigoand the two variants of the Adaptive
PageRank algorithm follow. Figure 4(a) depicts the totahbar of FLOPS needed to compute the
PageRank vector to an lresidual threshold of0—2 and10~* using the Power Method and the two
variants of the Adaptive Power Method. The Adaptive aldmis operated in phases as described

For slightly better performance, our implementations aja@kithms 4 and 6 fold thélter() operation into the previous matrix
multiply step.

42 S. D. KAMVAR, T. H. HAVELIWALA AND G.H. GOLUB

40 400
@ Standard O Standard
35 350
B Adaptive (APR) @ Adaptive (APR)
30 300
» OModified Adaptive (MAPR) O Modified Adaptive (MAPR)
a 250
g
o 2 200
2 s
S 150
-
100
50
0
0.001 0.0001 0.001 0.0001
Final L1 Residual Final L1 Residual
50
45 |BStandard
» 40 B Adaptive (APR)
=
© 35 {{OModified Adaptive (MAPR) ——
8
i)
k]
o
o
£
=1
z
0.000:
Final L1 Residual
(©)

Figure 4. Experiments onARGEWEB dataset depicting total cost for computing the PageRantovéa an Ly
residual threshold of0~2 and10~*; (a) FLOPS (b) Wallclock time (c) Number of iterations

above using0~2, 103, and10—* as the successive tolerances. As shown in Figure 4(a), thufikid
Adaptive PageRankR(APR) algorithm decreases the number of FLOPS needed by 26.2%7a8%

in reaching final L, residuals ofl0—2 and 10~%, respectively, compared with the standard power
method. Figure 4(b) depicts the total wallclock time neettadthe same scenarios. TRdAPR
algorithm reduces the wallclock time needed to compute #geRank vectors by 20.3% and 21.6%
in reaching final I, residuals oftl0—2 and 10—, respectively. Note that the adaptive methods took
a few more iterations for reaching the desired tolerancas the standard power method, as shown
in Figure 4(c); however, as the average iteration cost washnower, the overall speedup is still
significant.

7. Conclusion
In this work, we present two contributions. First, we shoattmost pages in the web converge to their
true PageRank quickly, while relatively few pages take moolger to converge. We further show that
those slow-converging pages generally have high PageRawkthose pages that converge quickly
generally have low PageRank. Second, we develop two dmosit called Adaptive PageRank and
Modified Adaptive PageRank, that exploit this observatmspeed up the computation of PageRank
by 18% and 28%, resp., by avoiding redundant computation.

ADAPTIVE METHODS FOR THE COMPUTATION OF PAGERANK 43

8. Acknowledgements

We would like to thank Chris Manning for useful conversaion

This paper is based on work supported in part by the Nation&n8e Foundation under Grant
No. 11S-0085896 and Grant No. CCR-9971010, and in part byResearch Collaboration between
NTT Communication Science Laboratories, Nippon Telegrapdh Telephone Corporation and CSLI,
Stanford University (research project on Concept Based.é&xical Acquisition and Intelligently
Reasoning with Meaning).

o ~NOoO g »

©

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

. A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRank matation and the structure of the web: Experiments and
algorithms. InProceedings of the Eleventh International World Wide Webf@ence, Poster TracR002.

. K. Bharat and M. R. Henzinger. Improved algorithms foii¢agistillation in a hyperlinked environment. RProceedings
of the ACM-SIGIR1998.

. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghaand S. Rajagopalan. Automatic resource compilation by
analyzing hyperlink structure and associated texPriiceedings of the Seventh International World Wide WelieZemce
1998.

. S. Chakrabarti, M. van den Berg, and B. Dom. Focused angwh new approach to topic-specific web resource discovery.
In Proceedings of the Eighth International World Wide Web €mrice 1999.

. G.H. Golub and C. F. V. LoanMatrix Computations The Johns Hopkins University Press, Baltimore, 1996.

. G. Grimmett and D. StirzakeiProbability and Random Processe®xford University Press, 1989.

. T. H. Haveliwala. Efficient computation of PageRartanford University Technical Reppit999.

. T. H. Haveliwala. Topic-sensitive PageRank. Froceedings of the Eleventh International World Wide Wehf&ence
2002.

. T. H. Haveliwala and S. D. Kamvar. The second eigenvalubefsoogle matrix.Stanford University Technical Report

2003.

J. Hirai, S. Raghavan, H. Garcia-Molina, and A. PaepdkiebBase: A repository of web pages. Pnoceedings of the

Ninth International World Wide Web Conferen@®00.

G. Jeh and J. Widom. Scaling personalized web searclProceedings of the Twelfth International World Wide Web

Conference2003.

S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. @nl Exploting the block structure of the web for computing

PageRank.Stanford University Technical Reppft999.

S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. @l Extrapolation methods for accelerating PageRank

computations. IProceedings of the Twelfth International World Wide Webf€@mce 2003.

J. Kleinberg. Authoritative sources in a hyperlinkediemment. InProceedings of the ACM-SIAM Symposium on

Discrete Algorithms1998.

L. Page, S. Brin, R. Motwani, and T. Winograd. The Pagé&Ratation ranking: Bringing order to the welStanford

Digital Libraries Working Paper1998.

D. Rafiei and A. O. Mendelzon. What is this page known foot@uting web page reputations. Rmoceedings of the

Ninth International World Wide Web Conferen@®00.

M. Richardson and P. Domingos. The intelligent surfeabBbilistic combination of link and content information i

PageRank. IMdvances in Neural Information Processing Systerakime 14. MIT Press, Cambridge, MA, 2002.

