Shared Autonomy for Robotic Manipulation with Language Corrections

Siddharth Karamcheti* Raj Palleti* Yuchen Cui

Percy Liang Dorsa Sadigh

Department of Computer Science, Stanford University
{skaramcheti, rpalleti, yuchenc, pliang, dorsa}@stanford.edu

Abstract

Traditional end-to-end instruction following ap-
proaches for robotic manipulation are notori-
ously sample inefficient and lack adaptivity;
for most single-turn methods, there is no way
to provide additional language supervision to
adapt robot behavior online — a property criti-
cal to deploying robots in collaborative, safety-
critical environments. In this work, we present
a method for incorporating language correc-
tions, built on the insight that an initial instruc-
tion and subsequent corrections differ mainly
in the amount of grounded context needed. To
focus on manipulation domains where the sam-
ple efficiency of existing work is prohibitive,
we incorporate our method into a shared auton-
omy system. Shared autonomy splits agency
between the human and robot; rather than spec-
ifying a goal the robot needs to achieve alone,
language informs the control space provided to
the human. Splitting agency this way allows
the robot to learn the coarse, high-level parts
of a task, offloading more involved decisions —
such as when to execute a grasp, or if a grasp is
solid — to humans. Our user study on a Franka
Emika Panda arm shows that our correction-
aware system is sample-efficient and obtains
significant gains over non-adaptive baselines.

1 Introduction

Research at the intersection of natural language
and robotics has focused on dyadic interactions be-
tween humans and robots, often in the single-turn
instruction following regime (Tellex et al., 2011;
Artzi and Zettlemoyer, 2013; Thomason et al.,
2015; Arumugam et al., 2017). In this paradigm,
a human gives an instruction, and the robot exe-
cutes behavior in the world, autonomously — simul-
taneously resolving the human’s goal as well as
planning a course of actions to execute in the envi-
ronment. While impactful, building systems with
this explicit division of agency between humans

*denotes equal contribution

Shared Autonomy

LA
. Incorrectly interprets
original instruction

“Grab the thing on the
white table, and place
it in the basket”

Figure 1: Our proposed system. Whereas prior work
only allows for issuing a single language utterance held
constant during execution (solid line), our approach
allows users to provide language corrections during
execution (left window — dashed line).

and robots is nontrivial; many existing systems
either make strong assumptions about the environ-
ment in order to use motion planners (Matuszek
et al., 2012; Kollar et al., 2013), or require extreme
amounts of language-aligned data to learn general
policies (Chevalier-Boisvert et al., 2019; Stepputtis
et al., 2020; Lynch and Sermanet, 2020).

Coupled with the severe sample inefficiency of
existing approaches is their lack of adaptivity. Con-
sider the robot in Fig. 1, trying to execute “grab
the thing on the white table and place it in the
basket.” This instruction is ambiguous and as a
result, it is not clear what should happen. One
natural option is for the human to provide a set
of streaming corrections to the robot, changing its
behavior on the fly. While recent work tries to
get at the spirit of this idea by learning from dia-
logue (Thomason et al., 2019a,b), post-hoc correc-
tions (Co-Reyes et al., 2019), or implicit feedback
(Karamcheti et al., 2020), none of these approaches

%3

“Decoder”
(Dot-Product)

m
s 3w Basis 1 — (6-DoF) .
+ @ - | State | — é o) —» X g Predicted
i 8 5] ‘@ Basis 2 — (6-DoF) - Robot
Proprioceptive Object Poses e « - Action
anguage Basis n — (6-DoF)
“Put the banana away"——| % / _______________________ .
= £ Action %
“Empty the blue cup's o PP -
contents into the bowl” —p{ & nglarlty ----------- . coder ---------
2 eqreh inony
“Towards the cup’——| § “Pour the blue cup into rain-Only
°) & thecereal bO\xl/)l” 6-DoF Action Inference |
Training Utterances T « _J Disti-RoBERTa | TEEEEEEERE teenseeeeeeeeeno oo Human controls!
g Ullerances “-- .-~ Language Action

Figure 2: Our proposed LILAC model. Central to LILAC is the “gating” module (orange) which controls the
amount of state-context for a given language input, allowing us to handle corrections. We use GPT-3 in lieu of a

heuristic to provide « (see Appendix A for discussion),

though we plan to learn « from user feedback in the future.

Solid lines represent the inference pipeline, while dashed lines indicate training-only steps.

work online. Real systems for language-driven
human-robot interaction must be able to handle
streaming corrections in a manner that is both nat-
ural and sample efficient.

One answer to sample efficiency lies in leverag-
ing existing methods in shared autonomy (Dragan
and Srinivasa, 2013; Argall, 2018; Javdani et al.,
2018). This class of approaches splits agency be-
tween the human and robot; during execution, both
parties influence the ultimate actions of the robot,
sharing the burden of reasoning over actions. By
factoring the difficulty of the problem across the
human and the robot, shared autonomy approaches
see large gains in sample efficiency; the robot can
learn coarse, high-level features, off-loading the
short, fine-grained manipulation to the human, thus
playing off the strenghts of both parties. The con-
crete instance of shared autonomy that we focus
on in this work is learned latent actions for assis-
tive teleoperation (Herlant et al., 2016; Losey et al.,
2021), where we learn low-dimensional control
spaces that humans can use via joysticks, sip-and-
puff devices, or other assistive tools to maneuver
high-dimensional robots. Because humans are ac-
tively involved in controlling the robot — especially
in critical states, such as when aligning the robot
gripper to lift a cup — these approaches are able
to operate at the scale of 5 - 10 examples per task.
This is in contrast to the 10K - 100K demonstra-
tions required by modern instruction following sys-
tems learned via imitation learning, in the fully
autonomous setting (Luketina et al., 2019).

The learned latent actions paradigm operational-
izes this division of agency by formulating a set
of approaches that use small datasets of demon-
strations to learn task-specific assistive controllers

(Losey et al., 2020; Jeon et al., 2020; Karamcheti
et al., 2021b; Li et al., 2020). While powerful and
sample-efficient, a key failing of these approaches
is their inability to handle multiple objectives — and
more importantly — provide a natural interface for
users to specify their goals. To address this chal-
lenge, Karamcheti et al. (2021a) introduce LILA
(Language-Informed Latent Actions), by using lan-
guage in a manner similar to single-turn instruction-
following approaches. However, while accumu-
lating gains in sample efficiency, LILA, like most
single-turn systems, lacks adaptivity, a critical com-
ponent for any real-time, user controlled system.
Looking to Fig. 1, we see that LILA misinterprets
the ambiguous instruction “grab the thing on the
white table, and place it in the basket” (1), moving
towards the cup (2), rather than the banana as the
user intended (3). Problems of ambiguity, misspec-
ification, or underspecification are pervasive in any
real-world, user-facing language system, and as
such, we need an approach for handling streaming,
online corrections — in this case, simple utterances
like “stop,” or “no, on the left!”

In this work, we introduce LILAC (Language-
Informed Latent Actions with Corrections), an
adaptive system for real-world robotic manipula-
tion, that — unlike LILA — can effectively interpret
streaming language corrections. Critically, our key
insight is in realizing language utterances vary in
the amount of object state-dependence they require.
An instruction like that in Fig. 1 — “grab the thing
on the white table, and place it in the basket” — re-
quires dense grounded information about object
positioning while a correction — “no, on the left!” —
can be expressed as a function of the user’s (static)
reference frame, without proprioceptive state or ob-

ject information. This insight allows us to decouple
interpreting corrections from grounding: we can
learn corrections from even fewer examples, boost-
ing the robustness and generalization potential of
our approach.

The following sections introduce LILAC, includ-
ing how we identify the “state-dependence” of an
utterance. We layout our experiments, and culmi-
nate with the results of a user study (small-scale,
n = b5) conducted on a physical Franka Emika
Panda (a 7-DoF fixed arm manipulator), with a dis-
cussion of future work on extending LILAC, and
natural language supervision for shared autonomy.

2 Motivating Example

To gain a picture of LILAC’s latent actions pipeline,
we present a motivating example in Fig. 1. A
user first gives an instruction to “grab the thing
on the white table and place it in the basket,” which
presents them a 2-DoF control space they can use
via the joystick in their hands. With this new con-
trol space, pushing up on the joystick may bring
the arm closer to the table, while right might twist
the gripper to align with the objects on the table.
Unfortunately, the initial model’s control space pre-
diction is not perfect, and the arm skews towards
the wrong object!

With LILAC, the user is able to issue real-time
language corrections, updating their control space.
Specifically, the new user utterance is fed to our
learned model that parses the utterance, and pro-
duces a new control mapping reflecting the user’s
intent. Now, pushing left on the joystick brings the
arm left, allowing the user to grasp the banana, as
they intended. Finally, after the correction has been
satisfied, the user is able to denote termination with
a button on their controller, dropping back into the
control space for the original task they provided
— in this case, returning to the control space for
placing the object in the basket.

3 LILAC: Natural Language Corrections

LILAC builds off of LILA as introduced by Karam-
cheti et al. (2021a) by adding a gating module to
handle streaming corrections. The architecture is
depicted in Fig. 2; solid lines denote the inference
logic, while dashed lines denote training logic.

Overview. LILAC is a conditional autoencoder
with some extra structural elements. The encoder
takes in (language, state, action) triples — the green

boxed components in Fig. 2 — and factors the model-
ing of the control space into two subproblems. The
first subproblem is identifying a set of basis vectors
by ...b, for low-dimensional control conditioned
on the current state and language utterance, where
n is the dimensionality of the latent space. These
basis vectors have the same dimensionality as the
robot’s native action space (e.g., 6/7-DoF). The sec-
ond subproblem is finding a set of scalar weights
(21 ... zyn) of the recovered basis vectors, optimized
such that the convex combination Z?:l z; - b; re-
constructs the original action.

At train time, we assume a dataset of training ut-
terances (either instructions or corrections), paired
with robot trajectories comprised of (state, action)
pairs. For this work, we assume the action space
is the 6-DoF end-effector velocity of the robot (ob-
tained via forward kinematics), and the state space
is the combination of the robot’s proprioceptive
state, containing information about its joint states
and end-effector pose (also in 6D), as well as the
coordinates of each object in the scene. Because
we are interested in intuitive, low-dimensional con-
trol, we set n = 2, so that we only produce 2 basis
vectors and weights; this way, a human can operate
the robot using any 2-DoF interface, like a joystick
Or computer mouse.

Exactly as in LILA, we use a pretrained Distil-
Roberta model from Sentence-BERT (Reimers and
Gurevych, 2019) to encode language utterances,
in tandem with an “unnatural-language processing”
nearest neighbors index (Marzoev et al., 2020); be-
cause we are in the small data regime (2 hours
of demonstrations), projecting inference-time ut-
terances onto existing training exemplars prevents
the LILAC model from generalizing poorly as lan-
guage embeddings drift, which could lead to prac-
tical issues of user safety.

Gating Instructions vs. Corrections. The key
insight of this work is that language instructions
and corrections differ in their amount of object
state-dependence — but what does this mean? From
a linguistic perspective, one might categorize dif-
ferent utterances based on the number of referents
present; an utterance like “grab the thing on the
white table and place it in the basket” as in Fig. 1
has 3 referents, indicating a large degree of state
dependence; the robot must ground the utterance
in the objects of the environment to resolve the cor-
rect behavior. However, an utterance like “no, to
the left!” has no explicit referents; one can resolve

End-Effector Control

Correction-Aware Imitation % . LILA (No Corrections) X

LILAC (Ours)

Goal: "Place the fruit basket on the tray”

Figure 3: Qualitative trajectories from 4 different control strategies, operated by an “oracle.” Note the dashed lines
indicate when language corrections were used. In general, both LILAC and the End-Effector control methods are
able to solve tasks, with LILAC able to do so more efficiently. Imitation Learning (green) fails to fit the tasks — even
with corrections — and LILA is unable to progress without finer-grained correction information.

the utterance without object or proprioceptive state
information, instead relying solely on the user’s
static reference frame and induced coordinates.

To operationalize this idea whilst remaining sam-
ple efficient!, we use a gating function (orange, in
Fig. 2) that given language, predicts a value o from
0-1. A value of 0 signifies a correction. Appropri-
ately, in our architecture, this zeroes out any state-
dependent information (see the « term in Fig. 2),
and predicts an action solely based on the provided
language. In this work, we construct a prompt har-
ness with GPT-3 (Brown et al., 2020) to output
a = 0,0.5,1 — the prompt text and motivation for
this decision can be found in Appendix A.

4 Experiments & User Study

Our experiments consist of a targeted evaluation
with an expert “oracle” of LILAC and 3 different
baselines (results in Fig. 3), as well as a real-world
user study (n = 5) on a complex manipulation
workspace with a Franka Emika Panda arm (results
in Fig. 4). We reuse all the publicly released data
from Karamcheti et al. (2021a), and for correction
data, collect a handful of corrections for moving in
the 6 cardinal directions, as well as two mixed cor-
rections that require some level of state grounding
(“lower the bowl]” and “tilt the cup”).

Targeted Expert Evaluation. The goal of our
expert-controlled evaluation was to evaluate the
corrections-module in LILAC, and get a point of
reference to LILA and traditional methods for robot
control — specifically, using a control scheme that

'One question is why not treat all utterances as equal; the
answer is rooted in the small data regime we operate in. We’d
need to collect several instances of the same correction “to the
left” in different states to generalize, whereas with the LILAC
approach, we realistically only need one.

uses inverse kinematics to control the end-effector
of the robot, two axes at a given time (e.g. [X,
Y], [Z, Roll], [Pitch, Yawl). Fig. 3 shows
the results; LILAC and End-Effector control are
both able to accomplish the two tasks, but LILA
struggles to recover from overshooting problems.
We also evaluate one other strategy — Language &
Correction-Aware Imitation, which doesn’t have
enough data to fit a reasonable policy (see discus-
sion in Karamcheti et al. (2021a) for more infor-
mation). We additionally evaluate a “no-language”
variant of latent actions in Appendix C.

User Study. Given the results from the automatic
evaluation, we run a within-subjects user study
(n = 5, 3 male, 2 female, 3 users with prior
teleoperation experience), with the three operation
schemes — LILAC, LILA, and End-Effector control
— as the three conditions. Each user was randomly
assigned one of the five original tasks from the
LILA work, and asked to complete it with each
control strategy.” Fig. 4 shows the general quan-
titative (left) and subjective (right) study results.
Users provide linguistic feedback verbally; in this
work, we rely on an expert proctor to manually
type the verbal instruction into the computer run-
ning the LILAC model — future work will adopt
off-the-shelf ASR technologies, such as the Google
Speech-to-Text APIL.

On the Strength of End-Effector Control.
LILAC strictly dominates LILA, showing the ben-
efit of adding even simple real-time correction han-
dling. However, compared to End-Effector con-
trol, the success is less clear. While obtaining a
slightly higher success rate, the qualitative results

“More information about the structure of the study can be
found in Appendix B

Success Rate

10 0010
End-Effector - LA LILAC (Ours)
08 _, 0008
5
Q o
= £
Zo6 = 0006
o
a 5
3 5
9 04 O 0004
an <
o
9
02 0.002
00 0.000+

Grasp Object Bring to Target Complete Task

Controller Input - Jerk Survey Results

End-Effector W LILA

LILAC (Ours)

Likert Scale Response
Ok N W N~ @ O N

2D Input intuitive helpful use again

Figure 4: User study results (n = 5) with a Franka Emika Robotic arm. LILAC outperforms the non-adaptive LILA
model across the board, obtaining higher success rates, and is preferred by users. While LILAC and End-Effector
control obtain similar success rates (though LILAC is slightly higher), plotting the “jerk” (2nd derivative of input
velocity) paints a different picture: controlling the end-effector is very jerky, requiring high user load.

are mixed. One confound is the limited pool of
participants, many of whom already had prior tele-
operation experience (due to COVID restrictions,
we could not widen the pool). Another possible
confound is the structure of the user study itself; to
better allow for users to adjust to the LILAC cor-
rections procedure, the amount of practice time
afforded each user is larger than in prior work,
which allows users to get more acquainted with end-
effector control. Ultimately, this points to the tasks
in this work being on the simpler side, able to be
solved (mostly) without complex, mixed angular-
linear control of the robot’s end-effector; if we
were to account for more real-world manipulation
tasks such as sweeping, wiping, or feeding — all
of which require handling contact and controlling
3+ degrees-of-freedom — we would see degraded
End-Effector performance.

That being said, for additional insight on user
cognitive load when using the various control
schemes, we plotted the 2nd-derivative of accel-
eration — jerk — of the input controls; we see here
that End-Effector approaches require significantly
more fast movement compared to LILAC. Not only
is this more taxing on the user, but is potentially
unsafe depending on the application — another axis
we will explore in future work.

5 Discussion

The union of natural language and shared auton-
omy for real-world robot manipulation is a rich and
vibrant research area. Moving beyond strict dyadic
interactions towards the shared autonomy setting
opens the door to rich work in language supervi-
sion for robotic manipulation — work that has so
far been limited by the steep data requirements of
training language-conditioned policies (Stepputtis
et al., 2020; Shridhar et al., 2021). As shown in
this work, shared autonomy approaches are able to

benefit greatly from sharing agency with a human-
in-the-loop, leading to gains in data efficiency.

Specifically, in this work we introduced LILAC,
an adaptive shared autonomy system for handing
streaming language corrections, provided while a
user completes a task. The entire LILAC model
was trained with 2 hours of data collected by a sin-
gle person, vs. the multiple days of data that would
be required if using a fully autonomous, imitation
learning approach. While the sample efficiency
wins are clear, LILAC remains limited; the current
evaluation shows that hand-coded control schemes
that let users directly manipulate the end-effector
can be similarly effective in some cases. Further-
more, LILAC is heavily tied to the latent actions
paradigm for shared autonomy, which is only a
small slice of the different types of solutions for
human-in-the-loop robotic manipulation.

Future work in language and shared autonomy
will allow for learning new utterances online, from
user feedback; for example, developing methods
for learning control strategies for novel language,
like “flip over the cup,” with minimal user feedback
(teaching demonstrations, language corrections,
etc.). More broadly, we hope to generalize our
correction module to other versions of language-
informed robotics — for example, to policy blending
(Dragan and Srinivasa, 2013), guided planning, and
interactive imitation learning (Kelly et al., 2019) —
for more complex, real-world manipulation tasks.

Acknowledgments

Toyota Research Institute (“TRI”) provided funds
to support this work. Siddharth Karamcheti is
grateful to be supported by the Open Philanthropy
Project Al Fellowship. We would additionally like
to thank the participants of our user study, as well
as our anonymous reviewers.

References

Brenna D Argall. 2018. Autonomy in rehabilitation
robotics: an intersection. Annual Review of Control,
Robotics, and Autonomous Systems, 1:441-463.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics (TACL), 1:49-62.

Dilip Arumugam, Siddharth Karamcheti, Nakul
Gopalan, Lawson L. S. Wong, and Stefanie Tellex.
2017. Accurately and efficiently interpreting human-
robot instructions of varying granularities. In
Robotics: Science and Systems (RSS).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. Babyai: A plat-
form to study the sample efficiency of grounded
language learning. In International Conference on
Learning Representations (ICLR).

John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev,
Nick Altieri, John DeNero, Pieter Abbeel, and Sergey
Levine. 2019. Guiding policies with language via
meta-learning. In International Conference on Learn-
ing Representations (ICLR).

Anca D Dragan and Siddhartha S Srinivasa. 2013. A
policy-blending formalism for shared control. In-
ternational Journal of Robotics Research (IJRR),
32:790-805.

Laura V Herlant, Rachel M Holladay, and Siddhartha S
Srinivasa. 2016. Assistive teleoperation of robot
arms via automatic time-optimal mode switching.
In ACM/IEEE International Conference on Human
Robot Interaction (HRI), pages 35-42.

Shervin Javdani, Henny Admoni, Stefania Pellegrinelli,
Siddhartha S Srinivasa, and J] Andrew Bagnell. 2018.
Shared autonomy via hindsight optimization for tele-
operation and teaming. [International Journal of
Robotics Research (IJRR), 37:717-742.

Hong Jun Jeon, Dylan P. Losey, and Dorsa Sadigh. 2020.
Shared autonomy with learned latent actions. In
Robotics: Science and Systems (RSS).

Siddharth Karamcheti, Dorsa Sadigh, and Percy Liang.
2020. Learning adaptive language interfaces through

decomposition. In EMNLP Workshop for Interactive
and Executable Semantic Parsing (IntEx-SemPar).

Siddharth Karamcheti, Megha Srivastava, Percy Liang,
and Dorsa Sadigh. 2021a. LILA: Language-informed
latent actions. In Conference on Robot Learning
(CoRL).

Siddharth Karamcheti, A. Zhai, Dylan P. Losey, and
Dorsa Sadigh. 2021b. Learning visually guided latent
actions for assistive teleoperation. In Learning for
Dynamics & Control Conference (L4DC).

Michael Kelly, Chelsea Sidrane, K. Driggs-Campbell,
and Mykel J. Kochenderfer. 2019. HG-DAgger: In-
teractive imitation learning with human experts. In

International Conference on Robotics and Automa-
tion (ICRA), pages 8077-8083.

T. Kollar, J. Krishnamurthy, and Grant P. Strimel. 2013.
Toward interactive grounded language acqusition. In
Robotics: Science and Systems (RSS).

Mengxi Li, Dylan P. Losey, Jeannette Bohg, and Dorsa
Sadigh. 2020. Learning user-preferred mappings for
intuitive robot control. In International Conference
on Intelligent Robots and Systems (IROS).

Dylan P. Losey, Hong Jun Jeon, Mengxi Li, Kr-
ishna Parasuram Srinivasan, Ajay Mandlekar, Ani-
mesh Garg, Jeannette Bohg, and Dorsa Sadigh. 2021.
Learning latent actions to control assistive robots.
Autonomous Robots (AURO), pages 1-33.

Dylan P. Losey, Krishnan Srinivasan, Ajay Mandlekar,
Animesh Garg, and Dorsa Sadigh. 2020. Controlling
assistive robots with learned latent actions. In In-

ternational Conference on Robotics and Automation
(ICRA), pages 378-384.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar,
Jakob Foerster, Jacob Andreas, Edward Grefenstette,
Shimon Whiteson, and Tim Rocktischel. 2019. A
survey of reinforcement learning informed by natu-
ral language. In International Joint Conference on
Artificial Intelligence (IJCAI).

Corey Lynch and Pierre Sermanet. 2020. Grounding
language in play. arXiv preprint arXiv:2005.07648.

Alana Marzoev, S. Madden, M. Kaashoek, Michael J.
Cafarella, and Jacob Andreas. 2020. Unnatural lan-
guage processing: Bridging the gap between syn-
thetic and natural language data. arXiv preprint
arXiv:2004.13645.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint
model of language and perception for grounded at-
tribute learning. In International Conference on Ma-
chine Learning (ICML), pages 1671-1678.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
networks. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. 2021.
Cliport: What and where pathways for robotic manip-
ulation. In Conference on Robot Learning (CoRL).

Simon Stepputtis, J. Campbell, Mariano Phielipp, Ste-
fan Lee, Chitta Baral, and H. B. Amor. 2020.
Language-conditioned imitation learning for robot
manipulation tasks. In Advances in Neural Informa-
tion Processing Systems (NeurlPS).

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth J
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In Association for the Advance-
ment of Artificial Intelligence (AAAI).

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2019a. Vision-and-dialog naviga-
tion. In Conference on Robot Learning (CoRL).

Jesse Thomason, Aishwarya Padmakumar, Jivko
Sinapov, Nick Walker, Yuqgian Jiang, Harel Yedid-
sion, Justin W. Hart, Peter Stone, and Raymond J.
Mooney. 2019b. Improving grounded natural lan-
guage understanding through human-robot dialog. In
International Conference on Robotics and Automa-
tion (ICRA).

Jesse Thomason, Shiqi Zhang, Raymond J. Mooney,
and Peter Stone. 2015. Learning to interpret natural
language commands through human-robot dialog. In
International Joint Conference on Artificial Intelli-
gence (1JCAI).

A Using GPT-3 to Identify Corrections

A core component of LILAC is the choice of gating
function, for producing the object state dependence
weight o for a given language utterance. Critically,
a dictates whether an utterance is an instruction
(o = 1) that depends on the current environment
context, a correction (o = 0) that does not, and
can be interpreted without additional grounded in-
formation, or something in-between (o = 0.5).

We made the realization early on that identify-
ing whether a language utterance fell into one of
the above categories could (at least heuristically)
be decoupled from any environment information;
that is to say, we could predict « directly from the
language utterance alone. Given this hypothesis,
and the fact that we were not sure whether the a-
gating would even work in our small-data regime,
we found it difficult to defend the choice to collect
data to learn o upfront, prior to running through the
whole system. Therefore, our choices were to ei-
ther hardcode a series of « values for a small, fixed
set of correction language, or come up with some
heuristic (e.g., referent-counting) that could break
or generalize poorly to “in-between” utterances. In-
stead, we chose to try a prompt construction based
approach, leveraging GPT-3 (Brown et al., 2020).

The prompt we specified is shown in Fig. 5; we
did minimal prompt-tuning, only reordering the ex-
amples shown, and turning the temperature down
to O (as we wanted this to be deterministic). We
found GPT-3 to work incredibly well out of the
box — a phenomenon that cannot be overstated.
With a straightforward procedure, we were able
to use GPT-3 as a drop-in replacement for what
otherwise would have been a brittle heuristic, or a
limited set of language corrections. It is incredibly
exciting to be able to prototype these systems via
GPT-3 quickly, and we hope that this type of us-
age becomes prevalent throughout not only human-
robot interaction, but widespread NLP pipelines as
a whole. Given the results with the “drop-in”” GPT-
3 model, we have a good idea as to where we need
to focus future work with respect to learning o —
specifically, for handling the nuanced utterances
that are “in-between” corrections and instructions —
and are excited to tackle this moving forward.

B User Study Details & Tasks

As mentioned in §4, we ran a within-subjects study
with a small number of participants (n = 5). The
study consisted of each user using the following

Tell me if this is an "instruction”, "correction," or "in-between":

Q: Pick up the banana and put it in the fruit basket.
A:instruction

Q: Lower the bowl slowly.
A: in-between

Q: Move to the right.
A: correction

Generate

Engine What's new -

text-davinci-001

Temperature 0

Maximum length 64

Stop sequences
Enter sequence and press Tab

“
Top P 1
72
Frequency penalty 0

Figure 5: The concrete prompt used for GPT-3 davinci-instruct, visualized in the OpenAl API Playground. We
primed GPT-3 with 3 handcrafted examples, without much other thought, and used the corresponding outputs as our
« gating values (“instruction” = 1, “in-between” = 0.5, “correction” = 0).

strategies to solve a given task: End-Effector con-
trol, LILA (no corrections), and LILAC (our pro-
posed approach). The order of strategies was ran-
domized across users. The tasks were as follows:

1. Pick & Insert Banana — Grasp the banana,
and place it in the plastic fruit basket, turning
the gripper appropriately to insert the banana.

2. Pick & Place Basket — Grasp the basket by
the handles, and lower it onto the tray.

3. Pick & Place Cereal Bowl — Grasp the
green cereal bowl by the lip of the bowl, lift
it off the pedestal, and lower it onto the tray
without collision.

4. Pick & Pour into Cereal Bowl — Grasp
the blue cup with marbles by either the lip of
the cup or the handle on the side, then lift it
over the cereal bowl, tilting the cup to pour
the marbles into the bowl.

5. Pick & Pour into Mug — Grasp the blue
cup with marbles by either the lip of the cup
or the handle on the side, then lift it over the
black mug — avoiding collisions — then pour
the contents into the mug.

Prior to executing the task in a given control
mode, each user was given 3 minutes to practice
using that control mode. During practice, the user
could experiment with various patterns of joystick
input to better understand how they translated to
movement of the robot arm. We found that the

amount of “naturalization” time was critical in get-
ting users to adapt to the interfaces provided by
LILA, and LILAC. Furthermore, for users not al-
ready experienced in robot teleoperation, we found
this practice period important as well. However, we
found that it takes longer to naturalize to LILAC
vs. End-Effector control — this also explains the
slight difference in results between LILAC and
End-Effector control. Future work will explore the
impact of this “naturalization period” under various
conditions.

C Additional Visualizations & Baselines

To supplement our experiments from §4, we
present two additional sets of trajectory visualiza-
tions in Fig. 6 and Fig. 7. Fig. 6 shows the same 4
strategies as in Fig. 3, except for a more complex
pouring task; in general, the pattern of behavior is
the same — both LILAC and End-Effector control
are able to solve the task, whereas LILA stalls out
due to a lack of a corrective signal, with Correction-
Aware Imitation Learning failing to fit a decent
policy given limited data.

One other baseline we ran was the no-language
variant of latent actions; we ran this to show the im-
pact that language has on providing intuitive, use-
ful control spaces. Fig. 7 shows the results of this
baseline vs. LILAC — at a glance, the no-language
variant completely fails, reducing to random, oscil-
latory behavior, because it cannot learn to provide
a good control space for all tasks, without an extra
conditioning signal. This is the same observation
made in Karamcheti et al. (2021a).

. End-Effector Control Correction-Aware Imitation 3 . LILA (No Corrections) X LILAC (Ours)
e aal [)

4

Goal: “Pour the contents of the blue cup into the mug”

Figure 6: Additional trajectory visualizations for the four strategies from §4, this time for a more complex “pouring”
task; we see similar results as in Fig. 3.

.No-Language Latent Actions X LILAC (Ours) .No—Language Latent Actions X LILAC (Ours)

‘Place the fruit basket on the tray” “Pour the contents of the blue cup into the mug”

Figure 7: Results visualizing trajectories for LILAC and an additional baseline strategy — “No-Language Latent
Actions” — the language-free variant of our approach. Note that this approach trivially fails, as its overloaded,
unable to find a satisfying control scheme that would allow users to perform all 5 tasks without extra conditioning
information. This translates to aimless, oscillatory behavior during execution.

