
Natural Language Grammar Induction using a
Constituent-Context Model

Dan Klein andChristopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305-9040

{klein, manning}@cs.stanford.edu

Abstract

This paper presents a novel approach to the unsupervised learning of syn-
tactic analyses of natural language text. Most previous work has focused
on maximizing likelihood according to generativePCFGmodels. In con-
trast, we employ asimplerprobabilistic model over trees based directly
on constituent identity and linear context, and use anEM-like iterative
procedure to induce structure. This method produces much higher qual-
ity analyses, giving the best published results on theATIS dataset.

1 Overview

To enable a wide range of subsequent tasks, human language sentences are standardly given
tree-structure analyses, wherein the nodes in a tree dominate contiguous spans of words
calledconstituents, as in figure 1(a). Constituents are the linguistically coherent units in
the sentence, and are usually labeled with a constituent category, such as noun phrase (NP)
or verb phrase (VP). An aim of grammar induction systems is to figure out, given just the
sentences in a corpusS, what tree structures correspond to them. In this sense, the grammar
induction problem is an incomplete data problem, where the complete data is the corpus
of treesT , but we only observe their yieldsS. This paper presents a new approach to this
problem, which gains leverage by directly making use of constituent contexts.

It is an open problem whether entirely unsupervised methods can produce linguistically
accurate parses of sentences. Due to the difficulty of this task, the vast majority of statis-
tical parsing work has focused on supervised learning approaches to parsing, where one
uses a treebank of fully parsed sentences to induce a model which parses unseen sentences
[7, 3]. But there are compelling motivations for unsupervised grammar induction. Building
supervised training data requires considerable resources, including time and linguistic ex-
pertise. Investigating unsupervised methods can shed light on linguistic phenomena which
are implicit within a supervised parser’s supervisory information (e.g., unsupervised sys-
tems often have difficulty correctly attaching subjects to verbs above objects, whereas for
a supervised parser, this ordering is implicit in the supervisory information). Finally, while
the presented system makes no claims to modeling human language acquisition, results on
whether there is enough information in sentences to recover their structure are important
data for linguistic theory, where it has standardly been assumed that the information in the
data is deficient, and strong innate knowledge is required for language acquisition [4].

S

NP

NN1

Factory

NNS

payrolls

VP

VBD

fell

PP

IN

in

NN2

September

Node Constituent Context
S NN NNS VBD IN NN � – �

NP NN NNS � – VBD
VP VBD IN NN NNS – �
PP IN NN VBD – �

NN1 NN � – NNS
NNS NNS NN– VBD
VBD VBD NNS – IN

IN IN VBD – NN
NN2 NNS IN – �

Empty Context
ε0 � – NN
ε1 NN – NNS
ε2 NNS – VBD
ε3 VBD – IN
ε4 IN – NN
ε5 NN – �

Figure 1: Example parse tree with the constituents and contexts for each tree node.

2 Previous Approaches

One aspect of grammar induction where there has already been substantial success is the
induction of parts-of-speech. Several different distributional clustering approaches have
resulted in relatively high-quality clusterings, though the clusters’ resemblance to classical
parts-of-speech varies substantially [9, 15]. For the present work, we take the part-of-
speech induction problem as solved and work with sequences of parts-of-speech rather
than words. In some ways this makes the problem easier, such as by reducing sparsity,
but in other ways it complicates the task (even supervised parsers perform relatively poorly
with the actual words replaced by parts-of-speech).

Work attempting to induce tree structures has met with much less success. Most grammar
induction work assumes that trees are generated by a symbolic or probabilistic context-free
grammar (CFG or PCFG). These systems generally boil down to one of two types. Some
fix the structure of the grammar in advance [12], often with an aim to incorporate linguis-
tic constraints [2] or prior knowledge [13]. These systems typically then attempt to find
the grammar production parameters2 which maximize the likelihoodP(S|2) using the
inside-outside algorithm [1], which is an efficient (dynamic programming) instance of the
EM algorithm [8] for PCFGs. Other systems (which have generally been more success-
ful) incorporate a structural search as well, typically using a heuristic to propose candidate
grammar modifications which minimize the joint encoding of data and grammar using an
MDL criterion, which asserts that a good analysis is a short one, in that the joint encoding
of the grammar and the data is compact [6, 16, 18, 17]. These approaches can also be seen
as likelihood maximization where the objective function is thea posteriori likelihood of
the grammar given the data, and the description length provides a structural prior.

The “compact grammar” aspect ofMDL is close to some traditional linguistic argumen-
tation which at times has argued for minimal grammars on grounds of analytical [10] or
cognitive [5] economy. However, the primary weakness ofMDL-based systems does not
have to do with the objective function, but the search procedures they employ. Such sys-
tems end up growing structures greedily, in a bottom-up fashion. Therefore, their induction
quality is determined by how well they are able to heuristically predict what local interme-
diate structures will fit into good final global solutions.

A potential advantage of systems which fix the grammar and only perform parameter search
is that they do compare complete grammars against each other, and are therefore able to
detect which give rise to systematically compatible parses. However, although early work
showed that small, artificialCFGs could be induced with theEM algorithm [12], studies with
large natural language grammars have generally suggested that completely unsupervised
EM overPCFGs is ineffective for grammar acquisition. For instance, Carroll and Charniak
[2] describe experiments running theEM algorithm from random starting points, which
produced widely varying learned grammars, almost all of extremely poor quality.1

1We duplicated one of their experiments, which used grammars restricted to rules of the form
x → x y | y x, where there is one categoryx for each part-of-speech (such a restrictedCFG is
isomorphic to a dependency grammar). We began reestimation from a grammar with uniform rewrite

It is well-known thatEM is only locally optimal, and one might think that the locality
of the search procedure, not the objective function, is to blame. The truth is somewhere
in between. There are linguistic reasons to distrust anML objective function. It encour-
ages the symbols and rules to align in ways which maximize the truth of the conditional
independence assumptions embodied by thePCFG. The symbols and rules of a natural lan-
guage grammar, on the other hand, represent syntactically and semantically coherent units,
for which a host of linguistic arguments have been made [14]. None of these have any-
thing to do with conditional independence; traditional linguistic constituency reflects only
grammatical regularities and possibilities for expansion. There are expected to be strong
connections across phrases (such as dependencies between verbs and their selected argu-
ments). It could be thatML overPCFGs and linguistic criteria align, but in practice they do
not always seem to. Experiments with both artificial [12] and real [13] data have shown that
starting from fixed, correct (or at least linguistically reasonable) structure,EM produces a
grammar which has higher log-likelihood than the linguistically determined grammar, but
lower parsing accuracy.

However, we additionally conjecture thatEM overPCFGs fails to propagate contextual cues
efficiently. The reason we expect an algorithm to converge on a goodPCFG is that there
seem to be coherent categories, like noun phrases, which occur in distinctive environments,
like between the beginning of the sentence and the verb phrase. In the inside-outside al-
gorithm, the product of inside and outside probabilitiesα j (p, q)β j (p, q) is the probability
of generating the sentence with aj constituent spanning wordsp throughq: the outside
probability captures the environment, and the inside probability the coherent category. If
we had a good idea of whatVPs andNPs looked like, then if a novelNP appeared in an
NP context, the outside probabilities should pressure the sequence to be parsed as anNP.
However, what happens early in theEM procedure, when we have no real idea about the
grammar parameters? With randomly-weighted, complete grammars over a symbol setX,
we have observed that a frequent, short, noun phrase sequence often does get assigned to
some categoryx early on. However, since there is not a clear overall structure learned,
there is only very weak pressure for otherNPs, even if they occur in the same positions,
to also be assigned tox, and the reestimation process goes astray. To enable this kind of
constituent-context pressure to be effective, we propose the model in the following section.

3 The Constituent-Context Model

We propose an alternate parametric family of models over trees which is better suited for
grammar induction. Broadly speaking, inducing trees like the one shown in figure 1(a) can
be broken into two tasks. One is deciding constituent identity: where the brackets should
be placed. The second is deciding what to label the constituents. These tasks are certainly
correlated and are usually solved jointly. However, the task of labeling chosen brackets is
essentially the same as the part-of-speech induction problem, and the solutions cited above
can be adapted to cluster constituents [6]. The task of deciding brackets, is the harder task.
For example, the sequenceDT NN IN DT NN ([the man in the moon]) is virtually always a
noun phrase when it is a constituent, but it is only a constituent 66% of the time, because
the IN DT NN is often attached elsewhere ([we [sent a man] [to the moon]]). Figure 2(a)

probabilities. Figure 4 shows that the resulting grammar (DEP-PCFG) is not as bad as conventional
wisdom suggests. Carroll and Charniak are right to observe that the search spaces is riddled with
pronounced local maxima, andEM does not do nearly so well when randomly initialized. Theneed
for random seeding in usingEM overPCFGs is two-fold. For some grammars, such as one over a setX
of non-terminals in which anyx1 → x2 x3, xi ∈ X is possible, it is needed to break symmetry. This
is not the case for dependency grammars, where symmetry is broken by the yields (e.g., a sentence
noun verbcan only be covered by a noun or verb projection). The second reason is to start the search
from a random region of the space. But unless one does many random restarts, the uniform starting
condition is better than most extreme points in the space, and produces superior results.

−1.5 −1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

NP
VP
PP

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Usually a Constituent
Rarely a Constituent

(a) (b)

Figure 2: The most frequent examples of (a) different constituent labels and (b) constituents
and non-constituents, in the vector space of linear contexts, projected onto the first two
principal components. Clustering is effective for labeling, but not detecting constituents.

shows the 50 most frequent constituent sequences of three types, represented as points
in the vector space of their contexts (see below), projected onto their first two principal
components. The three clusters are relatively coherent, and it is not difficult to believe that
a clustering algorithm could detect them in the unprojected space. Figure 2(a), however,
shows 150 sequences which are parsed as constituents at least 50% of the time along with
150 which are not, again projected onto the first two components. This plot at least suggests
that the constituent/non-constituent classification is less amenable to direct clustering.

Thus, it is important that an induction system be able to detect constituents, either implicitly
or explicitly. A variety of methods of constituent detection have been proposed [11, 6],
usually based on information-theoretic properties of a sequence’s distributional context.
However, here we rely entirely on the following two simple assumptions: (i) constituents
of a parse do not cross each other, and (ii) constituents occur in constituent contexts. The
first property is self-evident from the nature of the parse trees. The second is an extremely
weakened version of classic linguistic constituency tests [14].

Let σ be a terminal sequence. Every occurrence ofσ will be in some linear contextc(σ) =
x σ y, wherex and y are the adjacent terminals or sentence boundaries. Then we can
view any treet over a sentences as a collection of sequences and contexts, one of each for
every node in the tree, plus one for each inter-terminal empty span, as in figure 1(b). Good
trees will include nodes whose yields frequently occur as constituents and whose contexts
frequently surround constituents. Formally, we use a conditional exponential model of the
form:

P(t|s,2) = exp(
∑

(σ,c)∈t λσ fσ + λc fc)
∑

t :yield(t)=s exp(
∑

(σ,c)∈t λσ fσ + λc fc)

We have one featurefσ (t) for each sequenceσ whose value on a treet is the number of
nodes int with yield σ , and one featurefc(t) for each contextc representing the number of
timesc is the context of the yield of some node in the tree.2 No joint features overc andσ
are used, and, unlike many other systems, there is no distinction between constituent types.

We model only the conditional likelihood of the trees,P(T |S,2), where2 = {λσ , λc}.
We then use an iterativeEM-style procedure to find a local maximumP(T |S,2) of the
completed data (trees)T (P(T |S,2) = ∏

t∈T,s=yield(t) P(t|s,2)). We initialize2 such
that eachλ is zero and initializeT to any arbitrary set of trees. In alternating steps, we first
fix the parameters2 and find the most probable single tree structuret∗ for each sentence
s according toP(t|s,2), using a simple dynamic program. For any2 this produces the

2So, for the tree in figure 1(a),P(t |s) ∝ exp(λNN NNS + λVBD IN NN + λIN NN + λ�−VBD +
λNNS−� + λVBD−� + λ�−NNS + λNN−VBD + λNNS−IN + λVBD−NN + λIN−�).

set of parsesT∗ which maximizesP(T |S,2). SinceT∗ maximizes this quantity, ifT ′ is
the former set of trees,P(T∗|S,2) ≥ P(T ′|S,2). Second, we fix the trees and estimate
new parameters2. The task of finding the parameters2∗ which maximizeP(T |S,2)
is simply the well-studied task of fitting our exponential model to maximize the condi-
tional likelihood of the fixed parses. Running, for example, a conjugate gradient (CG)
ascent on2 will produce the desired2∗. If 2′ is the former parameters, then we will
haveP(T |S,2∗) ≥ P(T |S,2′). Therefore, each iteration will increaseP(T |S,2) until
convergence.3 Note that our parsing model is not a generative model, and this procedure,
though clearly related, is not exactly an instance of theEM algorithm. We merely guarantee
that the conditional likelihood of the datacompletionsis increasing. Furthermore, unlike in
EM where each iteration increases the marginal likelihood of the fixed observed data, our
procedure increases the conditional likelihood of a changing complete data set, with the
completions changing at every iteration as we reparse.

Several implementation details were important in making the system work well. First, tie-
breaking was needed, most of all for the first round. Initially, the parameters are zero, and
all parses are therefore equally likely. To prevent bias, all ties were broken randomly.

Second, like so many statistical NLP tasks, smoothing was vital. There are features in our
model for arbitrarily long yields and most yield types occurred only a few times. The most
severe consequence of this sparsity was that initial parsing choices could easily become
frozen. If aλσ for some yieldσ was either� 0 or � 0, which was usually the case for
rare yields,σ would either be locked into always occurring or never occurring, respectively.
Not only did we want to push theλσ values close to zero, we also wanted to account for
the fact that most spans arenot constituents.4 Therefore, we expect the distribution of the
λσ to be skewed towards low values.5 A greater amount of smoothing was needed for the
first few iterations, while much less was required in later iterations.

Finally, parameter estimation using aCG method was slow and difficult to smooth in
the desired manner, and so we used the smoothed relative frequency estimatesλσ =
count(fσ)/(count(σ) + M) andλc = count(fc)/(count(c) + N). These estimates ensured
that theλ values were between 0 and 1, and gave the desired bias towards non-constituency.
These estimates were fast and surprisingly effective, but do not guarantee non-decreasing
conditional likelihood (though the conditional likelihood was increasing in practice).6

4 Results

In all experiments, we used hand-parsed sentences from the Penn Treebank. For training,
we took the approximately 7500 sentences in the Wall Street Journal (WSJ) section which
contained 10 words or fewer after the removal of punctuation. For testing, we evaluated the
system by comparing the system’s parses for those same sentences against the supervised
parses in the treebank. We consider each parse as asetof constituent brackets, discarding
all trivial brackets.7 We calculated the precision and recall of these brackets against the
treebank parses in the obvious way.

3In practice, we stopped the system after 10 iterations, but final behavior was apparent after 4–8.
4In a sentence of lengthn, there are(n + 1)(n + 2)/2 total (possibly size zero) spans, but only 3n

constituent spans:n − 1 of size≥ 2, n of size 1, andn + 1 empty spans.
5Gaussian priors for the exponential model accomplish the former goal, but not the latter.
6The relative frequency estimators had a somewhat subtle positive effect. Empty spans have no

effect on the model when usingCG fitting, as all trees include the same empty spans. However,
including their counts improved performance substantially when using relative frequency estimators.
This is perhaps an indication that a generative version of this model would be advantageous.

7We discarded both brackets of length one and brackets spanning the entire sentence, since all of
these are impossible to get incorrect, and hence ignored sentences of length≤ 2 during testing.

S

NP

DT

The

NN

screen

VP

VBD

was

NP

NP

DT

a

NN

sea

PP

IN

of

NP

NN

red

σ

σ

σ

DT

The

NN

screen

VBD

was

σ

σ

DT

a

NN

sea

σ

IN

of

NN

red

VBD

VBD

DT

DT

The

NN

screen

VBD

was

DT

DT

DT

DT

a

NN

sea

IN

of

NN

red

(a) (b) (c)

Figure 3: Alternate parse trees for a sentence: (a) the Penn Treebank tree (deemed correct),
(b) the one found by our systemCCM, and (c) the one found byDEP-PCFG.

Method UP UR F1 NP UR PP UR VP UR
LBRANCH 20.5 24.2 22.2 28.9 6.3 0.6
RANDOM 29.0 31.0 30.0 42.8 23.6 26.3
DEP-PCFG 39.5 42.3 40.9 69.7 44.1 22.8
RBRANCH 54.1 67.5 60.0 38.3 44.5 85.8
CCM 60.1 75.4 66.9 83.8 71.6 66.3
UBOUND 78.2 100.0 87.8 100.0 100.0 100.0

System UP UR F1 CB
EMILE 51.6 16.8 25.4 0.84
ABL 43.6 35.6 39.2 2.12
CDC-40 53.4 34.6 42.0 1.46
RBRANCH 39.9 46.4 42.9 2.18
CCM 54.4 46.8 50.3 1.61

(a) (b)

Figure 4: Comparative accuracy onWSJ sentences (a) and on theATIS corpus (b).UR =
unlabeled recall;UP = unlabeled precision; F1 = the harmonic mean ofUR andUP; CB =
crossing brackets. Separate recall values are shown for three major categories.

To situate the results of our system, figure 4(a) gives the values of several parsing strate-
gies. CCM is our constituent-context model.DEP-PCFGis a dependencyPCFGmodel [2]
trained using the inside-outside algorithm. Figure 3 shows sample parses to give a feel for
the parses the systems produce. We also tested several baselines.RANDOM parses ran-
domly. This is an appropriate baseline for an unsupervised system.RBRANCH always
chooses the right-branching chain, whileLBRANCH always chooses the left-branching
chain.RBRANCH is often used as a baseline for supervised systems, but exploits a system-
atic right-branching tendency of English. An unsupervised system has noa priori reason
to prefer right chains to left chains, andLBRANCH is well worse thanRANDOM. A system
need not beatRBRANCH to claim partial success at grammar induction. Finally, we in-
clude an upper bound. All of the parsing strategies and systems mentioned here give fully
binary-branching structures. Treebank trees, however, need not be fully binary-branching,
and generally are not. As a result, there is an upper boundUBOUND on the precision and
F1 scores achievable when structurally confined to binary trees.

Clearly,CCM is parsing much better than theRANDOM baseline and theDEP-PCFGinduced
grammar. Significantly, it also out-performsRBRANCH in both precision and recall, and,
to our knowledge, it is the first unsupervised system to do so. To facilitate comparison
with other recent systems, figure 4(b) gives results where we trained as before but used
(all) the sentences from the distributionally differentATIS section of the treebank as a test
set. For this experiment, precision and recall were calculated using theEVALB system of
measuring precision and recall (as in [6, 17]) –EVALB is a standard for parser evaluation,
but complex, and unsuited to evaluating unlabeled constituency.EMILE andABL are lexical
systems described in [17]. The results forCDC-40, from [6], reflect training on much more
data (12M words). Our system is superior in terms of both precision and recall (and so F1).

These figures are certainly not all that there is to say about an induced grammar; there are a
number of issues in how to interpret the results of an unsupervised system when comparing
with treebank parses. Errors come in several kinds. First are innocent sins of commis-
sion. Treebank trees are very flat; for example, there is no analysis of the inside of many
short noun phrases ([two hard drives] rather than [two [hard drives]]). Our system gives a

Sequence Example CORRECT FREQUENCY ENTROPY DEP-PCFG CCM

DT NN the man 1 2 2 1 1
NNP NNP United States 2 1 – 2 2
CD CD 4 1/2 3 9 – 5 5
JJ NNS daily yields 4 7 3 4 4
DT JJ NN the top rank 5 – – 7 6
DT NNS the people 6 – – – 10
JJ NN plastic furniture 7 3 7 3 3
CD NN 12 percent 8 – – – 9
IN NN on Monday 9 – 9 – –
IN DT NN for the moment 10 – – – –
NN NNS fire trucks 11 – 6 – 8
NN NN fire truck 22 8 10 – 7
TO VB to go 26 – 1 6 –
DT JJ ?the big 78 6 – – –
IN DT *of the 90 4 – 10 –
PRP VBZ ?he says 95 – – 8 –
PRP VBP ?they say 180 – – 9 –
NNS VBP ?people are =350 – 4 – –
NN VBZ ?value is =532 10 5 – –
NN IN *man from =648 5 – – –
NNS VBD ?people were =648 – 8 – –

Figure 5: Top non-trivial sequences by actual treebank constituent counts, linear frequency,
scaled context entropy, and inDEP-PCFGandCCM learned models’ parses.

(usually correct) analysis of the insides of suchNPs, for which it is penalized on precision
(though not recall or crossing brackets). Second are systematic alternate analyses. Our
system tends to form modal verb groups and often attaches verbs first to pronoun subjects
rather than to objects. As a result, manyVPs are systematically incorrect, boosting cross-
ing bracket scores and impactingVP recall. Finally, the treebank’s grammar is sometimes
an arbitrary, and even inconsistent standard for an unsupervised learner: alternate analy-
ses may be just as good.8 Notwithstanding this, we believe that the treebank parses have
enough truth in them that parsing scores are a useful component of evaluation.

Ideally, we would like to inspect the quality of the grammar directly. Unfortunately, the
grammar acquired by our system is implicit in the learned feature weights. These are not
by themselves particularly interpretable, and not directly comparable to the grammars pro-
duced by other systems, except through their functional behavior. Any grammar which
parses a corpus will have a distribution over which sequences tend to be analyzed as con-
stituents. These distributions can give a good sense of what structures are and are not being
learned. Therefore, to supplement the parsing scores above, we examine these distributions.

Figure 5 shows the top scoring constituents by several orderings. These lists do not say
very much about how long, complex, recursive constructions are being analyzed by a given
system, but grammar induction systems are still at the level where major mistakes manifest
themselves in short, frequent sequences.CORRECT ranks sequences by how often they
occuras constituentsin the treebank parses.DEP-PCFG and CCM are the same, but use
counts from theDEP-PCFGandCCM parses. As a baseline,FREQUENCYlists sequences by
how often they occur anywhere in the sentence yields. Note that the sequenceIN DT (e.g.,
“of the”) is high on this list, and is a typical error of many early systems. Finally,ENTROPY
is the heuristic proposed in [11] which ranks by context entropy. It is better in practice than
FREQUENCY, but that isn’t self-evident from this list. Clearly, the lists produced by the
CCM system are closer to correct than the others. They look much like a censored version
of the FREQUENCY list, where sequences which do not co-exist with higher-ranked ones
have been removed (e.g.,IN DT often crossesDT NN). This observation may explain a good
part of the success of this method.

Another explanation for the surprising success of the system is that it exploits a deep fact
about language. Most long constituents have some short, frequent equivalent, orproform,
which occurs in similar contexts [14]. In the very common case where the proform is a
single word, it is guaranteed constituency, which will be transmitted to longer sequences

8For example, transitive sentences are bracketed [subject [verb object]] (The president[executed
the law]) while nominalizations are bracketed [[possessive noun] complement] ([The president’s ex-
ecution] of the law), an arbitrary inconsistency which is unlikely to be learned automatically.

via shared contexts (categories likePPwhich have infrequent proforms are not learned well
unless the empty sequence is in the model – interestingly, the empty sequence appears to
act as the proform forPPs, possibly due to the highly optional nature of manyPPs).

5 Conclusions

We have presented an alternate probability model over trees which is based on simple
assumptions about the nature of natural language structure. It is driven by the explicit
transfer between sequences and their contexts, and exploits both the proform phenomenon
and the fact that good constituents must tile in ways that systematically cover the corpus
sentences without crossing. The model clearly has limits. Lacking recursive features, it
essentially must analyze long, rare constructions using only contexts. However, despite, or
perhaps due to its simplicity, our model predicts bracketings very well, producing higher
quality structural analyses than previous methods which employ thePCFGmodel family.

Acknowledgements. We thank John Lafferty, Fernando Pereira, Ben Taskar, and Sebas-
tian Thrun for comments and discussion. This paper is based on work supported in part by
the National Science Foundation under Grant No. IIS-0085896.

References

[1] James K. Baker. Trainable grammars for speech recognition. In D. H. Klatt and J. J. Wolf,
editors,Speech Communication Papers for the 97th Meeting of the ASA, pages 547–550, 1979.

[2] Glenn Carroll and Eugene Charniak. Two experiments on learning probabilistic dependency
grammars from corpora. In C. Weir, S. Abney, R. Grishman, and R. Weischedel, editors,Work-
ing Notes of the Workshop Statistically-Based NLP Techniques, pages 1–13. AAAI Press, 1992.

[3] Eugene Charniak. A maximum-entropy-inspired parser. InNAACL 1, pages 132–139, 2000.
[4] Noam Chomsky.Knowledge of Language. Prager, New York, 1986.
[5] Noam Chomsky & Morris Halle.The Sound Pattern of English. Harper & Row, NY, 1968.
[6] Alexander Clark. Unsupervised induction of stochastic context-free grammars using distribu-

tional clustering. InThe Fifth Conference on Natural Language Learning, 2001.
[7] Michael John Collins. Three generative, lexicalised models for statistical parsing. InACL

35/EACL 8, pages 16–23, 1997.
[8] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm.J. Royal Statistical Society Series B, 39:1–38, 1977.
[9] Steven Finch and Nick Chater. Distributional bootstrapping: From word class to proto-sentence.

In Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society, pages 301–
306, Hillsdale, NJ, 1994. Lawrence Erlbaum.

[10] Zellig Harris. Methods in Structural Linguistics. University of Chicago Press, Chicago, 1951.
[11] Dan Klein and Christopher D. Manning. Distributional phrase structure induction. InThe Fifth

Conference on Natural Language Learning, 2001.
[12] K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-

outside algorithm.Computer Speech and Language, 4:35–56, 1990.
[13] Fernando Pereira and Yves Schabes. Inside-outside reestimation from partially bracketed cor-

pora. InACL 30, pages 128–135, 1992.
[14] Andrew Radford.Transformational Grammar. Cambridge University Press, Cambridge, 1988.
[15] Hinrich Schütze. Distributional part-of-speech tagging. InEACL 7, pages 141–148, 1995.
[16] Andreas Stolcke and Stephen M. Omohundro. Inducing probabilistic grammars by Bayesian

model merging. InGrammatical Inference and Applications: Proceedings of the Second Inter-
national Colloquium on Grammatical Inference. Springer Verlag, 1994.

[17] M. van Zaanen and P. Adriaans. Comparing two unsupervised grammar induction systems:
Alignment-based learning vs. emile. Technical Report 2001.05, University of Leeds, 2001.

[18] J. G. Wolff. Learning syntax and meanings through optimization and distributional analysis. In
Y. Levy, I. M. Schlesinger, and M. D. S. Braine, editors,Categories and processes in language
acquisition, pages 179–215. Lawrence Erlbaum, Hillsdale, NJ, 1988.

