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Abstract

Nearly all previous work on neural ma-

chine translation (NMT) has used quite

restricted vocabularies, perhaps with a

subsequent method to patch in unknown

words. This paper presents a novel word-

character solution to achieving open vo-

cabulary NMT. We build hybrid systems

that translate mostly at the word level

and consult the character components for

rare words. Our character-level recur-

rent neural networks compute source word

representations and recover unknown tar-

get words when needed. The twofold

advantage of such a hybrid approach is

that it is much faster and easier to train

than character-based ones; at the same

time, it never produces unknown words

as in the case of word-based models. On

the WMT’15 English to Czech translation

task, this hybrid approach offers an ad-

dition boost of +2.1−11.4 BLEU points

over models that already handle unknown

words. Our best system achieves a new

state-of-the-art result with 20.7 BLEU

score. We demonstrate that our character

models can successfully learn to not only

generate well-formed words for Czech,

a highly-inflected language with a very

complex vocabulary, but also build correct

representations for English source words.

1 Introduction

Neural Machine Translation (NMT) is a simple

new architecture for getting machines to translate.

At its core, NMT is a single deep neural network

that is trained end-to-end with several advantages

such as simplicity and generalization. Despite

being relatively new, NMT has already achieved

Figure 1: Hybrid NMT – example of a word-

character model for translating “a cute cat” into

“un joli chat”. Hybrid NMT translates at the word

level. For rare tokens, the character-level compo-

nents build source representations and recover tar-

get <unk>. “_” marks sequence boundaries.

state-of-the-art translation results for several lan-

guage pairs such as English-French (Luong et al.,

2015b), English-German (Jean et al., 2015a; Lu-

ong et al., 2015a; Luong and Manning, 2015), and

English-Czech (Jean et al., 2015b).

While NMT offers many advantages over tra-

ditional phrase-based approaches, such as small

memory footprint and simple decoder implemen-

tation, nearly all previous work in NMT has used

quite restricted vocabularies, crudely treating all

other words the same with an <unk> symbol.

Sometimes, a post-processing step that patches

in unknown words is introduced to alleviate this

problem. Luong et al. (2015b) propose to annotate



occurrences of target <unk> with positional infor-

mation to track their alignments, after which sim-

ple word dictionary lookup or identity copy can

be performed to replace <unk> in the translation.

Jean et al. (2015a) approach the problem similarly

but obtain the alignments for unknown words from

the attention mechanism. We refer to these as the

unk replacement technique.

Though simple, these approaches ignore several

important properties of languages. First, monolin-

gually, words are morphologically related; how-

ever, they are currently treated as independent en-

tities. This is problematic as pointed out by Luong

et al. (2013): neural networks can learn good rep-

resentations for frequent words such as “distinct”,

but fail for rare-but-related words like “distinc-

tiveness”. Second, crosslingually, languages have

different alphabets, so one cannot naïvely memo-

rize all possible surface word translations such as

name transliteration between “Christopher” (En-

glish) and “Krys̆tof” (Czech). See more on this

problem in (Sennrich et al., 2016).

To overcome these shortcomings, we propose a

novel hybrid architecture for NMT that translates

mostly at the word level and consults the char-

acter components for rare words when necessary.

As illustrated in Figure 1, our hybrid model con-

sists of a word-based NMT that performs most of

the translation job, except for the two (hypotheti-

cally) rare words, “cute” and “joli”, that are han-

dled separately. On the source side, representa-

tions for rare words, “cute”, are computed on-the-

fly using a deep recurrent neural network that op-

erates at the character level. On the target side,

we have a separate model that recovers the sur-

face forms, “joli”, of <unk> tokens character-by-

character. These components are learned jointly

end-to-end, removing the need for a separate unk

replacement step as in current NMT practice.

Our hybrid NMT offers a twofold advantage: it

is much faster and easier to train than character-

based models; at the same time, it never produces

unknown words as in the case of word-based ones.

We demonstrate at scale that on the WMT’15 En-

glish to Czech translation task, such a hybrid ap-

proach provides an additional boost of +2.1−11.4
BLEU points over models that already handle un-

known words. We achieve a new state-of-the-

art result with 20.7 BLEU score. Our analysis

demonstrates that our character models can suc-

cessfully learn to not only generate well-formed

words for Czech, a highly-inflected language with

a very complex vocabulary, but also build correct

representations for English source words.

We provide code, data, and models at http:

//nlp.stanford.edu/projects/nmt.

2 Related Work

There has been a recent line of work on end-to-

end character-based neural models which achieve

good results for part-of-speech tagging (dos San-

tos and Zadrozny, 2014; Ling et al., 2015a), de-

pendency parsing (Ballesteros et al., 2015), text

classification (Zhang et al., 2015), speech recog-

nition (Chan et al., 2016; Bahdanau et al., 2016),

and language modeling (Kim et al., 2016; Joze-

fowicz et al., 2016). However, success has not

been shown for cross-lingual tasks such as ma-

chine translation.1 Sennrich et al. (2016) propose

to segment words into smaller units and translate

just like at the word level, which does not learn to

understand relationships among words.

Our work takes inspiration from (Luong et al.,

2013) and (Li et al., 2015). Similar to the former,

we build representations for rare words on-the-fly

from subword units. However, we utilize recur-

rent neural networks with characters as the basic

units; whereas Luong et al. (2013) use recursive

neural networks with morphemes as units, which

requires existence of a morphological analyzer. In

comparison with (Li et al., 2015), our hybrid archi-

tecture is also a hierarchical sequence-to-sequence

model, but operates at a different granularity level,

word-character. In contrast, Li et al. (2015) build

hierarchical models at the sentence-word level for

paragraphs and documents.

3 Background & Our Models

Neural machine translation aims to directly model

the conditional probability p(y|x) of translating a

source sentence, x1, . . . , xn, to a target sentence,

y1, . . . , ym. It accomplishes this goal through an

encoder-decoder framework (Kalchbrenner and

Blunsom, 2013; Sutskever et al., 2014; Cho et al.,

2014). The encoder computes a representation s

for each source sentence. Based on that source

1Recently, Ling et al. (2015b) attempt character-level
NMT; however, the experimental evidence is weak. The au-
thors demonstrate only small improvements over word-level
baselines and acknowledge that there are no differences of
significance. Furthermore, only small datasets were used
without comparable results from past NMT work.



representation, the decoder generates a transla-

tion, one target word at a time, and hence, decom-

poses the log conditional probability as:

log p(y|x) =
∑m

t=1
log p (yt|y<t, s) (1)

A natural model for sequential data is the re-

current neural network (RNN), used by most of

the recent NMT work. Papers, however, differ in

terms of: (a) architecture – from unidirectional,

to bidirectional, and deep multi-layer RNNs; and

(b) RNN type – which are long short-term mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997)

and the gated recurrent unit (Cho et al., 2014). All

our models utilize the deep multi-layer architec-

ture with LSTM as the recurrent unit; detailed for-

mulations are in (Zaremba et al., 2014).

Considering the top recurrent layer in a deep

LSTM, with ht being the current target hidden

state as in Figure 2, one can compute the proba-

bility of decoding each target word yt as:

p (yt|y<t, s) = softmax (ht) (2)

For a parallel corpus D, we train our model by

minimizing the below cross-entropy loss:

J =
∑

(x,y)∈D
− log p(y|x) (3)

Attention Mechanism – The early NMT ap-

proaches (Sutskever et al., 2014; Cho et al., 2014),

which we have described above, use only the last

encoder state to initialize the decoder, i.e., setting

the input representation s in Eq. (1) to [h̄n]. Re-

cently, Bahdanau et al. (2015) propose an atten-

tion mechanism, a form of random access mem-

ory for NMT to cope with long input sequences.

Luong et al. (2015a) further extend the attention

mechanism to different scoring functions, used to

compare source and target hidden states, as well

as different strategies to place the attention. In all

our models, we utilize the global attention mech-

anism and the bilinear form for the attention scor-

ing function similar to (Luong et al., 2015a).

Specifically, we set s in Eq. (1) to the set of

source hidden states at the top layer, [h̄1, . . . , h̄n].
As illustrated in Figure 2, the attention mechanism

consists of two stages: (a) context vector – the

current hidden state ht is compared with individ-

ual source hidden states in s to learn an alignment

vector, which is then used to compute the context

vector ct as a weighted average of s; and (b) atten-

tional hidden state – the context vector ct is then

yt

ct

h̄1 h̄n ht

h̃t

Figure 2: Attention mechanism.

used to derive a new attentional hidden state:

h̃t = tanh(W[ct;ht]) (4)

The attentional vector h̃t then replaces ht in

Eq. (2) in predicting the next word.

4 Hybrid Neural Machine Translation

Our hybrid architecture, illustrated in Figure 1,

leverages the power of both words and characters

to achieve the goal of open vocabulary NMT. The

core of the design is a word-level NMT with the

advantage of being fast and easy to train. The

character components empower the word-level

system with the abilities to compute any source

word representation on the fly from characters and

to recover character-by-character unknown target

words originally produced as <unk>.

4.1 Word-based Translation as a Backbone

The core of our hybrid NMT is a deep LSTM

encoder-decoder that translates at the word level as

described in Section 3. We maintain a vocabulary

of |V | frequent words for each language. Other

words not inside these lists are represented by a

universal symbol <unk>, one per language. We

translate just like a word-based NMT system with

respect to these source and target vocabularies, ex-

cept for cases that involve <unk> in the source in-

put or the target output. These correspond to the

character-level components illustrated in Figure 1.

A nice property of our hybrid approach is that

by varying the vocabulary size, one can control



how much to blend the word- and character-based

models; hence, taking the best of both worlds.

4.2 Source Character-based Representation

In regular word-based NMT, for all rare words out-

side the source vocabulary, one feeds the univer-

sal embedding representing <unk> as input to the

encoder. This is problematic because it discards

valuable information about the source word. To

fix that, we learn a deep LSTM model over char-

acters of source words. For example, in Figure 1,

we run our deep character-based LSTM over ‘c’,

‘u’, ‘t’, ‘e’, and ‘_’ (the boundary symbol). The fi-

nal hidden state at the top layer will be used as the

on-the-fly representation for the current rare word.

The layers of the deep character-based LSTM

are always initialized with zero states. One might

propose to connect hidden states of the word-

based LSTM to the character-based model; how-

ever, we chose this design for various reasons.

First, it simplifies the architecture. Second, it al-

lows for efficiency through precomputation: be-

fore each mini-batch, we can compute represen-

tations for rare source words all at once. All in-

stances of the same word share the same embed-

ding, so the computation is per type.2

4.3 Target Character-level Generation

General word-based NMT allows generation of

<unk> in the target output. Afterwards, there is

usually a post-processing step that handles these

unknown tokens by utilizing the alignment infor-

mation derived from the attention mechanism and

then performing simple word dictionary lookup

or identity copy (Luong et al., 2015a; Jean et

al., 2015a). While this approach works, it suf-

fers from various problems such as alphabet mis-

matches between the source and target vocabular-

ies and multi-word alignments. Our goal is to ad-

dress all these issues and create a coherent frame-

work that handles an unlimited output vocabulary.

Our solution is to have a separate deep LSTM

that “translates” at the character level given the

current word-level state. We train our system such

that whenever the word-level NMT produces an

<unk>, we can consult this character-level de-

coder to recover the correct surface form of the un-

known target word. This is illustrated in Figure 1.

2While Ling et al. (2015b) found that it is slow and diffi-
cult to train source character-level models and had to resort to
pretraining, we demonstrate later that we can train our deep
character-level LSTM perfectly fine in an end-to-end fashion.

The training objective in Eq. (3) now becomes:

J = Jw + αJc (5)

Here, Jw refers to the usual loss of the word-

level NMT; in our example, it is the sum

of the negative log likelihood of generating

{“un”, “<unk>”, “chat”, “_”}. The remaining

component Jc corresponds to the loss incurred by

the character-level decoder when predicting char-

acters, e.g., {‘j’, ‘o’, ‘l’, ‘i’, ‘_’}, of those rare

words not in the target vocabulary.

Hidden-state Initialization Unlike the source

character-based representations, which are

context-independent, the target character-level

generation requires the current word-level context

to produce meaningful translation. This brings

up an important question about what can best

represent the current context so as to initialize the

character-level decoder. We answer this question

in the context of the attention mechanism (§3).

The final vector h̃t, just before the softmax as

shown in Figure 2, seems to be a good candidate

to initialize the character-level decoder. The rea-

son is that h̃t combines information from both the

context vector ct and the top-level recurrent state

ht. We refer to it later in our experiments as the

same-path target generation approach.

On the other hand, the same-path approach wor-

ries us because all vectors h̃t used to seed the

character-level decoder might have similar values,

leading to the same character sequence being pro-

duced. The reason is because h̃t is directly used in

the softmax, Eq. (2), to predict the same <unk>.

That might pose some challenges for the model to

learn useful representations that can be used to ac-

complish two tasks at the same time, that is to pre-

dict <unk> and to generate character sequences.

To address that concern, we propose another ap-

proach called the separate-path target generation.

Our separate-path target generation approach

works as follows. We mimic the process described

in Eq. (4) to create a counterpart vector h̆t that will

be used to seed the character-level decoder:

h̆t = tanh(W̆ [ct;ht]) (6)

Here, W̆ is a new learnable parameter matrix,

with which we hope to release W from the pres-

sure of having to extract information relevant

to both the word- and character-generation pro-

cesses. Only the hidden state of the first layer



is initialized as discussed above. The other com-

ponents in the character-level decoder such as the

LSTM cells of all layers and the hidden states of

higher layers, all start with zero values.

Implementation-wise, the computation in the

character-level decoder is done per word token in-

stead of per type as in the source character com-

ponent (§4.2). This is because of the context-

dependent nature of the decoder.

Word-Character Generation Strategy With

the character-level decoder, we can view the fi-

nal hidden states as representations for the surface

forms of unknown tokens and could have fed these

to the next time step. However, we chose not to

do so for the efficiency reason explained next; in-

stead, <unk> is fed to the word-level decoder “as

is” using its corresponding word embedding.

During training, this design choice decou-

ples all executions over <unk> instances of the

character-level decoder as soon the word-level

NMT completes. As such, the forward and back-

ward passes of the character-level decoder over

rare words can be invoked in batch mode. At test

time, our strategy is to first run a beam search de-

coder at the word level to find the best transla-

tions given by the word-level NMT. Such trans-

lations contains <unk> tokens, so we utilize our

character-level decoder with beam search to gen-

erate actual words for these <unk>.

5 Experiments

We evaluate the effectiveness of our models on the

publicly available WMT’15 translation task from

English into Czech with newstest2013 (3000 sen-

tences) as a development set and newstest2015

(2656 sentences) as a test set. Two metrics are

used: case-sensitive NIST BLEU (Papineni et al.,

2002) and chrF3 (Popović, 2015).3 The latter

measures the amounts of overlapping character n-

grams and has been argued to be a better metric

for translation tasks out of English.

5.1 Data

Among the available language pairs in WMT’15,

all involving English, we choose Czech as a target

language for several reasons. First and foremost,

Czech is a Slavic language with not only rich and

3For NIST BLEU, we first run detokenizer.pl and
then use mteval-v13a to compute the scores as per WMT
guideline. For chrF3, we utilize the implementation here
https://github.com/rsennrich/subword-nmt.

English Czech

word char word char

# Sents 15.8M

# Tokens 254M 1,269M 224M 1,347M

# Types 1,172K 2003 1,760K 2053

200-char 98.1% 98.8%

Table 1: WMT’15 English-Czech data – shown

are various statistics of our training data such as

sentence, token (word and character counts), as

well as type (sizes of the word and character vo-

cabularies). We show in addition the amount of

words in a vocabulary expressed by a list of 200

characters found in frequent words.

complex inflection, but also fusional morphology

in which a single morpheme can encode multiple

grammatical, syntactic, or semantic meanings. As

a result, Czech possesses an enormously large vo-

cabulary (about 1.5 to 2 times bigger than that of

English according to statistics in Table 1) and is

a challenging language to translate into. Further-

more, this language pair has a large amount of

training data, so we can evaluate at scale. Lastly,

though our techniques are language independent,

it is easier for us to work with Czech since Czech

uses the Latin alphabet with some diacritics.

In terms of preprocessing, we apply only the

standard tokenization practice.4 We choose for

each language a list of 200 characters found in

frequent words, which, as shown in Table 1, can

represent more than 98% of the vocabulary.

5.2 Training Details

We train three types of systems, purely word-

based, purely character-based, and hybrid. Com-

mon to these architectures is a word-based NMT

since the character-based systems are essentially

word-based ones with longer sequences and the

core of hybrid models is also a word-based NMT.

In training word-based NMT, we follow Lu-

ong et al. (2015a) to use the global attention

mechanism together with similar hyperparame-

ters: (a) deep LSTM models, 4 layers, 1024 cells,

and 1024-dimensional embeddings, (b) uniform

initialization of parameters in [−0.1, 0.1], (c) 6-

epoch training with plain SGD and a simple learn-

ing rate schedule – start with a learning rate of 1.0;

after 4 epochs, halve the learning rate every 0.5

epoch, (d) mini-batches are of size 128 and shuf-

4Use tokenizer.perl in Moses with default settings.



System Vocab
Perplexity

BLEU chrF3
w c

(a) Best WMT’15, big data (Bojar and Tamchyna, 2015) - - - 18.8 -

Existing NMT

(b) RNNsearch + unk replace (Jean et al., 2015b) 200K - - 15.7 -

(c) Ensemble 4 models + unk replace (Jean et al., 2015b) 200K - - 18.3 -

Our word-based NMT

(d) Base + attention + unk replace 50K 5.9 - 17.5 42.4

(e) Ensemble 4 models + unk replace 50K - - 18.4 43.9

Our character-based NMT

(f) Base-512 (600-step backprop) 200 - 2.4 3.8 25.9

(g) Base-512 + attention (600-step backprop) 200 - 1.6 17.5 46.6

(h) Base-1024 + attention (300-step backprop) 200 - 1.9 15.7 41.1

Our hybrid NMT

(i) Base + attention + same-path 10K 4.9 1.7 14.1 37.2

(j) Base + attention + separate-path 10K 4.9 1.7 15.6 39.6

(k) Base + attention + separate-path + 2-layer char 10K 4.7 1.6 17.7 44.1

(l) Base + attention + separate-path + 2-layer char 50K 5.7 1.6 19.6 46.5

(m) Ensemble 4 models 50K - - 20.7 47.5

Table 2: WMT’15 English-Czech results – shown are the vocabulary sizes, perplexities, BLEU, and

chrF3 scores of various systems on newstest2015. Perplexities are listed under two categories, word (w)

and character (c). Best and important results per metric are highlighed.

fled, (e) the gradient is rescaled whenever its norm

exceeds 5, and (f) dropout is used with probabil-

ity 0.2 according to (Pham et al., 2014). We now

detail differences across the three architectures.

Word-based NMT – We constrain our source

and target sequences to have a maximum length

of 50 each; words that go past the boundary

are ignored. The vocabularies are limited to the

top |V | most frequent words in both languages.

Words not in these vocabularies are converted into

<unk>. After translating, we will perform dictio-

nary5 lookup or identity copy for <unk> using the

alignment information from the attention models.

Such procedure is referred as the unk replace tech-

nique (Luong et al., 2015b; Jean et al., 2015a).

Character-based NMT – The source and target

sequences at the character level are often about 5

times longer than their counterparts in the word-

based models as we can infer from the statistics in

Table 1. Due to memory constraint in GPUs, we

limit our source and target sequences to a maxi-

mum length of 150 each, i.e., we backpropagate

through at most 300 timesteps from the decoder to

the encoder. With smaller 512-dimensional mod-

els, we can afford to have longer sequences with

5Obtained from the alignment links produced by the
Berkeley aligner (Liang et al., 2006) over the training corpus.

up to 600-step backpropagation.

Hybrid NMT – The word-level component

uses the same settings as the purely word-based

NMT. For the character-level source and target

components, we experiment with both shallow and

deep 1024-dimensional models of 1 and 2 LSTM

layers. We set the weight α in Eq. (5) for our

character-level loss to 1.0.

Training Time – It takes about 3 weeks to train

a word-based model with |V | = 50K and about

3 months to train a character-based model. Train-

ing and testing for the hybrid models are about 10-

20% slower than those of the word-based models

with the same vocabulary size.

5.3 Results

We compare our models with several strong

systems. These include the winning entry in

WMT’15, which was trained on a much larger

amount of data, 52.6M parallel and 393.0M mono-

lingual sentences (Bojar and Tamchyna, 2015).6

In contrast, we merely use the provided parallel

corpus of 15.8M sentences. For NMT, to the best

6This entry combines two independent systems, a phrase-
based Moses model and a deep-syntactic transfer-based
model. Additionally, there is an automatic post-editing sys-
tem with hand-crafted rules to correct errors in morphological
agreement and semantic meanings, e.g., loss of negation.



of our knowledge, (Jean et al., 2015b) has the best

published performance on English-Czech.

As shown in Table 2, for a purely word-based

approach, our single NMT model outperforms the

best single model in (Jean et al., 2015b) by +1.8
points despite using a smaller vocabulary of only

50K words versus 200K words. Our ensemble

system (e) slightly outperforms the best previous

NMT system with 18.4 BLEU.

To our surprise, purely character-based models,

though extremely slow to train and test, perform

quite well. The 512-dimensional attention-based

model (g) is best, surpassing the single word-

based model in (Jean et al., 2015b) despite hav-

ing much fewer parameters. It even outperforms

most NMT systems on chrF3 with 46.6 points.

This indicates that this model translate words that

closely but not exactly match the reference ones

as evidenced in Section 6.3. We notice two in-

teresting observations. First, attention is critical

for character-based models to work as is obvious

from the poor performance of the non-attentional

model; this has also been shown in speech recog-

nition (Chan et al., 2016). Second, long time-step

backpropagation is more important as reflected by

the fact that the larger 1024-dimensional model (h)

with shorter backprogration is inferior to (g).

Our hybrid models achieve the best results. At

10K words, we demonstrate that our separate-

path strategy for the character-level target gener-

ation (§4.3) is effective, yielding an improvement

of +1.5 BLEU points when comparing systems (j)

vs. (i). A deeper character-level architecture of 2

LSTM layers provides another significant boost of

+2.1 BLEU. With 17.7 BLEU points, our hybrid

system (k) has surpassed word-level NMT models.

When extending to 50K words, we further im-

prove the translation quality. Our best single

model, system (l) with 19.6 BLEU, is already

better than all existing systems. Our ensemble

model (m) further advances the SOTA result to

20.7 BLEU, outperforming the winning entry in

the WMT’15 English-Czech translation task by a

large margin of +1.9 points. Our ensemble model

is also best in terms of chrF3 with 47.5 points.

6 Analysis

This section first studies the effects of vocabulary

sizes towards translation quality. We then analyze

more carefully our character-level components by

visualizing and evaluating rare word embeddings
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Figure 3: Vocabulary size effect – shown are the

performances of different systems as we vary their

vocabulary sizes. We highlight the improvements

obtained by our hybrid models over word-based

systems which already handle unknown words.

as well as examining sample translations.

6.1 Effects of Vocabulary Sizes

As shown in Figure 3, our hybrid models of-

fer large gains of +2.1-11.4 BLEU points over

strong word-based systems which already handle

unknown words. With only a small vocabulary,

e.g., 1000 words, our hybrid approach can pro-

duce systems that are better than word-based mod-

els that possess much larger vocabularies. While

it appears from the plot that gains diminish as we

increase the vocabulary size, we argue that our hy-

brid models are still preferable since they under-

stand word structures and can handle new complex

words at test time as illustrated in Section 6.3.

6.2 Rare Word Embeddings

We evaluate the source character-level model by

building representations for rare words and mea-

suring how good these embeddings are.

Quantitatively, we follow Luong et al. (2013) in

using the word similarity task, specifically on the

Rare Word dataset, to judge the learned represen-

tations for complex words. The evaluation met-

ric is the Spearman’s correlation ρ between sim-

ilarity scores assigned by a model and by human

annotators. From the results in Table 3, we can

see that source representations produced by our

hybrid7 models are significantly better than those

of the word-based one. It is noteworthy that our

deep recurrent character-level models can outper-

form the model of (Luong et al., 2013), which uses

recursive neural networks and requires a complex

morphological analyzer, by a large margin. Our

performance is also competitive to the best Glove

7We look up the encoder embeddings for frequent words
and build representations for rare word from characters.
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Figure 4: Barnes-Hut-SNE visualization of source word representations – shown are sample words

from the Rare Word dataset. We differentiate two types of embeddings: frequent words in which encoder

embeddings are looked up directly and rare words where we build representations from characters. Boxes

highlight examples that we will discuss in the text. We use the hybrid model (l) in this visualization.

embeddings (Pennington et al., 2014) which were

trained on a much larger dataset.

System Size |V | ρ

(Luong et al., 2013) 1B 138K 34.4

Glove (Pennington et al., 2014)
6B 400K 38.1

42B 400K 47.8

Our NMT models

(d) Word-based 0.3B 50K 20.4

(k) Hybrid 0.3B 10K 42.4

(l) Hybrid 0.3B 50K 47.1

Table 3: Word similarity task – shown are Spear-

man’s correlation ρ on the Rare Word dataset of

various models (with different vocab sizes |V |).

Qualitatively, we visualize embeddings pro-

duced by the hybrid model (l) for selected words

in the Rare Word dataset. Figure 4 shows the

two-dimensional representations of words com-

puted by the Barnes-Hut-SNE algorithm (van der

Maaten, 2013).8 It is extremely interesting to ob-

serve that words are clustered together not only

by the word structures but also by the meanings.

For example, in the top-left box, the character-

based representations for “loveless”, “spiritless”,

“heartlessly”, and “heartlessness” are nearby, but

clearly separated into two groups. Similarly, in the

8We run Barnes-Hut-SNE algorithm over a set of 91
words, but filter out 27 words for displaying clarity.

center boxes, word-based embeddings of “accept-

able”, “satisfactory”, “unacceptable”, and “unsat-

isfactory”, are close by but separated by mean-

ings. Lastly, the remaining boxes demonstrate that

our character-level models are able to build rep-

resentations comparable to the word-based ones,

e.g., “impossibilities” vs. “impossible” and “an-

tagonize” vs. “antagonist”. All of this evidence

strongly supports that the source character-level

models are useful and effective.

6.3 Sample Translations

We show in Table 4 sample translations between

various systems. In the first example, our hybrid

model translates perfectly. The word-based model

fails to translate “diagnosis” because the second

<unk> was incorrectly aligned to the word “af-

ter”. The character-based model, on the other

hand, makes a mistake in translating names.

For the second example, the hybrid model sur-

prises us when it can capture the long-distance re-

ordering of “fifty years ago” and “pr̆ed padesáti

lety” while the other two models do not. The

word-based model translates “Jr.” inaccurately

due to the incorrect alignment between the sec-

ond <unk> and the word “said”. The character-

based model literally translates the name “King”

into “král” which means “king”.

Lastly, both the character-based and hybrid



1

source The author Stephen Jay Gould died 20 years after diagnosis .

human Autor Stephen Jay Gould zemr̆el 20 let po diagnóze .

word
Autor Stephen Jay <unk> zemr̆el 20 let po <unk> .

Autor Stephen Jay Gould zemr̆el 20 let po po .

char Autor Stepher Stepher zemr̆el 20 let po diagnóze .

hybrid
Autor <unk> <unk> <unk> zemr̆el 20 let po <unk>.

Autor Stephen Jay Gould zemr̆el 20 let po diagnóze .

2

source As the Reverend Martin Luther King Jr. said fifty years ago :

human Jak pr̆ed padesáti lety r̆ekl reverend Martin Luther King Jr . :

word
Jak r̆ekl reverend Martin <unk> King <unk> pr̆ed padesáti lety :

Jak r̆ekl reverend Martin Luther King r̆ekl pr̆ed padesáti lety :

char Jako reverend Martin Luther král r̆íkal pr̆ed padesáti lety :

hybrid
Jak pr̆ed <unk> lety r̆ekl <unk> Martin <unk> <unk> <unk> :

Jak pr̆ed padesáti lety r̆ekl reverend Martin Luther King Jr. :

3

source Her 11-year-old daughter , Shani Bart , said it felt a " little bit weird " [..] back to school .

human Její jedenáctiletá dcera Shani Bartová prozradila , z̆e " je to trochu zvlás̆tní " [..] znova do s̆koly .

word
Její <unk> dcera <unk> <unk> r̆ekla , z̆e je to " trochu divné " , [..] vrací do s̆koly .

Její 11-year-old dcera Shani , r̆ekla , z̆e je to " trochu divné " , [..] vrací do s̆koly .

char Její jedenáctiletá dcera , Shani Bartová , r̆íkala , z̆e cítí trochu divnĕ , [..] vrátila do s̆koly .

hybrid
Její <unk> dcera , <unk> <unk> , r̆ekla , z̆e cítí " trochu <unk> " , [..] vrátila do s̆koly .

Její jedenáctiletá dcera , Graham Bart , r̆ekla , z̆e cítí " trochu divný " , [..] vrátila do s̆koly .

Table 4: Sample translations on newstest2015 – for each example, we show the source, human transla-

tion, and translations of the following NMT systems: word model (d), char model (g), and hybrid model

(k). We show the translations before replacing <unk> tokens (if any) for the word-based and hybrid

models. The following formats are used to highlight correct, wrong, and close translation segments.

models impress us by their ability to translate

compound words exactly, e.g., “11-year-old” and

“jedenáctiletá”; whereas the identity copy strategy

of the word-based model fails. Of course, our hy-

brid model does make mistakes, e.g., it fails to

translate the name “Shani Bart”. Overall, these ex-

amples highlight how challenging translating into

Czech is and that being able to translate at the

character level helps improve the quality.

7 Conclusion

We have proposed a novel hybrid architecture

that combines the strength of both word- and

character-based models. Word-level models are

fast to train and offer high-quality translation;

whereas, character-level models help achieve the

goal of open vocabulary NMT. We have demon-

strated these two aspects through our experimental

results and translation examples.

Our best hybrid model has surpassed the perfor-

mance of both the best word-based NMT system

and the best non-neural model to establish a new

state-of-the-art result for English-Czech transla-

tion in WMT’15 with 20.7 BLEU. Moreover, we

have succeeded in replacing the standard unk re-

placement technique in NMT with our character-

level components, yielding an improvement of

+2.1−11.4 BLEU points. Our analysis has shown

that our model has the ability to not only generate

well-formed words for Czech, a highly inflected

language with an enormous and complex vocab-

ulary, but also build accurate representations for

English source words.

Additionally, we have demonstrated the poten-

tial of purely character-based models in produc-

ing good translations; they have outperformed past

word-level NMT models. For future work, we

hope to be able to improve the memory usage and

speed of purely character-based models.
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