
Stanford’s System for Parsing the English Web

David McCloskys∗, Wanxiang Cheh∗, Marta Recasenss,
Mengqiu Wangs, Richard Sochers, and Christopher D. Mannings

s Natural Language Processing Group, Stanford University
{mcclosky,recasens,mengqiu,socherr,manning}@stanford.edu

h School of Computer Science and Technology, Harbin Institute of Technology
car@ir.hit.edu.cn

Abstract

We describe the Stanford entries to the
SANCL 2012 shared task on parsing non-
canonical language. Stanford submitted three
entries: (i) a self-trained generative con-
stituency parser, (ii) a graph-based depen-
dency parser, and (iii) a stacked dependency
parser using the output from the constituency
parser as features while parsing. The stacked
parser obtained 2nd place in the dependency
parsing track. Our overall approach involved
exploring techniques which improved perfor-
mance consistently across domains without
using many external resources.

1 Introduction

Extracting the syntactic structure of non-canonical
language (such as emails and blog posts) is a task
important for gaining a more complete understand-
ing of humanity’s digital discourse. This was the
focus of the SANCL (Syntactic Analysis of Non-
Canonical Language) shared task by Petrov and Mc-
Donald (2012).

In this paper, we describe Stanford’s three en-
tries to SANCL 2012. The first entry (§2) is
a semi-supervised generative constituency parser
(McClosky et al., 2006). The second entry (§3) is
a graph-based dependency parser along the lines of
McDonald et al. (2005b). Our third entry (§4) com-
bines the first two by using the output from the con-
stituency parser as stacking features in dependency
parser.

∗These authors contributed equally.

2 Constituency parsing

Our constituency parser is the BLLIP reranking
parser1 (Charniak and Johnson, 2005). The BLLIP
parser consists of a PCFG-like constituency parser
(BLLIP1) and a discriminative reranker (BLLIP2).
This results in two possible parsing models.

To take advantage of the unlabeled corpora, we
apply self-training (McClosky et al., 2006) in the
following way. First, we train the parser and
reranker on the OntoNotes WSJ labeled data. Next,
using that reranking parser we parse all five unla-
beled corpora. For each unlabeled corpus, we train
a parsing model. Finally, we build a new “uniform”
parsing model by linearly interpolating the counts
from the parsing models trained on OntoNotes WSJ
and the parsed unlabeled corpora. We ensure that
each corpus gives an equal contribution accounting
for the relative size of each corpus. For example,
given two corpora where one has ten times as many
words, we would give the larger corpus a weight of
0.1 and the smaller corpus a weight of 0.9. The re-
sults of this can be seen in Table 1. The uniform self-
trained models perform better across the three devel-
opment domains. Additional results can be found at
http://mlcomp.org.

To parse the unlabeled text during self-training or
at test time, we use the -s (small corpus) flags. The
latter ensures that all edges receive positive merit
even if the specific construction has not been seen
in the training data. We found that this improved
performance on development data.

We experimented with customizing the parsing

1http://github.com/BLLIP/bllip-parser/



Evaluation set (dev)
Parser Model WSJ Emails Weblogs
BLLIP1 WSJ 89.3 78.3 83.1
BLLIP2 WSJ 91.2 79.4 85.4
BLLIP1 Uniform 89.5 80.9 85.3
BLLIP2 Uniform 90.9 81.1 85.6
BLLIP2 Adapted 91.2 81.1 85.7
BLLIP2 Oracle 91.3 81.5 85.9

Table 1: F1 scores BLLIP parsers on the development
sections of three domains. The “Uniform” model is self-
trained on all five unlabeled corpora. “Adapted” refers
to using automatic domain adaptation, averaged over 10
folds. “Oracle” picks the best parsing model from 400
random combinations of parsing models for each evalua-
tion set. This represents the limit of the automatic domain
adaptation method.

models to the target text as in McClosky et al.
(2010). We found that for this set of source and
target texts (one labeled corpus and five unlabeled
corpora), automatic domain adaptation performed
about as well as the uniform baseline. We believe
that this may stem from only having a single la-
beled corpus which made it difficult to learn useful
cross-domain divergence measures. Given its addi-
tional complexity, our Stanford and Stanford-1 sub-
missions use the “Uniform” model.

3 Dependency parsing

Our baseline dependency parser (Stanford-2)
adopted the state-of-the-art graph-based depen-
dency parsing (Kübler et al., 2009). The score of
a dependency tree is factored into scores of small
parts (sub-trees) and the graph-based dependency
parsing views the problem of finding optimal depen-
dency tree as finding the maximum spanning tree
(MST) from a directed graph. Based on dynamic
programming decoding, it can find efficiently an
optimal tree in a huge search space.

Here we used Mate parser2 (Bohnet, 2010), an
open source implementation of Carreras (2007)’s
second-order MST dependency parsing algorithm.
Besides the first-order features (McDonald et al.,
2005a) and second-order features3 (McDonald and

2code.google.com/p/mate-tools
3McDonald and Pereira (2006)’s second-order features only

included sibling nodes which are closest to the modifier. In ad-
dition, they used a separate algorithm to predict relation labels.

Pereira, 2006), Carreras (2007) also included any
sibling and grandchild occurring in the sentence
between the head and the modifier. In addition,
relation label prediction is an integral part of the
algorithm. Unlike Carreras (2007), the passive-
aggressive perceptron algorithm (Crammer et al.,
2006) was used to learn feature weights in the Mate
parser. To reduce the number of loops over all
kinds of relation labels, only those labels that were
present in the training corpus for a head and mod-
ifier POS combination were considered (Johansson
and Nugues, 2008). In order to speed up the feature
extraction process, we employed hash kernels.4 Al-
though the conflicts introduced by hash kernel can
harm parsing accuracy, the technique dramatically
reduces the feature space and speeds up the feature
extraction process. Additionally, it makes it possible
to take into account the features over negative ex-
amples during the training stage, which significantly
improves the parsing performance. Furthermore, the
Mate parser can take advantage of a modern multi-
core CPUs to extract features in parallel. Therefore,
the Mate parser not only achieves high accuracy, but
also high efficiency at training and testing time.

Most dependency parsers require exogenous
part-of-speech (POS) tags. To obtain these, we used
the Stanford tagger (Toutanova et al., 2003) with the
bidirectional-distsim-wsj-0-18.tagger

model.5 The model was trained on WSJ sections
0–18 and an extra POS tagging corpus (18,589
sentences), using a bidirectional architecture and
including word shape and distributional similarity
features. We experimented by retraining the tagger
on the training section of OntoNotes WSJ but
obtained worse performance on the Emails and
Weblogs domains. This may be because the original
Stanford Tagger model uses a small amount of
additional training data and includes distributional
similarity features. The evaluation on the test sets
shows that although the POS tagger obtained low
in-domain scores (OntoNotes WSJ)—the last place
but one in 12 submission systems—it achieved high
out-of-domain scores (4th place).

Word lemmas are another feature known to be
useful for dependency parsing. We obtained the

4Hash kernels directly map a string feature into an integer
according to a hash function, allowing for conflicts.

5nlp.stanford.edu/software/tagger.shtml



lemma of each word with the Morphology class of
the Stanford JavaNLP tool.6 The Mate parser was
trained over 6 iterations. This number was tuned on
development data.

4 Stacked system

Stacked learning (Wolpert, 1992) is a general frame-
work in which a predictor is trained to improve
the performance of another and the two predictors
are complementary. The method has been suc-
cessfully applied to dependency parsing, where two
dependency parsing models—a graph-based and a
transition-based— can help each other (Nivre and
McDonald, 2008; Torres Martins et al., 2008). In-
spired by their work, we propose a stacked learning
method (Stanford-1) that leverages constituent pars-
ing results (Stanford) in the graph-based dependency
parser (Stanford-2).

During training, we obtained parses of the train-
ing data by running the BLLIP1 parser in 20-fold
cross-validation and then converted the constituency
parses into Stanford Dependencies.7 Next, we ex-
tracted stacked learning features from the output
dependency tree for Mate parser as additional fea-
tures. Development and test data were parsed us-
ing BLLIP2 trained on all training data. Table 2
shows the stacked learning features used in our sys-
tem. The stacked system uses the same POS tags as
the dependency parser (Stanford-2).

5 Spelling and acronym experiments

We experimented with applying a set of high-
precision text replacements to the unlabeled data and
target texts. These consisted of 1,057 spelling au-
tocorrection rules (e.g. “yuo” → “you”) from Pid-
gin instant messaging client8 along with 151 com-
mon Internet abbreviations (e.g. “LOL” → “laugh-
ing out loud”). Our hope was that these correc-
tions would reduce the number of unknown words
(many of which are mistagged) and provide a bet-
ter corpus for self-training. Unfortunately, we found
that spelling errors are actually fairly infrequent and

6nlp.stanford.edu/software/corenlp.shtml
7During training, we use BLLIP1 instead of BLLIP2, be-

cause using BLLIP2 would require training a reranker for each
fold which in turn requires cross-validation.

8http://pidgin.im/

Dependency
in((h,m, ∗),dC)
in((h,m, l),dC)
in((h,m, ∗),dC) ◦ th ◦ tm
in((h,m, l),dC) ◦ th ◦ tm
Sibling
in((h,m, ∗),dC) ◦ in((h, s, ∗),dC

in((h,m, ∗),dC) ◦ in((h, s, ∗),dC) ◦ th ◦ tm ◦ ts
in((h,m, l),dC) ◦ in((h, s, l),dC)
in((h,m, l),dC) ◦ in((h, s, l),dC) ◦ th ◦ tm ◦ ts
Grandchild
in((h,m, ∗),dC) ◦ in((m, g, ∗),dC)
in((h,m, ∗),dC) ◦ in((m, g, ∗),dC) ◦ th ◦ tm ◦ tg
in((h,m, l),dC) ◦ in((m, g, l),dC)
in((h,m, l),dC) ◦ in((m, g, l),dC) ◦ th ◦ tm ◦ tg

Table 2: Stacked learning features. in(d,d) is an indica-
tor function, which is 1 if the dependency arc d = (i, j, l)
is in dependency tree d, where head word (or father) is at
position i and modifier (dependent or child) is at j, with
a dependency relation label l. ∗ represents any relation.
h,m, s, g denote positions of head, modifier, sibling, and
grandchild respectively. t is the POS tag. dC is the de-
pendency tree from the BLLIP1 parser. ◦ is the feature
conjoining operator.

these spelling corrections only changed a small per-
centage of sentences in the unlabeled text (ranging
from under 1% in Weblogs to 9.9% in Answers).
Roughly half of the corrections involved uppercas-
ing the word “i” which does not change the parse
structure in the BLLIP parser.9 As a result, the po-
tential gain for this approach is rather limited.

6 Results and discussion

Table 3 shows the F1 scores of Mate, BLLIP1,
BLLIP2, and stacked learning parsers for the most
frequent relation labels on OntoNotes WSJ devel-
opment data. In these experiments, all systems are
trained only on OntoNotes WSJ training data. The
stacked dependency parser performs better for the
majority of relations. A comparison between Mate
and BLLIP2 shows that the former achieves higher
scores for some relations, noun compound modi-
fiers (nn), adjectival modifiers (amod) and direct
objects (dobj) in particular; whereas the latter ob-
tains higher scores for root, conjunct (conj), depen-

9This is because the unknown word model in the Charniak
parser only considers the case of a token if its caseless form is
novel.



Relation Count Mate BLLIP1 BLLIP2 Stack
prep 2,912 97.5 97.5 98.0 98.1
pobj 2,825 96.1 95.5 96.3 96.5

nn 2,811 95.1 94.0 94.0 95.5
det 2,644 99.3 99.2 99.3 99.3

nsubj 2,215 95.7 95.5 96.2 96.4
amod 1,809 93.5 92.5 92.5 94.1

root 1,335 95.7 95.9 96.3 96.1
dobj 1,231 93.7 91.9 92.8 94.5

advmod 1,066 90.7 90.3 90.8 91.6
aux 1,007 98.7 98.3 98.5 98.7

cc 776 99.4 99.2 99.2 99.4
conj 773 88.3 90.6 92.2 91.7
num 732 96.3 95.7 96.3 96.9
dep 588 54.3 57.5 60.5 62.3

poss 541 98.2 98.0 98.8 98.5

Table 3: Performance (F1 scores) of Mate, BLLIP1,
BLLIP2, and stacked learning parsers for the fifteen
most-frequent dependency relations on the OntoNotes
WSJ development dataset.

dent (dep), nominal subjects (nsubj), prepositional
modifiers (prep), and possession modifiers (poss).

The following example illustrates the comple-
mentarity of the two parsers, from which the stacked
system benefits. Mate, unlike BLLIP2, gets entirely
wrong the coordination structure for “KENNEDY,
SOUTER, and GINSBURG joined”, involving nn,
nsubj, cc, and conj. With input from BLLIP2, the
stacked parser yields the correct parse of the sen-
tence:

BREYER filed a concurring opinion, in
which KENNEDY, SOUTER, and GINS-
BURG joined.

Mate seems to excel at short-distance depen-
dencies, possibly because it uses more local fea-
tures (even with a second-order model) than BLLIP,
whose PCFG and reranking strategy can capture
long-distance dependencies. This suggests a plausi-
ble reason for the higher scores achieved by the com-
bined approach, stacked learning. For the conj rela-
tion, BLLIP2 obtains the best performance presum-
ably since it directly models coordination (e.g., the
Coordination Parallelism feature in the reranker).

The final test results of our dependency parsing
systems on the test datasets are shown in Table 4,
where the output of our constituency parser (Stan-
ford) was converted into dependency parse trees.

System
WSJ domain A-C domains
LAS UAS LAS UAS

Stanford (BLLIP2) 90.3 92.5 82.8 86.9
Stanford-2 (Mate) 89.9 92.0 80.3 84.7
Stanford-1 (Stack) 91.5 93.4 83.1 87.2

Table 4: Performance of different systems on test.

The stacked parser (Stanford-1) obtained 2nd place
in the dependency parsing track.

7 Conclusion

We described Stanford’s three entries in the SANCL
shared task. Using stacking, we combined a self-
trained generative constituency parser with a graph-
based dependency parser and obtained 2nd place in
the dependencies track. The only external resource
used was the Stanford POS tagger.

There are many possible directions for future
work. These include obtaining a better understand-
ing of what circumstances allow automatic domain
adaptation to perform well and determining better
methods of combining the source domains to pro-
duce more robust parsing models. For future in-
stances of this shared task, we feel it would be use-
ful to include multiple labeled domains for training
to facilitate additional forms of semi-supervised do-
main adaptation.

Acknowledgements

DM, MW, RS, and CM gratefully acknowledge
the support of Defense Advanced Research Projects
Agency (DARPA) Machine Reading Program under
Air Force Research Laboratory (AFRL) prime contract
no. FA8750-09-C-0181 and the support of the DARPA
Broad Operational Language Translation (BOLT) pro-
gram through IBM. Any opinions, findings, and conclu-
sion or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
view of the DARPA, AFRL, or the US government.

WC was supported in part by the National Natural Sci-
ence Foundation of China (NSFC) via grant 61133012,
the National “863” Project grant 2011AA01A207 and
2012AA011102.

MR was supported in part by a Beatriu de Pinós post-
doctoral scholarship (2010 BP-A 00149) from Generali-
tat de Catalunya.



References

Bernd Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proceedings of Col-
ing 2010, pages 89–97.

Xavier Carreras. 2007. Experiments with a higher-order
projective dependency parser. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 957–961.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of ACL 2005, pages 173–180.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. Journal of Machine Learning
Research, 7:551–585.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based syntactic–semantic analysis
with PropBank and NomBank. In Proceedings of
CoNLL 2008, pages 183–187.

Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool
Publishers.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of HLT-NAACL 2006, pages 152–159.

David McClosky, Eugene Charniak, and Mark Johnson.
2010. Automatic domain adaptation for parsing. In
Proceedings of HLT-NAACL 2010, pages 28–36.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing algo-
rithms. In Proceedings of EACL 2006, pages 81–88.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Online large-margin training of dependency
parsers. In Proceedings of ACL 2005, pages 91–98.

Ryan T. McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings of
HLT-EMNLP 2005, pages 523–530.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of HLT-ACL 2008, pages 950–958.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

André Filipe Torres Martins, Dipanjan Das, Noah A.
Smith, and Eric P. Xing. 2008. Stacking dependency
parsers. In Proceedings of EMNLP 2008, pages 157–
166.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech

tagging with a cyclic dependency network. In Pro-
ceedings of HLT-NAACL 2003, pages 173–180.

David H. Wolpert. 1992. Stacked generalization. Neural
Networks, 5:241–259.


