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Abstract

The Rational Speech Acts (RSA) model treats language use as a recursive process in which proba-
bilistic speaker and listener agents reason about each other’s intentions to enrich the literal semantics
of their language along broadly Gricean lines. RSA has been shown to capture many kinds of con-
versational implicature, but it has been criticized as an unrealistic model of speakers, and it has so
far required the manual specification of a semantic lexicon, preventing its use in natural language pro-
cessing applications that learn lexical knowledge from data. We address these concerns by showing
how to define and optimize a trained statistical classifier that uses the intermediate agents of RSA as
hidden layers of representation forming a non-linear activation function. This treatment opens up new
application domains and new possibilities for learning effectively from data. We validate the model on a
referential expression generation task, showing that the best performance is achieved by incorporating
features approximating well-established insights about natural language generation into RSA.

1 Pragmatic language use

In the Gricean view of language use [18], people are rational agents who are able to communi-
cate efficiently and effectively by reasoning in terms of shared communicative goals, the costs
of production, prior expectations, and others’ belief states. The Rational Speech Acts (RSA)
model [I] is a recent Bayesian reconstruction of these core Gricean ideas. RSA and its ex-
tensions have been shown to capture many kinds of conversational implicature and to closely
model psycholinguistic data from children and adults [7, 2 23] B0, [33].

Both Grice’s theories and RSA have been criticized for predicting that people are more
rational than they actually are. These criticisms have been especially forceful in the context
of language production. It seems that speakers often fall short: their utterances are longer
than they need to be, underinformative, unintentionally ambiguous, obscure, and so forth
[1l 10, 16, 24, 28, 29]. RSA can incorporate notions of bounded rationality [4, 13} 20], but
it still sharply contrasts with views in the tradition of [6], in which speaker agents rely on
heuristics and shortcuts to try to accurately describe the world while managing the cognitive
demands of language production.

In this paper, we offer a substantially different perspective on RSA by showing how to define
it as a trained statistical classifier, which we call learned RSA. At the heart of learned RSA is
the back-and-forth reasoning between speakers and listeners that characterizes RSA. However,
whereas standard RSA requires a hand-built lexicon, learned RSA infers a lexicon from data.
And whereas standard RSA makes predictions according to a fixed calculation, learned RSA
seeks to optimize the likelihood of whatever examples it is trained on. Agents trained in this
way exhibit the pragmatic behavior characteristic of RSA, but their behavior is governed by
their training data and hence is only as rational as that experience supports. To the extent
that the speakers who produced the data are pragmatic, learned RSA discovers that; to the
extent that their behavior is governed by other factors, learned RSA picks up on that too. We
validate the model on the task of atiribute selection for referring expression generation with
a widely-used corpus of referential descriptions (the TUNA corpus; [34, [15]), showing that it
improves on heuristic-driven models and pure RSA by synthesizing the best aspects of both.
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Figure 1: Ambiguity avoidance in RSA.

2 RSA as a speaker model

RSA is a descendent of the signaling systems of [25] and draws on ideas from iterated best
response (IBR) models [I3] 20], iterated cautious response (ICR) models [21], and cognitive
hierarchies [4] (see also [I7, BI]). RSA models language use as a recursive process in which
speakers and listeners reason about each other to enrich the literal semantics of their language.
This increases the efficiency and reliability of their communication compared to what more
purely literal agents can achieve.

For instance, suppose a speaker and listener are playing a reference game in the context
of the images in Figure The speaker S has been privately assigned referent r; and must
send a message that conveys this to the listener. A literal speaker would make a random choice
between beard and glasses. However, if S places itself in the role of a listener L receiving these
messages, then S will see that glasses creates uncertainty about the referent whereas beard
does not, and so .S will favor beard. In short, the pragmatic speaker chooses beard because it’s
unambiguous for the listener.

RSA formalizes this reasoning in probabilistic Bayesian terms. It assumes a set of messages
M, a set of states T', a prior probability distribution P over states T, and a cost function C
mapping messages to real numbers. The semantics of messages is defined by a lexicon £, where
L(m,t) =1 if m is true of ¢ and 0 otherwise. The agents are then defined as follows:

so(m | 1, £) oc exp (A (log L(m, t) — C(m))) (1)
Li(t|m, L) x so(m|t,L)P(t) (2)
si(m | ¢, L) oc exp (A (logly(t | m, £) — C(m))) 3)

The model that is the starting point for our contribution in this paper is the pragmatic speaker
s1. It reasons not about the semantics directly but rather about a pragmatic listener /; reasoning
about a literal speaker sg. The strength of this pragmatic reasoning is partly governed by the
temperature parameter A, with higher values leading to more aggressive pragmatic reasoning.
Figure |1 tracks the RSA computations for the reference game in Figure Here, the
message costs C' are all 0, the prior over referents is flat, and A = 1. The chances of success
for the literal speaker sy are low, since it chooses true messages at random. In contrast, the
chances of success for s; are high, since it derives the unambiguous system highlighted in gray.
The task we seek to model is a language generation task, so we present RSA from a speaker-
centric perspective. It has been explored more fully from a listener perspective. In that for-
mulation, the model begins with a literal listener reasoning only in terms of the lexicon £ and
state priors. Models of this general form have been shown to capture a wide range of pragmatic
behaviors [2], 12 22], 23], B0] and to increase success in task-oriented dialogues [35} [36].
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Utterance:
Utterance attributes:

Figure 2: Example item from the TUNA corpus. Target is in gray.

RSA has been criticized on the grounds that it predicts unrealistic speaker behavior [16].
For instance, in Figure[l] we confined our agents to a simple message space. If permitted to use
natural language, they will often produce utterances expressing predicates that are redundant
from an RSA perspective—for example, by describing r, as the man with the long beard and
sweater, even though man has no power to discriminate, and beard and sweater each uniquely
identify the intended referent. This tendency has several explanations, including a preference
for including certain kinds of descriptors, a desire to hedge against the possibility that the
listener is not pragmatic, and cognitive pressures that make optimal descriptions impossible.
One of our central objectives is to allow these factors to guide the core RSA calculation.

3 The TUNA corpus

In Section |§|, we evaluate RSA and learned RSA in the TUNA corpus [34] [15], a widely used
resource for developing and testing models of natural language generation. We introduce the
corpus now because doing so helps clarify the learning task faced by our model, which we define
in the next section.

In the TUNA corpus, participants were assigned a target referent or referents in the context
of seven other distractors and asked to describe the target(s). Trials were performed in two
domains, furniture and people, each with a singular condition (describe a single entity) and
a plural condition (describe two). Figure [2| provides a (slightly simplified) example from the
singular furniture section, with the target item identified by shading. In this case, the partic-
ipant wrote the message “blue fan small”. All entities and messages are annotated with their
semantic attributes, as given in simplified form here. (Participants saw just the images; we
include the attributes in Figure [2| for reference.)

The task we address is attribute selection: reproducing the multiset of attributes in the
message produced in each context. Thus, for Figure [2 we would aim to produce {[size:small],
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[colour:blue], [type:fan]}. This is less demanding than full natural language generation, since it
factors out all morphosyntactic phenomena. Section [6] provides additional details on the nature
of this evaluation.

4 Learned RSA

We now formulate RSA as a machine learning model that can incorporate the quirks and limi-
tations that characterize natural descriptions while still presenting a unified model of pragmatic
reasoning. This approach builds on the two-layer speaker-centric classifier of [I7], but differs
from theirs in that we directly optimize the performance of the pragmatic speaker in training,
whereas [I7] apply a recursive reasoning model on top of a pre-trained classifier. Like RSA,
the model can be generalized to allow for additional intermediate agents, and it can easily be
reformulated to begin with a literal listener.

Feature representations. To build an agent that learns effectively from data, we must rep-
resent the items in our dataset in a way that accurately captures their important distinguishing
properties and permits robust generalization to new items [8, [26]. We define our feature rep-
resentation function ¢ very generally as a map from state—utterance—context triples (t,m,¢) to
vectors of real numbers. This gives us the freedom to design the feature function to encode as
much relevant information as necessary.

As noted above, in learned RSA, we do not presuppose a semantic lexicon, but rather induce
one from the data as part of learning. The feature representation function determines a large,
messy hypothesis space of potential lexica that is refined during optimization. For instance, as
a starting point, we might define the feature space in terms of the cross-product of all possible
entity attributes and all possible utterance meaning attributes. For m entity attributes and n
utterance attributes, this defines each ¢(t, m,c) as an mn-dimensional vector. Each dimension
of this vector records the number of times that its corresponding pair of attributes co-occurs
in t and m. Thus, the representation of the target entity in Figure [2[ would include a 1 in
the dimension for clearly good pairs like COLOUR:BLUE A [colour:blue] as well as for intuitively
incorrect pairs like SIZE:SMALL A [colour:blue].

Because ¢ is defined very generally, we can also include information that is not clearly
lexical. For instance, in our experiments, we add dimensions that count the color attributes in
the utterance in various ways, ignoring the specific color values. We can also define features
that intuitively involve negation, for instance, those that capture entity attributes that go
unmentioned. This freedom is crucial to bringing generation-specific insights into the RSA
reasoning.

Literal speaker. Learned RSA is built on top of a log-linear model, standard in the machine
learning literature and widely applied to classification tasks [19] 27].

So(m | t,¢;0) x exp(GTqb(t,m, c)) (4)

This model serves as our literal speaker, analogous to sy in . The lexicon of this model is em-
bedded in the parameters (or weights) 6. Intuitively, 6 is the direction in feature representation
space that the literal speaker believes is most positively correlated with the probability that the
message will be correct. We train the model by searching for a # to maximize the conditional
likelihood the model assigns to the messages in the training examples. Assuming the training is
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effective, this increases the weight for correct pairings between utterance attributes and entity
attributes and decreases the weight for incorrect pairings.

To find the optimal 8, we seek to maximize the conditional likelihood of the training examples
using first-order optimization methods (described in more detail in Training, below). This
requires the gradient of the likelihood with respect to 6. To simplify the gradient derivation
and improve numerical stability, we maximize the log of the conditional likelihood:

Js, (t, m,c,0) =log So(m | t,c;0) (5)
The gradient of this log-likelihood is

aJs,
90

= ¢(t,m,c) — Zexp o(t,m,c))o(t,m ,c)

Yo exp(9T¢ t,m' c
= ¢(t,m,c) ZSO "t 0)p(t,m',c)

= ¢(t7 m, C) - Em’NSQ(~\t,c;9) [d)(tv m/a C)] (6)

where the first two equations can be derived by expanding the proportionality constant in the
definition of Sp.

Pragmatic speaker. We now define a pragmatic listener L; and a pragmatic speaker Sj.
We will show experimentally (Section |§[) that the learned pragmatic speaker S; agrees better
with human speakers on a referential expression generation task than either the literal speaker
Sp or the pure RSA speaker s;.

The parameters for L; and S; are still the parameters of the literal speaker Sp; we wish to
update them to maximize the performance of S7, the agent that acts according to S1(m | ¢, ¢; 0),
where

Si(m | t,¢;0) < Li(t | m,c;0) (7)
Li(t | m,c;0) < So(m | t,¢c;0) (8)

This corresponds to the simplest case of RSA in which A = 1 and message costs and state priors
are uniform: sy(m | ¢, L) o< l1(t | m, L) x so(m | t, L).

In optimizing the performance of the pragmatic speaker S; by adjusting the parameters to
the simpler classifier Sy, the RSA back-and-forth reasoning can be thought of as a non-linear
function through which errors are propagated in training, similar to the activation functions
in neural network models [32]. However, unlike neural network activation functions, the RSA
reasoning applies a different non-linear transformation depending on the pragmatic context
(sets of available referents and utterances).

For convenience, we define symbols for the log-likelihood of each of these probability distri-
butions:

Jg, (t,m,c,0) =log Si(m | t,c;0) 9)
Jr, (t,m,c,0) =log Ly (t | m, c; 0) (10)
The log-likelihood of each agent has the same form as the log-likelihood of the literal speaker,

but with the value of the distribution from the lower-level agent substituted for the score 67 ¢.
By a derivation similar to the one in @ above, the gradient of these log-likelihoods can thus
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be shown to have the same form as the gradient of the literal speaker, but with the gradient of
the next lower agent substituted for the feature values:

doJs,  0Jr, 9JL,

6; = 65 (t,m,c7 9) - ETYL'Nsl('\t7C§9) |: a; (t7m/,c, 9):| (11)
aJp,  OJ aJ

ag = 6950 (t, m,c, 9) - Et/~L1('|m7c;9) |: 8;0 (tlv m,c, 0):| (12)

The value Jg, in is as defined in .

Training. As mentioned above, our primary objective in training is to maximize the (log)
conditional likelihood of the messages in the training examples given their respective states and
contexts. We add to this an ¢5 regularization term, which expresses a Gaussian prior distribution
over the parameters 6. Imposing this prior helps prevent overfitting to the training data and
thereby damaging our ability to generalize well to new examples [B]. With this modification,
we instead maximize the log of the posterior probability of the parameters and the training
examples jointly. For a dataset of M training examples (¢;,m;, ¢;), this log posterior is:

u M
J(0) = —7€||9H2 + ZIOgsl(mi | ti,ci;0) (13)

i=1

The stochastic gradient descent (SGD) family of first-order optimization techniques [3] can
be used to approximately maximize J(#) by obtaining noisy estimates of its gradient and “hill-
climbing” in the direction of the estimates. (Strictly speaking, we are employing stochastic
gradient ascent to maximize the objective rather than minimize it; however, SGD is the much
more commonly seen term for the technique.)

The exact gradient of this objective function is

0. M 9T,
% __M€6+;W(ti,mi76i,0) (14)

using the per-example gradient d;gl given in . SGD uses the per-example gradients (and
a simple scaling of the ¢s regularization penalty) as its noisy estimates, thus relying on each
example to guide the model in roughly the correct direction towards the optimal parameter
setting. Formally, for each example (¢,m,c), the parameters are updated according to the
formula

0 = 0+a <£9 + 38«];1 (t,m,c, 0)) (15)

The learning rate « determines how “aggressively” the parameters are adjusted in the di-
rection of the gradient. Small values of a lead to slower learning, but a value of a that is too
large can result in the parameters overshooting the optimal value and diverging. To find a good
learning rate, we use AdaGrad [9], which sets the learning rate adaptively for each example
based on an initial step size  and gradient history. The effect of AdaGrad is to reduce the
learning rate over time such that the parameters can settle down to a local optimum despite
the noisy gradient estimates, while continuing to allow high-magnitude updates along certain
dimensions if those dimensions have exhibited less noisy behavior in previous updates.
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5 Example

In Figure[3] we illustrate crucial aspects of how our model is optimized, fleshing out the concepts
from the previous section. The example also shows the ability of the trained S; model to make
a specificity implicature without having observed one in its data, while preserving the ability
to produce uninformative attributes if encouraged to do so by experience.

As in our main experiments, we frame the learning task in terms of attribute selection
with TUNA-like data. In this toy experiment, the agent is trained on two example contexts,
consisting of a target referent, a distractor referent, and a human-produced utterance. It is
evaluated on a third test example. This small dataset is given in the top two rows of Figure [3|
The utterance on the test example is shown for comparison; it is not provided to the agent.

Our feature representations of the data are in the third row. Attributes of the referents are
in SMALL CAPS; semantic attributes of the utterances are in [square brackets]. These representa-
tions employ the cross-product features described in Section [4} in TUNA data, properties that

the target entities do not possess (e.g., "GLASSES) are also included among their “attributes.”

Below the feature representations, we summarize the gradient of the log likelihood (8221 )

for each example, as an m X n table representing the weight update for each of the mn cross-
product features. (We leave out the /5 regularization and AdaGrad learning rate for simplicity.)
Tracing the formula for this gradient back through the RSA layers to the literal listener
(5), one can see that the gradient consists of the feature representation of the triple (t,m,c)
containing the correct (human-produced) message, minus adjustments that penalize the other
messages according to how much the model was “fooled” into expecting them.

The RSA reasoning yields gradients that express both lexical and contextual knowledge.
From the first training example, the model learns the lexical information that [person] and
[glasses] should be used to describe the target. However, this knowledge receives higher weight
in the association with GLASSES, because that attribute is disambiguating in this context.
As one would hope, the overall result is that intuitively good pairings generally have higher
weights, though the training set is too small to fully distinguish good features from bad ones.
For example, after seeing both training examples and failing to observe both a beard and glasses
on the same individual, the model incorrectly infers that [beard] can be used to indicate a lack
of glasses and vice versa. Additional training examples could easily correct this.

Figure shows the distribution over utterances given target referent as predicted by the
learned pragmatic speaker S; after one pass through the data with a fixed learning rate o = 1
and no regularization (¢ = 0). We compare this distribution with the distribution predicted by
the learned literal speaker Sy and the pure RSA speaker s;. We wish to determine whether
each model can (i) minimize ambiguity; and (ii) learn a prior preference for producing certain
descriptors even if they are redundant.

The distributions in Figure show that the linear classifier correctly learns that human-
produced utterances in the training data tend to mention the attribute [person] even though it
is uninformative. However, for the referent that was not seen in the training data, the model
cannot decide among mentioning [beard], [glasses], both, or neither, even though the messages
that don’t mention [glasses] are ambiguous in context. The pure RSA model, meanwhile,
chooses messages that are unambiguous, but because it has no mechanism for learning from
the examples, it does not prefer to produce [person] without a manually-specified prior.

Our pragmatic speaker S; gives us the best of both models: the parameters 6 in learned
RSA show the tendency exhibited in the training data to produce [person| in all cases, while
the RSA recursive reasoning mechanism guides the model to produce unambiguous messages
by including the attribute [glasses].
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Test example

Context
T2 T3 T3 T4
Utterance [person| with [glasses]  [person] with [beard)
PERSON A [person] PERSON A [person]
PERSON A [glasses] PERSON A [beard]
Features
for true  CLASSES A [person] ~ —GLASSES A [person]
GLASSES A [glasses] ~ —GLASSES A [beard]
utterance
—BEARD A [person] BEARD A [person|
—BEARD A [glasses] BEARD A [beard]
27 = 22 =
g =2 8 g =2 8
S =S S =SS
Gradient PERSON 1 1 -1 PERSON 1 -1 1
GLASSES 2 2 -2 GLASSES 0 0 O
BEARD 0 0 O BEARD 2 -2 2
—GLASSES -1 -1 1 —“GLASSES 1-1 1
—BEARD 1 1 -1 —BEARD -1 1 -1

(a) Learned S1 model training. Gradient values given are 6

aJg

o0

1

T4
[person] with [glasses]

PERSON A [person]
PERSON A [glasses]
GLASSES A [person]
GLASSES A [glasses]
BEARD A [person]
BEARD A [glasses]

(unused)

, evaluated at 0 = 0.

51 So S
T4 L T4 L T4
.08.25 .03.00 .10.11 @
.08.25 .22 .10 .16 .13  [person]
A7 0 .03.00 .11 .07 [glasses|
0825 .03.04 .08.17 [beard)
A7 0 .22 .01 .18 .08 [person], [glasses]
.08 .25 .22.74 .12 .19 [person|, [beard]
A7 0 .03.00 .10 .11 [glasses], [beard
A7 00 2210 .16 .11 [person], [glasses], [beard)]

(b) Pure RSA (s1), linear classifier (Sp), and learned RSA (S1) utterance distributions. RSA alone
minimizes ambiguity but can’t learn overgeneration from the examples. The linear classifier learns to
produce [person] but fails to minimize ambiguity. The weights in learned RSA retain the tendency to
produce [person] in all cases, while the recursive reasoning yields a preference for the unambiguous

descriptor [glasses].

Figure 3: Specificity implicature and overgeneration in learned RSA.
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6 Experiments

Data. We report experiments on the TUNA corpus (Section [3[ above). We focus on the
singular portion of the corpus, which was used in the 2008 and 2009 Referring Expression
Generation Challenges. We do not have access to the train/dev/test splits from those challenges,
so we report five-fold cross-validation numbers. The singular portion consists of 420 furniture
trials involving 176 distinct referents and 360 people trials involving 228 distinct referents.

Evaluation metrics. The primary evaluation metric used in the attribute selection task with
TUNA data is multiset Dice calculated on the attributes of the generated messages:

23, cpmin [Zy(m,)(2), Zamy) (2)]
la(m;)| + |a(m;)]

(16)

Here, a(m) is the multiset of attributes of message m, D is the non-multiset union of a(m;)
and a(m;), Zx(x) is the number of occurrences of x in the multiset X, and |a(m;)| is the
cardinality of multiset a(m). Accuracy is the fraction of examples for which the subset of
attributes is predicted perfectly (equivalent to achieving multiset Dice 1).

Experimental set-up. We evaluate all our agents in the same pragmatic contexts: for each
trial in the singular corpus, we define the messages M to be the powerset of the attributes used
in the referential description and the states T" to be the set of entities in the trial, including the
target. The message predicted by a speaker agent is the one with the highest probability given
the target entity; if more than one message has the highest probability, we allow the agent to
choose randomly from the highest probability ones.

In learning, we use initial step size n = 0.01 and regularization constant ¢ = 0.01. RSA
agents are not trained, but we cross-validate to optimize A and the function defining message
costs, choosing from (i) C'(m) = 0; (ii) C(m) = |a(m)]; and (iii) C(m) = —|a(m)|.

Features. We use indicator features as our feature representation; that is, the dimensions
of the feature representation take the values 0 and 1, with 1 representing the truth of some
predicate P(t,m,c) and 0 representing its negation. Thus, each vector of real numbers that is
the value of ¢(t,m,c) can be represented compactly as a set of predicates.

The baseline feature set consists of indicator features over all conjunctions of an attribute of
the referent and an attribute in the candidate message (e.g., P(t,m,c) = RED(t) A [blue] € m).
We compare this to a version of the model with additional generation features that seek to
capture the preferences identified in prior work on generation. These consist of indicators over
the following features of the message:

(i) attribute type (e.g., P(t,m,c) = “m contains a color”);

(ii) pair-wise attribute type co-occurrences, where one can be negated (e.g., “m contains a
color and a size”, “m contains an object type but not a color”); and

(iii) message size in number of attributes (e.g., “m consists of 3 attributes”).

For comparison, we also separately train literal speakers Sy as in (the log-linear model) with
each of these feature sets using the same optimization procedure.
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Table 1: Experimental results: mean accuracy and multiset Dice (five-fold cross-validation).
Bold: best result; bold italic: not significantly different from best (p > 0.05, Wilcoxon signed-
rank test).

Furniture People All
Model Acc. Dice Acc. Dice Acc. Dice
RSA s¢ (random true message) 1.0% 475 0.6% .125 1.7% .314
RSA s 1.9% 522 2.5% .254 2.2% .386
Learned Sy, basic feats. 16.0% .779 9.4% .697 12.9% .741
Learned Sy, gen. feats. only 50% 7188 7.8% .681 6.3% .738
Learned Sy, basic + gen. feats. 28.1% .812 17.8% .730 23.8% .774
Learned S;, basic feats. 23.1% 789 11.9% .740 17.9% .766
Learned Sp, gen. feats. only 17.4% .740 1.9% 712 10.3% .727

Learned Si, basic + gen. feats. 27.6% .788 22.5% .764 25.3% .777

Results. The results (Table show that training a speaker agent with learned RSA generally
improves generation over the ordinary classifier and RSA models. On the more complex people
dataset, the pragmatic S; model significantly outperforms all other models. The value of the
model’s flexibility in allowing a variety of feature designs can be seen in the comparison of the
different feature sets: we observe consistent gains from adding generation features to the basic
cross-product feature set. Moreover, the two types of features complement each other: neither
the cross-product features nor the generation features in isolation achieve the same performance
as the combination of the two.

Of the models in Table [1} all but the last exhibit systematic errors. Pure RSA performs
poorly for reasons predicted by [16]—for example, it under-produces color terms and head
nouns like desk, chair, and person. This problem is also observed in the trained S; model, but
is corrected by the generation features. On the people dataset, the Sy models under-produce
beard and hair, which are highly informative in certain contexts. This type of communicative
failure is eliminated in the S speakers.

The performance of the learned RSA model on the people trials also compares favorably
to the best dev set performance numbers from the 2008 Challenge [14], namely, .762 multiset
Dice, although this comparison must be informal since the test sets are different. (In particular,
the Accuracy values given in [I4] are unfortunately not comparable with the values we present,
as they reflect “perfect match with at least one of the two reference outputs” [emphasis in
original].) Together, these results show the value of being able to train a single model that
synthesizes RSA with prior work on generation.

7 Conclusion

Our initial experiments demonstrate the utility of RSA as a trained classifier in generating ref-
erential expressions. The primary advantages of this version of RSA stem from the flexible ways
in which it can learn from available data. This not only removes the need to specify a complex
semantic lexicon by hand, but it also provides the analytic freedom to create models that are
sensitive to factors guiding natural language production that are not naturally expressed in
standard RSA.

10
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This basic presentation suggests a range of potential next steps. For instance, it would be
natural to apply the model to pragmatic interpretation (the listener’s perspective); this requires
no substantive formal changes to the model as defined in Section[d] and it opens up new avenues
in terms of evaluating pragmatic models in standard classification tasks like sentiment analysis,
topic prediction, and natural language reasoning. In addition, for all versions of the model, one
could comnsider including additional hidden speaker and listener layers, incorporating message
costs and priors into learning, to capture a wider range of pragmatic phenomena.
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