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Abstract
Understanding how the social context of an interaction affects our dialog behavior is of great

interest to social scientists who study human behavior, as well as to computer scientists who build
automatic methods to infer those social contexts. In this paper, we study the interaction of power,
gender, and dialog behavior in organizational interactions. In order to perform this study, we first
construct the Gender Identified Enron Corpus of emails, in which we semi-automatically assign
the gender of around 23,000 individuals who authored around 97,000 email messages in the Enron
corpus. This corpus, which is made freely available, is orders of magnitude larger than previously
existing gender identified corpora in the email domain. Next, we use this corpus to perform a large-
scale data-oriented study of the interplay of gender and manifestations of power. We argue that, in
addition to one’s own gender, the “gender environment” of an interaction, i.e., the gender makeup
of one’s interlocutors, also affects the way power is manifested in dialog. We focus especially
on manifestations of power in the dialog structure — both, in a shallow sense that disregards the
textual content of messages (e.g., how often do the participants contribute, how often do they get
replies etc.), as well as the structure that is expressed within the textual content (e.g., who issues
requests and how are they made, whose requests get responses etc.). We find that both gender
and gender environment affect the ways power is manifested in dialog, resulting in patterns that
reveal the underlying factors. Finally, we show the utility of gender information in the problem of
automatically predicting the direction of power between pairs of participants in email interactions.
Keywords: computational sociolinguistics, gender, power, dialog

1. Introduction

It has long been observed that men and women communicate differently in different contexts. There
has been an array of studies in sociolinguistics that analyze the interplay between gender and power.
These sociolinguistic studies often rely on case studies or surveys. The availability of large corpora
of naturally occurring interactions, and of advanced computational techniques to process the lan-
guage and dialog structure of these interactions, has given us the opportunity to study the interplay
between gender, power, and language use at a scale that was not feasible before. In this paper,
we study how gender correlates with manifestations of power in an organizational setting using the
Enron email corpus. We investigate three factors that affect choices in communication: the writer’s
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gender, the gender of his or her fellow discourse participants (what we call the “gender environ-
ment”), and the power relations he or she has to the discourse participants. We focus on modeling
the writer’s choices related to discourse structure, rather than lexical choice. Specifically, our goal
is to show that gender, gender environment, and power all affect individuals’ choices in complex
ways, resulting in patterns in the discourse that reveal the underlying factors.

We make three major contributions in this paper. First, we introduce an extension to the Enron
corpus of emails: we semi-automatically identify the sender’s gender of 87% of email messages
in the corpus. This extension has been made publicly available.1 Second, we use this enriched
version of the corpus to investigate the interaction of hierarchical power and gender. We formalize
the notion of “gender environment”, which reflects the gender makeup of the discourse participants
of a particular conversation. We study how gender, power, and gender environment influence dis-
course participants’ choices in dialog. This contribution shows how social science can benefit from
advanced natural language processing techniques in analyzing corpora, allowing social scientists to
tackle corpora that cannot be examined in their entirety manually. Third, we show that the gender
information in the enriched corpus can be useful for computational tasks, specifically for improving
the performance of the power prediction system from our prior work (Prabhakaran and Rambow,
2014) that is trained to predict the direction of hierarchical power between participants in an interac-
tion. Our use of the gender-based features boosts the accuracy of predicting the direction of power
between pairs of email interactants from 68.9% to 70.2% on an unseen test set.

We start by discussing related work in sociolinguistics on the interplay between gender and
power followed by work within the NLP community on gender and use of language. In Section 3, we
present the first contribution of this paper — the Gender Identified Enron Corpus, and describe the
procedure followed to build this resource and present various corpus statistics. Section 4 introduces
the notion of gender environment and Section 5 presents the analysis framework used in this paper.
In Section 6 and Section 7, we present the statistical analysis of the interplay between gender, gender
environment, and power, through the lens of dialog behavior. In Section 8, we demonstrate the utility
of gender-based features in automatically predicting the direction of power between participants of
an interaction, before we summarize our contributions in Section 9.

2. Literature Review

There is much work in sociolinguistics on how gender and language use are interrelated (Tannen,
1991, 1993; Holmes, 1995; Kendall and Tannen, 1997; Coates, 1998; Eckert and McConnell-Ginet,
2003; Holmes and Stubbe, 2003; Mills, 2003; Kendall, 2003; Herring, 2008). Some of this work
looks specifically at language use in work environment and/or with respect to power relations,
whereas some others study the gender differences in language use in general. Understanding these
different strands of research is important for a computational linguist working in this area. In this
section, we summarize this literature, focusing more on the studies that have influenced the work
presented in this paper.

2.1 Gendered Differences in Language Use

Many sociolinguistics studies have found evidence that men and women differ considerably in
the way they communicate. Some researchers attribute this to psychological differences (Gilligan,

1. http://www.cs.stanford.edu/˜vinod/giec.html (originally described in (Prabhakaran et al., 2014))
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1982; Boe, 1987), whereas some others suggest socialization and gendered power structures within
the society as its reasons (Zimmerman and West, 1975; West and Zimmerman, 1987; Tannen, 1991).
For instance, Tannen (1991) argues that “for most women, the language of conversation is primarily
a language of rapport: a way of establishing connections and negotiating relationships”, which she
calls rapport-talk, whereas “for most men, talk is primarily a means to preserve independence and
negotiate and maintain status in a hierarchical social order”, which she calls report-talk. Along the
same lines, Holmes (1995) argues that “women are much more likely than men to express posi-
tive politeness or friendliness in the way they use language”. In addition to politeness, many other
linguistic variables have been analyzed in this context. Lakoff (1973) describes women’s speak-
ing style as tentative and unassertive, and argues that women use question tags and hedges more
frequently than men do. However, Holmes (1992) found that the differential use of question tags
in-fact depends on the function of the question tag in the interaction. She categorized the instances
of question tags in terms of their functionality in the contexts in which they were used, and found
that question tags used as a way to express uncertainty was done more by men, whereas question
tags used as a way to facilitate communication was done more by women. Researchers have also
looked into interruption patterns in interactions in relation to gender. For example, Zimmerman and
West (1975) found that men interrupted conversations more often in cross-sex interactions, whereas
there were no significant differences in interruptions in same-sex interactions.

However, recent studies have suggested the need for a more nuanced view on the interplay
between gender and language use. They argue that the differences observed by above studies are
due to more complex processes at play than gender alone, and that one needs to take into account the
context in which the interactions happened to understand the gender differences better. Mills (2003)
challenged the above line of analysis, especially Holmes (1995)’s theory regarding women being
more polite. She argues that politeness cannot be codified in terms of linguistic form alone and calls
for “a more contextualized form of analysis, reflecting the complexity of both gender and politeness,
and also the complex relation between them”. Along those lines, Coates (2013) also challenge
Lakoff (1973)’s theory on women’s language being unassertive. She points out that hedges are
multi-functional constructs and the greater usage of hedges by women “can be explained in part
by topic choice, in part by women’s tendency to self-disclose and in part by women’s preference
for open discussion and a collaborative floor”. In other words, she argues that women using more
hedges than men does not entail that women are unassertive, but instead is an artifact of what topics
women often take part in. Kunsmann (2013) connects the gender differences in language specifically
to status, dominance and power. He argues that “gender and status rather than gender or status will
be the determinant categories” of language use. In our work, we follow a similar approach. We do
not study gender in isolation, but in the context of the social power relations as well as the gender
environment of the interaction.

2.2 Gender and Power in Work Place

Within the area of studying gender and language use, there is substantial amount of work that is
specifically related to the language use in work environment (West, 1990; Tannen, 1994; Kendall
and Tannen, 1997; Kendall, 2003), mostly done through qualitative case studies. In general, these
studies found that women use more polite language and are “less likely to use linguistic strategies
that would make their authority more visible” (Kendall, 2003). For instance, West (1990) found that
male physicians and female physicians differed in how they gave directives to their patients. Male
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physicians aggravated their directives, whereas female physicians used forms that mitigated them.
Similarly, in the study of gender, power and language in large corporate work environments, Tannen
(1994) found that female managers use more face saving strategies (e.g., phrasing directives as sug-
gestions: You might put in parentheses) when talking to subordinates, whereas male managers used
language that reinforced status differences (e.g., Oh, that’s too dry. You have to make it snappier!).
Kendall (2003) shows that this behavior is specific to women operating in work environments. She
studied the demeanor of a woman exercising her authority at work and at home, and found that
while the woman used mitigating strategies to exercise her authority at work (as found by other
studies before), she created a demeanor of explicit authority when exercising her authority over her
daughter at home.

In this paper, we study this aspect using our formulation of overt displays of power, which are
face-threatening acts that reinforce the status differences. Our findings on the Enron emails are also
in line with the above findings; we observe that male managers use significantly more overt displays
of power when interacting with subordinates, whereas female managers use significantly fewer of
them. However, in contrast, we draw from a much larger-scale study in which we analyze thousands
of email interactions rather than a handful of case studies in the above mentioned research.

Another line of work that has influenced our work is by Holmes and Stubbe (2003) studying
the effects of gendered work environments in the manifestations of power. They provide two case
studies that analyze not the differences between male and female managers’ communication, but
the differences between female managers’ communication in more heavily female vs. more heavily
male environments. They find that, while female managers tend to break many stereotypes of “fem-
inine” communication, they have different strategies in connecting with employees and exhibiting
power in the two gender environments. This work has inspired us to look at this phenomenon by
formulating the notion of “Gender Environment” in our study. We adapt this notion to the level of
an interaction, and define the gender environment of an email thread in terms of the ratios of males
to females on a thread, allowing us to look at whether the manifestations of power change within a
more heavily male or female thread.

2.3 Computational Approaches towards Gender and Power

Within the NLP community, there is a considerable amount of work on analyzing language use in
relation to gender. Early work attempted to use NLP techniques to automatically predict the gender
of authors using lexical features. Researchers have attempted gender prediction on a variety of
genres of interactions such as emails, blogs, and online social networking websites such as Twitter
(Corney et al., 2002; Peersman et al., 2011; Cheng et al., 2011; Deitrick et al., 2012; Alowibdi et al.,
2013; Nguyen et al., 2014). In more recent work, Hovy (2015) argues for research in the other
direction, showing the importance of using gender information for better performance on NLP tasks
such as topic identification, sentiment analysis and author attribute identification.

While automatically detecting gender is an interesting problem, our focus in this paper is not
gender detection, but understanding the variations in linguistic patterns with respect to both gender
and power. For this, we require a more reliable source of gender assignments. Hence, we use
publicly available name databases to reliably determine the gender of participants as we have access
to the email authors’ names in our corpus. We believe that the gender-identified email corpus we
present will aid further research in the area of gender detection. Existing work on gender prediction
relies on relatively smaller datasets. For example, Corney et al. (2002) use around 4K emails from
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325 gender identified authors in their study. Cheng et al. (2011) use around 9K emails from 108
gender identified authors. Deitrick et al. (2012) use around 18K emails from 144 gender identified
authors. In contrast, we build a gender-assigned email dataset that is orders of magnitude larger
than these resources. Our corpus contains around 97K emails whose authors are gender-identified,
and these emails are from around 23K unique authors.

There has also been work on using NLP techniques to analyze gender differences in language
use by men versus women (Mohammad and Yang, 2011; Bamman et al., 2012, 2014; Agarwal et al.,
2015). Mohammad and Yang (2011) analyze the way gender affects the expression of emotions in
the Enron corpus. They found that women send and receive emails with relatively more words that
denote joy and sadness, whereas men send and receive relatively more words that denote trust and
fear. For their study, they assigned gender for the core employees in the corpus based on whether
the first name of the person is easily gender identifiable or not. If the person had an unfamiliar name
or a name that could be of either gender, they marked his/her gender as unknown and excluded them
from their study. For example, the gender of the employee Kay Mann was marked as unknown in
their gender assignment. However, in our work, we manually research and determine the gender of
every core employee.

Bamman et al. (2012, 2014) study gender differences in the microblog site Twitter. One of
the many insights from their work is that gendered linguistic behavior is determined by a number
of factors, one of which includes the speaker’s audience, which is similar to our notion of gender
environment. Their work looks at Twitter users whose linguistic style fails to identify their gender in
classification experiments, and finds that the linguistic gender norms can be influenced by the style
of their interlocutors. More specifically, people with many same-gender friends tend to use language
that is strongly associated with their gender, whereas people with more balanced social networks
tend not to. Our notion of gender environment captures the gender makeup of an interaction, and
our findings reaffirms the need to also look into the audience’s gender makeup in studying gender.

NLP approaches have also been applied recently to analyzing manifestations of power in so-
cial interactions. While early studies focus on hierarchical power relations (Bramsen et al., 2011;
Gilbert, 2012; Danescu-Niculescu-Mizil et al., 2012), other forms of power such as situational
power and influence (Prabhakaran et al., 2012a; Prabhakaran and Rambow, 2013; Biran et al., 2012;
Rosenthal, 2014; Rosenthal and Mckeown, 2017), power of confidence in political discourse (Prab-
hakaran et al., 2013), and pursuit of power in online forums (Swayamdipta and Rambow, 2012)
have also been explored. In (Prabhakaran, 2015), we present a comprehensive survey of literature
in this area.

To our knowledge, ours is the first computational study of this scale that focus on the interplay
between gender and power in organizational email. We study the effects of gender in workplace
interactions, not by considering the email senders’ gender in isolation, but together with their power
relations with the rest of the participants, as well as the gender makeup of the interaction.

3. Gender Identified Enron Corpus

In this section, our starting point is the corpus (ENRON-ALL) used in our prior work (Prabhakaran
and Rambow, 2014). This corpus is derived from the Enron email corpus (Klimt and Yang, 2004)
that contains emails from the mailboxes of 145 “core” Enron employees that were publicly re-
leased by the Federal Energy Regulatory Commission during its investigation of irregularities in
Enron. Our version of the corpus captures the hierarchical power relations between 13,724 pairs
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of employees assigned by Agarwal et al. (2012), as well as the thread structure of email messages
semi-automatically assigned by Yeh and Harnly (2006). The thread structure allows us to go beyond
isolated messages and study gender in relation to the dialog structure as well as the language use.
However, there are 34,156 unique discourse participants (senders and recipients together) across all
the email threads in the corpus, and manually determining the gender of all of them is not feasi-
ble. Hence, we adopt a two-step approach through which we reliably identify the gender of a large
majority of discourse participants in the corpus.

Step 1: Manually determine the gender of the 145 core employees who have a bigger representation
in the corpus

Step 2: Systemically determine the gender of the rest of the discourse participants using the Social
Security Administration’s baby names database

We adopt a conservative approach so that we assign a gender only when the name of the participant
meets a very low ambiguity threshold.

3.1 Manual Gender Assignment

We researched each of the 145 core employees using web search and found public records about
them or articles referring to them. In order to make sure that the results are about the same person
we want, we added the word enron to the search queries. Within the public records returned for
each core employee, we looked for instances in which they were being referred to either using a
gender revealing pronoun (he/him/his vs. she/her) or using a gender revealing addressing form (Mr.
vs. Mrs./Ms./Miss). Since these employees held top managerial positions within Enron at the time
of bankruptcy, it was fairly easy to find public records or articles referring to them. For example, the
sentence “Kay Mann is a strong addition to Noble’s senior leadership team, and we’re delighted to
welcome her aboard” (gender-revealing pronoun emphasized) in the page we found for Kay Mann
clearly identifies her gender.2 We were able to correctly determine the gender of each of the 145 core
employees in this manner. A benefit of manually determining the gender of these core employees
is that it ensures a high coverage of 100% confident gender assignments in the corpus, as they are
involved in all threads in the corpus.

3.2 Automatic Gender Assignment

Our corpus contains a large number of discourse participants in addition to the 145 core employees
for which we manually identified the gender. The steps we follow to assign gender for these other
discourse participants is represented graphically in Figure 1. We first determine the first names of
discourse participants and then find how ambiguous the names are by querying the Social Security
Administration’s (SSA) baby names dataset. In this section, we start by describing how we calculate
an ambiguity score for a name using the SSA dataset and then describe how we use it to determine
the gender of discourse participants in our corpus.

2. http://www.prnewswire.com/news-releases/kay-mann-joins-noble-as-general-counsel-57073687.html
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Figure 1: Automatic gender assignment process.

3.2.1 SSA NAMES AND GENDER DATASET

The US Social Security Administration maintains a dataset of baby names, gender, and name count
for each year starting from the 1880s, for names with at least five counts.3 We used this dataset in
order to determine the gender ambiguity of a name. The Enron data set contains emails from 1998
to 2001. We estimate the common age range for a large, corporate firm like Enron at 24-67,4 so we
used the SSA data from 1931-1977 to calculate ambiguity scores for our purposes.

For each name n in the database, let mp(n) and fp(n) denote the percentages of males and
females with the name n. The difference between these percentages of a name gives us a measure
of how ambiguous it is; the smaller the difference, the more ambiguous the name. We define the
ambiguity score of a name n, denoted by AS (n), as follows:

AS (n) = 100− |mp(n)− fp(n)|

The value of AS (n) varies between 0 and 100. A name that is ‘perfectly unambiguous’ would have
an ambiguity score of 0, while a ‘perfectly ambiguous’ name (i.e., 50%/50% split between genders)
would have an ambiguity score of 100. We assign the likely gender of the name to be the one with
the higher percentage, if the ambiguity score is below a threshold AST .

G(n) =


Male(M), if AS (n) ≤ AST and mp(n) > fp(n)

Female(F ), if AS (n) ≤ AST and mp(n) < fp(n)

Indeterminate(I), if AS (n) > AST

Figure 2 shows the plot of the percentage of names that will be gender assigned in the SSA
dataset against the ambiguity threshold. As the plot shows, around 88% of the names in the SSA
dataset have AS (n) = 0, i.e., are unambiguous. We choose a very conservative threshold of AST =
10 for our gender assignments, which assigns gender to around 93% names in the SSA dataset. An
ambiguity threshold of 10 means that we assign a gender only if at least 95% of people with that

3. http://www.ssa.gov/oact/babynames/limits.html
4. http://www.bls.gov/cps/demographics.htm
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Figure 2: Plot of percentage of first names covered against ambiguity threshold.

name were of that gender. In the gender assigned corpus that we released, we retain the AS (n) of
each name, so that the users of this resource can decide the threshold that suits their needs.

3.2.2 IDENTIFYING THE FIRST NAME

Each discourse participant in our corpus has at least one email address and zero or more names
associated with it. The name field is automatically assembled by Yeh and Harnly (2006), who
captured the different names from email headers. The names in the email headers are populated from
individual email clients the senders were using and hence do not follow a standard format. To make
things worse, not all discourse participants are human; some may refer to organizational groups
(e.g., HR Department) or anonymous corporate email accounts (e.g., a webmaster account, do-not-
reply address etc.). The name field may sometimes be empty, contain multiple names, contain an
email address, or show other irregularities. Hence, it is nontrivial to determine the first name of our
discourse participants. We used the heuristics below to extract the set of candidate names for each
discourse participant.

• If the name field contains two words, pick the second or first word, depending on whether a
comma separates them or not; pick the first word if the name field does not contain a comma;
pick the word following the comma if it does contain one.

• If the name field contains three words and a comma, choose the second and third words (a
likely first and middle name, respectively). If the name field contains three words but no
comma, choose the first and second words (again, a likely first and middle name).

• If the name field contains an email address, pick the portion from the beginning of the string
to a ‘.’,‘ ’ or ‘-’; if the email address is in camel case, take portion from the beginning of the
string to the first upper case letter.

• If the name field is empty, apply the above rule to the email address field to pick a name.

In addition, we cleaned up some irregularities that were present in the name field. One common
issue was that many email fields started with the text “?S” possibly a manifestation of some data
preprocessing step. We strip this portion of the string in order to obtain the part that denote the
actual email address.
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The above heuristics create a list of candidate names for each discourse participant. For each
candidate name, we compute the ambiguity score (Section 3.2.1) and the likely gender. We find the
candidate name with the lowest ambiguity score that passes the threshold and assign the associated
gender to the discourse participant. If none of the candidate names for a discourse participant
passes the threshold, we assign the gender to be indeterminate. We also assign the gender to be
indeterminate, if none of the candidate names is present in the SSA dataset. This will occur if the
name is a first name that is not in the database (an unusual or international name; e.g., Vladi), or
if no true first name was found (e.g., the name field was empty and the email address was only a
pseudonym). This will also include most of the cases where the discourse participant is not a human
(e.g., HR Department).

3.2.3 COVERAGE AND ACCURACY

We evaluated the coverage and accuracy of our gender assignment system on the manually assigned
gender data of the 145 core people. We obtained a coverage of 90.3%, i.e., for 14 of the 145
core people, either their name’s ambiguity score was higher than the threshold (Kam, Lindy, Tracy,
Lynn, Chris, Stacy, Robin, Stacey, and Tori) or their name did not exist in the SSA dataset (Geir
and Vladi). Of the 131 people the system assigned a gender to, we obtained an accuracy of 89.3%
in correctly identifying the gender. We investigated the errors and found that all errors were caused
due to incorrectly identifying the first name. For the cases where we correctly identify the first
name, we obtain a 100% accuracy in assigning the gender. The errors in finding first name arise
because the name fields are automatically populated and sometimes the core discourse participants’
name fields include their secretaries’ who are of the other gender. While the name fields capturing
multiple people is common for people in higher managerial positions, we expect this not to happen
in the middle management and below, to which most of the automatically gender-assigned discourse
participants belong.

3.3 Corpus Statistics and Divisions

Gender assignment coverage: We apply the gender assignment system described above to all
discourse participants of all email threads in the ENRON-ALL corpus to build the Gender Identified
Enron Corpus (GIEC). Table 1 shows the coverage of gender assignment in the GIEC corpus at
different levels: unique discourse participants, messages and threads. We were able to identify the
gender of 67% of unique discourse participants in the corpus. We verified that a majority of the
cases where we could not assign the gender was due to the name of the sender email account not
being present in the SSA dataset — mostly, cases where the discourse participant is not a human
(e.g., HR Department) as well as one-off email addresses (without a name entry) from outside the
Enron. In fact, the 67% discourse participants whose gender we could identify amounted to the
senders of 87% of the messages in our corpus. We call the subset of threads for which we were able
to identify the gender of all email senders, the All Senders Gender Identified (ASGI) sub-corpus,
and those for which we were able to identify the gender of all participants including senders and all
recipients, the All Participants Gender Identified (APGI) sub-corpus. ASGI covers around 71% of
threads in the corpus, whereas APGI covers only about 49%. The users of this resource can limit
their study to either subset, depending on their requirements.

In Figure 3, we show how the size of our Gender Identified Enron Corpus compares to existing
gender assigned corpora within the emails domain (Corney et al., 2002; Cheng et al., 2011; Deitrick
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Count (%)

Total unique discourse participants 34,156
- gender identified 23,009 (67.3%)
Total messages 111,933
- senders gender identified 97,255 (86.9%)
Total threads 36,615
- All Senders Gender Identified (ASGI) 26,015 (71.1%)
- All Participants Gender Identified (APGI) 18,030 (49.2%)

Table 1: Coverage of gender identification at various levels: unique discourse participants,
messages and threads.

et al., 2012). Our corpus is orders of magnitude larger than existing resources. We have representa-
tion of over 23K authors in our corpus, as opposed to a few hundred in other existing resources. In
terms of number of messages also, our corpus is more than 5 times the size of next biggest corpus.

(a) Comparison in terms of number of unique
discourse participants

(b) Comparison in terms of number of messages

Figure 3: Gender Identified Enron Corpus (GIEC) vs. existing gender assigned resources.

Gender assignment male/female split: In Figure 4, we show the male/female percentage split of
all unique discourse participants, as well as the split at the level of messages (i.e., messages sent by
males vs. females). We have more male participants than female participants in the corpus (58%
vs. 42%). When counted in terms of number of messages, around two thirds of the messages in our
corpus were sent by men.
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Figure 4: Male/Female split in gender assignments across a) all unique participants who were
gender identified (left), b) all messages whose senders were gender identified (right)

4. Notion of Gender Environment

In this study, we are interested not only in how the gender of a discourse participant affects their
dialog behavior, but also whether the genders of other participants they are interacting with has
an effect on their dialog behavior. We use the term “gender environment” to refer to the gender
composition of a group who are communicating. We derive this notion from Holmes and Stubbe
(2003) in which the term is used to refer to a stable work group who interact regularly. Since we are
interested in studying email conversations (threads), we adapt this notion to refer to a single thread
at a time. We consider the “gender environment” to be specific to each discourse participant and to
describe the other participants from his or her point of view. Put differently, we use the notion of
“gender environment” to model a discourse participant’s (potential) audience in a conversation. For
example, a conversation among five women and one man looks like an all-female audience from the
man’s point of view, but a majority-female audience from the women’s points of view.

We define the gender environment of a discourse participant p in a thread t as follows. As
discussed, we assume that the gender environment is a property of each discourse participant p
in thread t. We take the set of all discourse participants of the thread t, Pt, and exclude p from
it: Pt \ {p}. We then calculate the percentage of females in this set.5 We obtain three gender
environments by setting thresholds on these percentages (dividing equally): Female Environment,
Mixed Environment, and Male Environment.

• Female Environment: if the percentage of women in Pt \ {p} is above 66.7%.

• Mixed Environment: if the percentage of women in Pt \ {p} is between 33.3% and 66.7%.

• Male Environment: if the percentage of women in Pt \ {p} is below 33.3%

5. Analysis Framework

In the rest of this paper, we use the All Participants Gender Identified (APGI) subset of the Enron
corpus to study the interplay of gender and power, as it allows us to study the effects of both Gen-
der and Gender Environment. We use the same analysis framework — problem formulation, data
splits, and features — introduced in (Prabhakaran and Rambow, 2014). In this section, we briefly

5. We note that one could also define the notion of gender environment at the level of individual emails: not all emails
in a thread involve the same set of participants. We leave this to future work.
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summarize the analysis framework and features we used. For a detailed account of the problem and
features, refer to (Prabhakaran and Rambow, 2014).

5.1 Power Annotations

Our corpus contains organizational hierarchy relations extracted by Agarwal et al. (2012) from the
Enron organizational charts. They define a dominance relation to be the relation between superior
and subordinate in the hierarchy. Their gold standard for hierarchy relations contains a total of 1,518
employees. They found 2,155 immediate dominance relations spread over 65 levels of dominance
(CEO, manager, trader etc.) among these 1,518 employees. They also added the transitive closure
of these relations to the corpus resulting in a total of 13,724 dominance relations. We use these
dominance relations as our gold standard for assigning superior-subordinate relations.

5.2 Problem Formulation

Let t denote an email thread and Mt denote the set of all messages in t . Also, let Pt be the set of
all participants in t , i.e., the union of senders and recipients (To and CC) of all messages in Mt . We
are interested in detecting power relations between pairs of participants who interact within a given
email thread. Not every pair of participants (p1 , p2 ) ∈ Pt × Pt interact with one another within
t . Let IMt(p1 , p2 ) denote the set of Interaction Messages — non-empty messages in t in which
either p1 is the sender and p2 is one of the recipients or vice versa. We call the set of (p1 , p2 )
such that |IMt(p1 , p2 )| > 0 the interacting participant pairs of t (IPPt ). We focus on the man-
ifestations of power in interactions between people across different levels of hierarchy. For every
(p1 , p2 ) ∈ IPPt , we query the set of dominance relations in the gold hierarchy to determine their
hierarchical power relation (HP(p1 , p2 )). We exclude pairs that do not exist in the gold hierarchy
from our analysis and denote the remaining set of related interacting participant pairs as RIPPt .
We assign HP(p1 , p2 ) to be superior if p1 dominates p2 , and subordinate if p2 dominates p1 . In
this paper, we are interested in how gender interacts with the differences in dialog behavior exhib-
ited by superiors and subordinates. We study how a participant’s gender and the gender of other
participants in an email thread affects these dialog behavior differences.

We formulate the problem as a computational task. Given a thread t and a pair of participants
(p1 , p2 ) ∈ RIPPt , we want to automatically detect HP(p1 , p2 ). This problem formulation is sim-
ilar to the ones in (Bramsen et al., 2011) and (Gilbert, 2012). However, the difference is that for us
an instance is a pair of participants in a single thread of interaction (which may or may not include
other people), whereas for them an instance constitutes all messages exchanged between a pair of
people in the entire corpus. Our formulation also differs from (Prabhakaran and Rambow, 2013) in
that we detect power relations between pairs of participants, instead of just whether a participant
had power over anyone in the thread.

5.3 Data

We follow the same train, dev, test division of ENRON-ALL as in (Prabhakaran and Rambow, 2014).
We limit our study to the threads in which were able to identify the gender of all participants (i.e.,
threads that are part of the APGI subset of the corpus). Table 2 presents the total number of pairs
in IPPt and RIPPt from all the threads in the APGI subset of our corpus and across the train, dev
and test sets. We choose APGI instead of ASGI (All Senders Gender Identified) because APGI
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Description Total Train Dev Test

# of threads 17,788 8,911 4,328 4,549∑
t |IPPt | 74,523 36,528 18,540 19,455∑
t |RIPPt | 4,649 2,260 1,080 1,309

Table 2: Data statistics in the All Participants Gender Identified subset of the Enron Corpus.
Row 1 presents the total number of threads in different subsets of the corpus.

Row 2 and 3 present the number of interacting participant pairs (IPP ) and related interacting
participant pairs (RIPP ) in those subsets.

allows us to also study the notion of Gender Environment for which we need to know the gender of
all participants. As an artifact of choosing the APGI, we also have a corpus with relatively smaller
number of participants per thread than the full corpus. In other words, email threads with a large
number of participants, such as broadcast emails, will have been excluded from the AGPI, since
there is a higher chance that the automatic gender assignment step fails to assign the gender for at
least one of the recipients. As a result, the findings from the analysis on this subset sometimes differ
from what we found in (Prabhakaran and Rambow, 2014). However, knowing how the two corpora
differ in terms of the number of participants, it is interesting to note on which aspects of interactions
the findings in both studies differ.

5.4 Features

We study the same dialog structural aspects of interaction introduced from (Prabhakaran and Ram-
bow, 2014) in this work. In this section we briefly describe the various features we use to model
these aspects of interactions. We focus on features in five different dialog structural aspects of
interactions — POSITIONAL, VERBOSITY, THREAD STRUCTURE, DIALOG ACTS, and OVERT

DISPLAY OF POWER, as well as a non-structural aspect captured by LEXICAL features. The first
three aspects (POSITIONAL, VERBOSITY, and THREAD STRUCTURE) capture the structure of mes-
sage exchanges without doing any NLP processing on the content of the emails (e.g., how many
emails did a person send), whereas DIALOG ACTS and OVERT DISPLAY OF POWER capture the
pragmatics of the dialog and require an analysis of the content of the emails (e.g., did they issue any
requests). LEXICAL features also analyze the content, but at a shallow level, looking solely at word
lemma and part-of-speech ngrams.

Each feature f is extracted with respect to a person p over a reference set of messages M
(denoted f pM ). For example, MsgRatioKim

Mt
denotes the ratio of messages sent by Kim to the total

number of messages in the thread t, whereas MsgRatioSaraIMt (Kim,Sara) denotes the ratio of messages
sent by Sara to the total number of interaction messages between Kim and Sara in the thread t. For
each pair (p1 , p2 ), we extract 4 versions of each feature f .

f p1IMt (p1 ,p2 )
: features with respect to p1 and interaction messages between p1 and p2

f p2IMt (p1 ,p2 )
: features with respect to p2 and interaction messages between p1 and p2

f p1Mt
: features with respect to p1 and all messages in thread t

f p2Mt
: features with respect to p2 and all messages in thread t
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Aspects Features Description

PST
Initiator did p sent the first message?
FirstMsgPos relative position of p’s first message in M
LastMsgPos relative position of p’s last message in M

VRB

MsgCount Count of messages sent by p in M
MsgRatio Ratio of messages sent in M
TokenCount Count of tokens in messages sent by p in M
TokenRatio Ratio of tokens across all messages in M
TokenPerMsg Number of tokens per message in messages sent by p in M

THR

AvgRecipients Avge. number of recipients in messages
AvgToRecipients Avge. number of To recipients in messages
InToList% % of emails p received in which he/she was in the To list
AddPerson did p add people to the thread?
RemovePerson did p remove people to the thread?
ReplyRate average number of replies received per message by p

DA

ReqActionCount # of Request Action dialog acts in p’s messages
ReqInformCount # of Request Information dialog acts in p’s messages
InformCount # of Inform dialog acts in p’s messages
ConventionalCount # of Conventional dialog acts in p’s messages
DanglingReq% % of p’s messages with requests that did not have a reply

ODP ODPCount Number of instances of overt displays of power

LEX
LemmaNGram Word lemma ngrams
POSNGram Part of speech (POS) ngrams
MixedNGram POS ngrams, with closed classes replaced with lemmas

Table 3: Aspects of interactions analyzed in organizational emails.

The first two versions capture behavior of the pair among themselves, while the third and fourth
capture their overall behavior in the entire thread. In Table 3, we list each feature f we use. Like
(Prabhakaran and Rambow, 2014), we use all four versions of the features in the machine learning
experiments. However, for the statistical analysis presented in Section 6 and Section 7, we use the
f p1Mt

version alone (similar results were obtained using the f p1IMt (p1 ,p2 )
version as well).

5.4.1 POSITIONAL FEATURES

There are three features in this category — Initiator, FirstMsgPos, and LastMsgPos. Initiator is a
boolean feature which gets the value of 1 (true) if the p sent the first message in the thread, and
0 otherwise (false). FirstMsgPos, and LastMsgPos are real-valued features taking values from 0
to 1, capturing relative positions of p’s first and last messages. The lower the value, the earlier
the participant sent his/her first (or last) message. The first two features relate to the participant’s
initiative. LastMsgPos captures whether the participant stays till the end of the email thread.
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5.4.2 VERBOSITY FEATURES

This set of features captures how verbose were the participants in the thread. There are five features
in this set — MsgCount, MsgRatio, TokenCount, TokenRatio, and TokenPerMsg. The first two
features measure verbosity in terms of p’s messages (raw counts and percentages), whereas the
third and fourth features measure verbosity in terms of word tokens in p’s messages (raw counts and
percentage). The last feature measure how terse or verbose on average p’s messages are.

5.4.3 THREAD STRUCTURE FEATURES

This set of features captures the structure of the email in terms of meta-data that is part of the email
headers. It includes seven features — AvgRecipients, AvgToRecipients, InToList%, AddPerson, Re-
movePerson, and ReplyRate. The first two features capture the ‘reach’ of the person in terms of the
average number of total recipients as well as recipients in the To list in emails sent by p. InToList%
capture the the percentage of emails p received in which he/she was in the To list (as opposed to the
CC list); The next two features —AddPerson and RemovePerson— are boolean features denoting
whether p added or removed people when responding to a message. Next, we look at the respon-
siveness towards p as the average number of replies received per message sent by p (ReplyRate).

5.4.4 DIALOG ACT FEATURES

This feature set contains features that capture the dialog acts used by participants in the thread. We
obtain dialog act tags on the entire corpus using the automatic dialog act tagger from our previous
work (Omuya et al., 2013). The DA tagger labels each sentence to be one of the 4 dialog acts:

• REQUEST-ACTION: the writer signals her desire that the reader perform some non commu-
nicative act, i.e., an act that cannot in itself be part of the dialogue. For example, a writer can
ask the reader to write a report or make coffee.

• REQUEST-INFORMATION: the writer signals her desire that the reader perform a specific
communicative act, namely that he provide information (either facts or opinion).

• INFORM: the writer conveys information, or more precisely, the writer signals her desire that
the reader adopt a certain belief. It covers many different types of information that can be con-
veyed including answers to questions, beliefs (committed or not), attitudes, and elaborations
on prior DAs.

• CONVENTIONAL: dialog act does not signal any specific communicative intention on the part
of the writer, but rather it helps structure and thus facilitate the communication. Examples
include greetings, introductions, expressions of gratitude, etc.

The tagger uses a cascaded minority preference multi-class algorithm that posted significant im-
provements in its performance of identifying minority dialog acts such as Request Action (23%
error reduction over the one-vs-all classification algorithm), and obtained an overall accuracy of
92%. Please refer to (Omuya et al., 2013) for more details on the dialog act tagging framework. We
use 4 features: ReqActionCount, ReqInformCount, InformCount, and ConventionalCount to capture
the number of sentences in messages sent by p that has each of these labels, respectively. We also
use a feature to capture the percentage of p’s messages that had a request (either REQUEST-ACTION

or REQUEST-INFORMATION), which did not get a reply, i.e., dangling requests (DanglingReq%).
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5.4.5 OVERT DISPLAY OF POWER

We use the notion of Overt Display of Power (ODP) introduced in our prior work (Prabhakaran
et al., 2012b) to measure face aggravating acts in the interactions. We define an utterance to have
ODP if it is interpreted as creating additional constraints on the response beyond those imposed
by the general dialog act. For example, “I need the report by end of Friday” would be considered
as an overt display of power, whereas “Could you please try to send the report by end of Friday”
would not be considered as one. We consider ODP as a pragmatic concept, i.e., in terms of the
dialog constraints an utterance introduces to its response, and not in terms of specific linguistic
markers. For example, the use of politeness markers (e.g., please) does not, on its own, determine
the presence or absence of an ODP. In addition, the presence of ODP cannot be determined solely
based on syntactic patterns alone (e.g., declarative sentences such as I need the report may also
function as ODPs).

In (Prabhakaran et al., 2012b), we presented a data-oriented approach of identifying instances
of ODPs in email threads. We first obtained manual annotations of ODP on a subset of 122 email
threads (1734 sentences) at the sentence level, and then built an SVM-based supervised machine
learning model to identify instances of ODP in new email threads. In addition to lexical features, it
also uses the dialog act features obtained using the dialog act tagger described in Section 5.4.4. Our
ODP tagger has an accuracy of 96% and an F-measure of 54% over a random prediction baseline
F-measure of 10.4%.

In this paper, we applied the above ODP Tagger to the email threads in our entire corpus and used
a feature ODPCount that captures number of instances of overt displays of power in p’s messages.

5.4.6 LEXICAL FEATURES

In addition to the dialog structure features, we also used simple lexical ngram features as they have
already been shown to be valuable in predicting power relations (Bramsen et al., 2011; Gilbert,
2012). We use the feature set LEXICAL to capture word lemma ngrams, POS (part of speech)
ngrams and mixed ngrams. A mixed ngram is a special case of word ngram where words belonging
to open classes are replaced with their POS tags, thereby being able to capture longer sequences
without increasing the dimensionality as much as word ngrams do. We found the best setting to be
using both unigrams and bigrams for all three types of ngrams, by tuning on our dev set.

6. Gender and Power: A Statistical Analysis

As a first step, we would like to understand whether male superiors, female superiors, male sub-
ordinates, and female subordinates differ in their dialog behavior. For this analysis, the ANOVA
(Analysis of Variance) test is the appropriate statistical test as it provides a way to test whether
or not the means of several groups are equal. In other words, ANOVA generalizes the Student’s
t-Test to situations with more than two groups. It also eliminates the possibility of making a type
I error (false positives) if multiple two-sample t-Tests are applied to such a problem. We perform
ANOVA tests on all dialog structure features — POSITIONAL, VERBOSITY, THREAD STRUCTURE,
DIALOG ACTS, and OVERT DISPLAY OF POWER keeping both Hierarchical Power and Gender as
independent variables. This results in four groups — male superiors, female superiors, male subor-
dinates, and female subordinates. It is crucial to note that ANOVA only determines that there is a
significant difference between groups, but does not tell which groups are significantly different. In
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Figure 5: Mean value differences along Gender and Power: Initiator
(Error bars indicate standard error)

order to ascertain that, we use the Tukey’s HSD (Honest Significant Difference) Test. We discuss
the significant findings from these analyses below.

Altogether, there are twenty features as dependent variables, and two independent variables —
Power and Gender. That is a total of sixty different statistical tests; in addition, for each ANOVA test,
we also perform the Tukey’s HSD test. Even after applying the Bonferroni correction to control for
multiple testing (i.e., significance level at 0.05/120=0.0008), many of the results we discuss below
hold statistical significance. Hence, our overall hypothesis that gender affects the way power is
manifested in interactions holds true. However, as an exploratory study, we present the results along
each individual aspect without applying the correction, as it has been shown that the Bonferroni
correction tends to be conservative.

6.1 Positional Features

There are three features in this category — Initiator, FirstMsgPos, and LastMsgPos. Initiator is a
binary feature which gets the value of 1 (true) if the participant sent the first message in the thread,
and 0 otherwise (false). FirstMsgPos and LastMsgPos are real-valued features taking values from
0 to 1. The lower the value, the earlier the participant sent the first (or last) message. The first
two features relate to the participant’s initiative. A higher average value for Initiator in a group
indicates that participants in that group initiates threads more often; so does a lower average value
for FirstMsgPos. LastMsgPos captures whether participant stayed on towards the end of the thread.

Figure 5 shows the mean values of each groups for the feature Initiator. Initiator and FirstMsg-
Pos behave more or less similarly; hence we show the chart only for Initiator. Subordinates initiate
the threads significantly more often than superiors (average value of 0.39 against 0.28 for Initiator).
This pattern is also seen in FirstMsgPos (0.18 over 0.23; lower value means earlier participation).
Both differences are highly statistically significant p < 0.001. At first, this finding appears to be
in contrast with our finding in (Prabhakaran and Rambow, 2014) that superiors initiate more con-
versations. As we discussed earlier, this is an artifact of the fact that broadcast messages with large
number of recipients get eliminated from our corpus because it is more likely to fail to assign gen-
der to at least one of the participants. Putting together both findings, we infer that superiors tend

37



PRABHAKARAN AND RAMBOW

Figure 6: Mean value differences along Gender and Power: LastMsgPos
(Error bars indicate standard error)

to initiate email threads with large number of people; but in more focused conversations between
smaller set of participants, it is the subordinates who initiate the conversations.

Gender is not a deciding factor. For Initiator, the t-Test result is significant (p = 0.03), however
the magnitude of difference is very small (0.32 for females over 0.34 for males; Figure 5). The
t-Test result is not significant for FirstMsgPos. For the ANOVA test for the combination of gender
and power, the result is not significant for Initiator. The ANOVA test for FirstMsgPos is significant,
however the Tukey’s HSD test shows that male and female superiors behaved more or less the same
way; similarly, male and female subordinates also behaved the same way.

The results on LastMsgPos is interesting (Figure 6). The t-Test results for both power and gender
are significant, although the magnitude of the difference is small. The last message from superiors
tend to come later than those of subordinates. Similarly, males tend to send their last messages later
than females. The ANOVA results show that the factorial groups of power and gender also differ
significantly (p < 0.01). Upon Tukey’s HSD test we find that male managers are the only group that
differs from everyone else. The differences between all other groups are not statistically significant.
But male managers differed from every other group significantly (p < 0.01). It is unclear why there
is a significant difference in this feature. A potential explanation is that superiors tend to have the
final word in conversations, and this is more in the case of male superiors. However, it is unclear to
tease this apart as conversations are very often taken offline and hence it is hard to tell who had the
final word. A more controlled study will need to be performed in order to verify this hypothesis,
which we cannot perform using our corpus.

6.2 Verbosity Features

There are five features in this category — MsgCount, MsgRatio, TokenCount, TokenRatio, and
TokenPerMsg. The first two features measure verbosity in terms of messages, whereas the third and
fourth features measure verbosity in terms of words. The last feature measure how terse or verbose
on average the messages are.

MsgCount and MsgRatio behaved similarly, so did TokenCount and TokenRatio. Figure 7 and
Figure 8 show the mean values of each groups for the feature MsgCount and TokenCount. Superiors
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Figure 7: Mean value differences along Gender and Power: MsgCount
(Error bars indicate standard error)

Figure 8: Mean value differences along Gender and Power: TokenCount
(Error bars indicate standard error)

tend to send fewer of messages in the thread than subordinates (p < 0.001), and women tend to
send fewer messages than men (p < 0.001). The ANOVA results for both MsgCount and MsgRatio
are significant (p < 0.001). Tukey’s HSD test reveals an interesting picture. Female superiors send
significantly fewer messages than everyone else, almost 25% fewer than other groups. In fact, they
are the only single group that is different from anyone else. Difference between none of the other
groups are significant. For TokenCount and TokenRatio, the results are similar. Superiors tend to
contribute fewer words in the thread than subordinates (p < 0.001). Women tend to contribute
fewer words than men (p < 0.01). The ANOVA test of both features returned not significant.

TokenPerMsg behave differently. Gender is not significant at all. That is, men and women
do not differ in how long their messages are. In terms of Power, subordinates send significantly
longer emails. The ANOVA test is highly significant. It turns out that among superiors, there
is no significant difference. But among subordinates, male subordinates send significantly longer
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Figure 9: Mean value differences along Gender and Power: TokenPerMsg
(Error bars indicate standard error)

Figure 10: Mean value differences along Gender and Power: ReplyRate
(Error bars indicate standard error)

emails than female subordinates (p < 0.01) as per the Tukey’s HSD test. In summary, power is
a deciding factor in the difference between the verbosity exhibited by men and women. Female
managers send significantly fewer messages than all other groups; both female and male managers
send significantly shorter messages than subordinates. On the other hand, female subordinates
send significantly shorter emails than male subordinates, although they do not differ in how many
messages they send.

6.3 Thread Structure Features

While the verbosity and positional features measure behavioral aspects, thread structure features in
general deal with functional aspects (e.g., is a participant in CC (carbon copy) a lot?). While being
in CC as a feature might be significantly related to power relations, it is unlikely that someone keeps
a person in CC based on their gender. Similarly, adding or removing people to the conversation is
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Figure 11: Mean value differences along Gender and Power: AvgToRecipients
(Error bars indicate standard error)

also a functional aspect of workplace interactions, and we do not expect gender to play a role there.
As expected there is no significant difference between women and men for InToList%, AddPerson,
and RemovePerson. The ANOVA test also returned not significant. In other words, gender does not
affect the way superiors and subordinates behave in terms of these aspects.

The results from our analysis of ReplyRate is interesting. Figure 10 shows the mean values for
each group. Females get significantly more replies to their messages p < 0.001. While power did
not have a significant effect, the ANOVA result is also significant. On further analysis, we find that
the female superiors get the highest reply rate (p < 0.05). The difference between the ReplyRate for
male and female subordinates is not significant. It is an interesting finding, since it is an instance of
gender of a person with power affecting how others behave towards them. However, on combining
this finding with the analysis of AvgRecipients and AvgToRecipients (Figure 11), we find that female
superiors on average had more recipients in their messages than any other groups. The difference
in ReplyRate might also be a manifestation of the fact that female superiors send emails to larger
number of people.

6.4 Dialog Act Features

We now discuss the finding in terms of dialog act counts. InformCount and ConventionalCount
behave similarly for all three tests. However, the magnitude of difference between superiors and
subordinates for InformCount is much higher than that of ConventionalCount (superiors had 42.4%
lower value than subordinates for InformCount as opposed to 13.8% in the case of Conventional-
Count). The ANOVA test returned not significant, which means that the gender did not affect the
way superiors or subordinates use either conventional or inform dialog acts.

On the other hand, the finding on ReqActionCount and ReqInformCount are very interesting.
There is no significant difference between men and women in how often they make requests for
action (Figure 12), whereas they differed significantly (p < 0.001) in terms of how often they
request for information. Women issue almost 41% more requests for information than men. The
ANOVA test for ReqActionCount returned significance (p < 0.01), but not for ReqInformCount.
That is, gender affects how superiors and subordinates issue requests for actions, but not requests
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Figure 12: Mean value differences along Gender and Power: ReqActionCount
(Error bars indicate standard error)

Figure 13: Mean value differences along Gender and Power: ReqInformCount
(Error bars indicate standard error)

for information. Male superiors issue more requests for actions than male subordinates, whereas
female superiors held back from making requests. In fact, there is no significant difference between
male subordinates and female subordinates in terms of ReqActionCount. For DanglingReq%, there
is no significant difference with respect to gender or gender and power together.

6.5 Overt Displays of Power

Figure 14 shows the mean values of ODP counts in each group of participants. The results obtained
are similar to what we found for ReqActionCount. Both power and gender are significant on their
own. Subordinates had an average of 0.091 ODP counts and superiors had an average of 0.114 ODP
counts. Gender is also significant; females have an average of 0.086 ODP counts and males had an
average of 0.113 ODP counts. When looking at the factorial groups of power and gender, however,
several differences are very highly significant. Male superiors use the most ODPs, with an average
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Figure 14: Mean value differences along Gender and Power: ODPCount
(Error bars indicate standard error)

of 0.135 counts. Somewhat surprisingly, female superiors use the least of the entire group, with an
average of 0.072 counts. However, the differences among female superiors, female subordinates,
and male subordinates are not significant, as per the Tukey’s HSD test.

6.6 Summary and Discussion

In summary, we find that gender affects the manifestations of power significantly along many lin-
guistic and structural aspects of interactions. We summarize our findings below:

• Gender of the participants does not have much effect on the manifestations of power in posi-
tional features (ref. Section 6.1)

• Gender does significantly affect the manifestations of power in verbosity features; of the
ANOVA tests we performed on the five verbosity features, three returned to be highly signif-
icant. (ref. Section 6.2)

• Gender also affects the manifestations of power on some of the thread structure features such
as reply rate and number of recipients. (ref. Section 6.3)

• Power manifestations on the dialog act based features, especially the request features and
overt displays of power are also affected highly significantly by the gender of the participants.
(ref. Section 6.4 and Section 6.5)

The findings presented in this section do not exhaust the possibilities of this corpus. However, it
shows how computational techniques can aid in performing large-scale sociolinguistics analysis. In
order to demonstrate this point, we attempted to verify a hypothesis derived from the sociolinguistics
literature we consulted. The hypothesis we investigate is:

• Hypothesis 1: Female superiors tend to use “face-saving” strategies at work that include con-
ventionally polite requests and impersonalized directives, and that avoid imperatives (Kendall,
2003).
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Our notion of overt display of power (ODP) is a face-threatening communicative strategy (Prab-
hakaran et al., 2012b). An ODP limits the addressee’s range of possible responses, and thus threat-
ens his or her (negative) face.6 We thus reformulate our hypothesis as follows: the use of ODP by
superiors changes when looking at the splits by gender, with female superiors using fewer ODPs
than male superiors. We saw in the results presented in Section 6.5 that this hypothesis is indeed
true. We find that female superiors used the least number of ODPs among all groups. The results
confirmed our hypothesis: female superiors use fewer ODPs than male superiors. However, we also
see that among women, there is no significant difference between superiors and subordinates, and
the difference between superiors and subordinates in general (which is significant) is entirely due
to men. This in fact shows that a more specific (and more interesting) hypothesis than our original
hypothesis is validated: only male superiors use more ODPs than subordinates. In other words, the
fact that superiors use more ODPs than subordinates is entirely due to male superiors using more
ODPs. Similarly, the fact that men use more ODPs than women is also entirely due to superiors
among men using significantly more ODPs.

7. Statistical Analysis: Gender Environment and Power

In this section, we present our investigation on whether the manifestations of power differs based
on the gender environment. As in Section 6, we use the ANOVA test to assess the statistical sig-
nificance of differences. We perform ANOVA tests on all features keeping both Power and Gender
Environment (GenderEnv, hereafter) as independent variables. We also perform ANOVA keeping
GenderEnv alone as the independent variable; since GenderEnv has more than two groups, we can-
not use Student’s t-Test. We verify our overall hypothesis that gender environment affects the way
power is manifested in interactions; it still holds true even after applying the Bonferroni correction
for multiple tests. However, as we did in Section 6, we do not apply the correction when describing
the findings from the statistical analysis of each set of features separately in the rest of this section.

7.1 Positional Features

For the positional features, any difference that we see in the feature values between different gen-
der environments is not interesting. For example, it is not sensible to investigate whether the value
of Initiator is different between gender environments (all threads had to be initiated by someone).
However, it is still interesting to see whether there is any connection between the gender envi-
ronment and how the superiors and subordinates differ in terms of when they started and stopped
participating in the threads. As we saw in Section 6, subordinates initiate more emails than superiors
(Initiator) and overall start participating earlier in the thread (FirstMsgPos). The ANOVA test keep-
ing Power and GenderEnv as independent variables was highly significant (p < 0.001). In other
words, the gender environment does affect the initiative shown by subordinates in starting email
threads. Figure 15 shows the mean values of each group. Subordinates do start participating in the
threads significantly earlier than superiors. However, the magnitude of this difference is dependent
on the gender environment. This suggests that subordinates tend to show more initiative in female
environments than other gender environments, and that superiors tend to start participating in the
threads much later in female environments. For the relative position of last message, the ANOVA
results are not significant.

6. For a discussion of the notion of “face”, see (Brown and Levinson, 1987).
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Figure 15: Mean value differences along Gender Environment and Power: FirstMsgPos
(Error bars indicate standard error)

Figure 16: Mean value differences along Gender Environment and Power: TokenCount
(Error bars indicate standard error)

7.2 Verbosity Features

As per the ANOVA results, the gender environment has no significance in MsgCount or in how
Power is manifested in MsgCount. On the other hand, in terms of TokenCount, there is a signif-
icant difference (p < 0.01) across gender environments (Figure 16). The ANOVA test keeping
Power and GenderEnv as independent variables also returned significance (p < 0.001). In fact, in
male environments, there is no significant difference in TokenCount between superiors and subor-
dinates. Subordinates behaved more or less the same across the gender environments, but superiors
contributed much less in female and mixed environments. A similar pattern is also observed in
TokenPerMsg across different gender environments.
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Figure 17: Mean value differences along Gender Environment and Power: ConventionalCount
(Error bars indicate standard error)

7.3 Thread Structure Features

The effect of gender environment on ReplyRate is minimal. We observed that the number of recipi-
ents (both AvgRecipients and AvgToRecipients) is significantly higher in the mixed environment than
others. This, however, is another artifact of how our corpus is constructed. In a thread with large
number of participants, it is more likely to have a mixed environment than either male or female
environment. The ANOVA test keeping Power and GenderEnv also returned no significance for
AddPerson and RemovePerson. In summary, the effect of gender environment on thread structure
features is minimal.

7.4 Dialog Act Features

The results obtained on the ANOVA tests for the dialog act features are interesting. We will start
with the ConventionalCount. Figure 17 shows the mean values of ConventionalCount in each sub-
group of participants. Hierarchical Power is highly significant as per ANOVA results. Subordinates
use conventional language more (0.60) than superiors (0.52). While the averages by GenderEnv dif-
fer, the differences are not significant. However, the groups defined by both Power and GenderEnv
have highly significant differences. Subordinates in female environments use the most conventional
language of all six groups, with an average of 0.79. Superiors in female environments use the least,
with an average of 0.48. In the Tukey HSD test, the only significantly different pairs are exactly
the set of subordinates in female environments paired with each other group. That is, subordinates
in female environments use significantly more conventional language than any other group, but the
remaining groups do not differ significantly from each other. We interpret this result to mean that
subordinates are more comfortable in female environments to use a style of communication which
includes more conventional dialog acts than outside the female environments.

The ANOVA tests for InformCount also returned high significance. The difference between
mean values of InformCount feature in male environments and mixed environments are not signif-
icant; but it differed significantly between female environments and both male and mixed environ-
ments. The groups defined by both Power and GenderEnv also have highly significant differences.
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Figure 18: Mean value differences along Gender Environment and Power: InformCount
(Error bars indicate standard error)

Figure 19: Mean value differences along Gender Environment and Power: ODPCount
(Error bars indicate standard error)

There is no significant difference between superiors’ and subordinates’ count of inform dialog acts
when operating in a male environment. In other words, the finding that subordinates use more in-
form dialog acts holds true only in female and mixed environments, but not in male environments.
However, on comparing this result with our findings in terms of verbosity features (Figure 16), we
find that this is in fact an artifact of most of the contributions being inform statements (the findings
in InformCount mirror that of TokenCount).

The ANOVA results for both ReqActionCount, ReqInformCount, and DanglingReq% are not
significant when tested using Power and GenderEnv. The male environment had a significantly
(p < 0.05) lower DanglingReq%.
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7.5 Overt Displays of Power

The results of the ANOVA analysis on ODPCount are interesting. Figure 19 shows the mean values
of each group. As we saw already in Section 6, superiors use significantly more overt displays of
power than subordinates. However, this pattern varied across gender environments significantly.
The same relationship holds only in a mixed gender environment, where also most of the ODP
occur. In male environments, there is no significant difference in ODPCount between superiors and
subordinates, whereas in female environments, the value of ODPCount for superiors is significantly
lower than that of subordinates. This goes in line with our finding in Section 6 that female managers
use fewer overt displays of power.

7.6 Summary and Discussion

In summary, we find that gender environment also affects the manifestations of power significantly
along different structural aspects of interactions. We summarize the main findings below:

• The gender environment significantly affects the difference between the initiative (in terms
of how early they participated in the threads) exhibited by superiors and subordinates. While
subordinates show more initiative than superiors across all gender environments, the magni-
tude of this difference is the largest in female environments. (ref. Section 7.1)

• Gender environment affects the difference in verbosity exhibited by superiors and subordi-
nates. While subordinates contributed significantly more content (in terms of token count as
well as tokens per message) than superiors, this difference is the least in male environments.
(ref. Section 7.2)

• Power manifestations on dialog act features also differ significantly across different gender
environments. Subordinates use significantly more conventional dialog acts than superiors
only in female environments. On the other hand, the difference in the their usage of inform
dialog acts is non-existent in male environments. (ref. Section 7.4)

• Gender environment also affects the use of overt displays of power among subordinates and
superiors. The fact that superiors use more overt displays of power is driven entirely by mixed
environments. In male environments, superiors and subordinates do not differ in their usage
of overt displays of power, while in female environments, superiors used less overt displays
of power. (ref. Section 7.5)

Similar to what we did in Section 6.6, we attempt to verify a hypothesis derived from the sociolin-
guistics literature we consulted in relation to the notion of gender environment. The hypothesis we
investigate is:

• Hypothesis 2: Women when talking among themselves use language to create and maintain
social relations, for example, they use more small talk (based on a reported “stereotype” in
(Holmes and Stubbe, 2003)).

We have at present no way of testing for “small talk” as opposed to work-related talk, so we
instead test Hypothesis 2 by asking how many conventional dialog acts a person performs. Con-
ventional dialog acts do not convey information or requests (both of which would typically be
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work-related in the Enron corpus), but instead establish communication (greetings) and to manage
communication (sign-offs); since communication is an important way of creating and maintaining
social relations, we can say that conventional dialog acts serve the purpose of easing conversations
and thus of maintaining social relations. We make our Hypothesis 2 more precise by saying that a
higher number of conventional dialog acts will be used in female environments.

We presented the results of our analysis of ConventionalCount feature in Section 7.4. Our
results first appears to be a negative result: while the averages by Gender Environment differ, the
differences are not significant. However, we find that subordinates in female environments use
significantly more conventional language than any other group, but the remaining groups do not
differ significantly from each other. Our hypothesis is thus only partially verified: while gender
environment is a crucial aspect of the use of conventional DAs, we also need to look at the power
status of the writer. While our hypothesis is not fully verified, we interpret the results to mean that
subordinates are more comfortable in female environments to use a style of communication which
includes more conventional DAs than outside the female environments.

8. Utility of Gender Information in Predicting Power

In this section, we investigate the utility of the gender information in the problem of predicting
the direction of power presented in (Prabhakaran and Rambow, 2014). We expect the SVM-based
supervised learning system using quadratic kernel to capture the interdependence between dialog
structure features and gender features that we found in our statistical analysis presented in Section 6
and Section 7.

We perform our experiments on the ENRON-APGI subset, training a model using the same
machine learning framework presented in (Prabhakaran and Rambow, 2014) using the related in-
teracting participant pairs in the Train subset of ENRON-APGI, and choosing the best model based
on performance on the Dev subset. We experimented using all subsets of features described in Sec-
tion 5.4. In addition, we add two gender-based feature sets: GENDER containing the gender of both
persons of the pair and GENDERENV which is a singleton set with the gender environment as the
feature. Table 4 presents the results obtained using various feature combinations. Note that the
numbers presented in Table 4 are not directly comparable to the results presented in (Prabhakaran
and Rambow, 2014), since the results presented there are on the Dev set of the ENRON-ALL corpus,
whereas here we discuss results obtained on the Dev set of the ENRON-APGI, which is a subset of
around 50% of the ENRON-ALL corpus.

The majority baseline obtains an accuracy of 55.8%. Using the gender-based features alone
performs only slightly better than the majority baseline, posting an accuracy of 57.6%. The best
performance is obtained using a combination of LEXICAL, THREAD STRUCTURE, GENDER and
GENDERENV, which posts an accuracy of 70.7%. Removing the GENDERENV feature set decreases
the accuracy marginally to 70.5%, whereas removing the GENDER features as well reduces the
performance significantly to 68.2% (tested using McNemar test). This reduction of 2.4% percentage
points in accuracy shows that gender features are in fact useful for this power prediction task. The
best performance feature set without using any gender information is the combination of LEXICAL,
THREAD STRUCTURE, POSITIONAL and VERBOSITY, which reports an accuracy of 68.3%. The
best performing feature set without using LEXICAL is the combination of DIALOG ACTS, OVERT

DISPLAY OF POWER, THREAD STRUCTURE and GENDER (67.3%). Removing the gender features
from this reduces the performance to 64.6%. Similarly, the best performing feature set which do not
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Description Accuracy

Baselines Majority 55.83

Using gender features alone
GEN 57.59
GEN + ENV 57.59

Best feature sets

LEX + THR + GEN + ENV 70.74
LEX + THR + GEN 70.46
LEX + THR 68.24
LEX + THR + PST + VRB 68.33

Best without LEXICAL
DA + ODP + THR + GEN 67.31
DA + ODP + THR 64.63

Best with no content
PST + VRB + THR + GEN 66.57
PST + VRB + THR 62.96

Table 4: Results on using gender features for power prediction.
PST: POSITIONAL, VRB: VERBOSITY, THR: THREAD STRUCTURE,

DA: DIALOG ACTS, ODP: OVERT DISPLAY OF POWER, LEX: LEXICAL,
GEN: GENDERENV: GENDERENV

use the content of emails at all is POSITIONAL + VERBOSITY + THREAD STRUCTURE + GENDER

(66.6%). Removing the gender features decreases the accuracy by a larger margin (5.4% accuracy
reduction to 63.0%).

It is interesting to look at the error reduction obtained by adding gender features to different
feature sets. Using gender features alone obtains only an error reduction of 4.0% over the majority
baseline (i.e., without using any other features). However, the predictive value of gender features
improves considerably when paired with other features. For the best feature set we obtained, the
gender features contributed to an error reduction of 7.9% (68.2% to 70.7%). For the best feature
set without using LEXICAL also the gender features contributed a similar error reduction of 7.6%
(64.63% to 67.3%). For the setting where no content features are used, gender features obtained an
even higher error reduction of 11.0% (63.0% to 66.6%). In other words, the gender-based features
on their own are not very useful, and gain predictive value only when paired with other features (as
we are using a quadratic SVM kernel). This is because the other features in fact make quite different
predictions depending on gender and/or gender environment. Nonetheless, we take these results as
validation of the claim that gender-based features enhance the value of other features in the task of
predicting power relations.

On our blind test set, the majority baseline obtains an accuracy of 57.9% and the baseline sys-
tem that does not use gender features obtains an accuracy of 68.9%. On adding the gender-based
features, the accuracy of the system improves to 70.3%.

9. Conclusion

The first contribution of this paper is the new, freely available resource — Gender Identified Enron
Corpus, an extension to the Enron email corpus with 87% of the email senders’ gender identified.
We used the Social Security Administration’s baby-names database to automatically assess the gen-
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der ambiguity of first names of email senders and assigned the gender to those whose names are
highly unambiguous. Our gender identified corpus is orders of magnitude larger than other existing
resources in this domain that capture gender information. We expect it to be a rich resource for
social scientists interested in the effect of power and gender on language use.

Our second contribution is the detailed statistical analysis of the interplay of gender, gender
environment and power in how they affect the dialog behavior of participants of an interaction.
We introduced the notion of gender environment to capture the gender makeup of the discourse
participants of a particular interaction. We showed that gender and gender environment affect the
ways power is manifested in interactions in complex ways, resulting in patterns in the discourse
that reveal the underlying factors. While our findings pertain to the Enron email corpus, we believe
that the insights and techniques from this study can be extended to other genres in which there is an
independent notion of hierarchical power, such as moderated online forums.

Finally, we showed the utility of gender information in the task of predicting the direction of
power between pairs of participants based on single threads of interactions. We obtained statistically
significant improvements by adding the gender of both participants of a pair as well as the gender
environment as features to a system trained using lexical and dialog structure features alone.
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