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ABSTRACT

Documents are commonly categorized into hierarchies of
topics, such as the ones maintained by Yahoo! and the
Open Directory project, in order to facilitate browsing
and other interactive forms of information retrieval. In
addition, topic hierarchies can be utilized to overcome the
sparseness problem in text categorization with a large num-
ber of categories, which is the main focus of this paper.
This paper presents a hierarchical mixture model which
extends the standard naive Bayes classifier and previous
hierarchical approaches. Improved estimates of the term
distributions are made by differentiation of words in the
hierarchy according to their level of generality/specificity.
Experiments on the Newsgroups and the Reuters-21578
dataset indicate improved performance of the proposed
classifier in comparison to other state-of-the-art methods
on datasets with a small number of positive examples.

1. INTRODUCTION

The number of online documents is vastly growing in size,
making the ability to automatically organize and catego-
rize documents increasingly important. In text categoriza-
tion or text classification, one is concerned with annotating
a document with a single or several classes that describe
the contents of the document. Here, text categories are
usually defined by the topics discussed in each document.
Although there are repositories for which large collections
of documents have been manually labeled with category in-
formation (e.g, Yahoo!, Open Directory, MeSH, and US.
Patents) it is desirable to automatically update these hi-
erarchies and to be able to add new categories for which
only very few human labeled exemplars are given.

Permission to make digital or hard copies of al or part of this work for
persond or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercid advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission andlor a fee.

CIKM'01, November 5-10, 2001, Atlanta, Georgia, USA.

Copyright 2001 ACM 1-581 13-436-3/01/0011...$5.00.

105

Thomas Hofmann
Dept. of Computer Science
Brown  University
Providence, RI 02912
th@cs.brown.edu

Kris Popat
Xerox PARC
3333 Coyote Hill rRa
Palo Alto, CA 94304

popat@parc.xerox.com

There are a number of statistical methods specifically de-
veloped to handle sparse data, including shrinkage [14]
and deleted interpolation [7]. These methods make use
of term distributions estimated for more general, coarser
text classes to provide better, smoothed estimates of class
conditional term distributions, P(wl|c) where w is a term
and ¢ is a class. The more general classes are typically
obtained through the use of a given taxonomy or topic hi-
erarchy. Recent work on text classification has used topic
hierarchies to reduce variance in parameter estimation [14,
17], for successive refinement of classification decisions [9,
2], and as an integral part of a classifier [1].

In this paper we propose a novel approach to using a topic
hierarchy for text classification which is most closely re-
lated to the method for shrinkage in a hierarchy of classes
presented in [14]. From here on, we will refer to this
method of shrinkage using a hierarchy of classes [14] as
Hierarchical Shrinkage Model for brevity. In {14], the class-
conditional word probabilities, P(we|c;) for word w: and
class ¢;, are estimated as:

P(wilc;; 8) = A\j0), + A207, + ... + Aok,

where 8%, = P(we|c;) is the maximum likelihood estimate
based on the data that belongs to all classes that are suc-
cessors of the node #, but not the actual class ¢; itself. Our
Bayesian approach uses a predefined hierarchy of topics,
but is able to automatically differentiate terms according
to their specificity/generality, by reformulating the cluster-
abstraction model [4] in a supervised setting. Compared
to [14] our model achieves selective shrinkage over terms.
This performs smoothing while maintaining a higher de-
gree of discriminability between the classes. The differ-
ences between our model and [14] and [4] are discussed in
more detail in section 2.

Following the paradigm of naive Bayesian classification, a
document's empirical term distribution, that is, the vector
of term frequencies representing a document, is matched
against a collection of class-conditional distributions, P(wlc),
which have been estimated from training data. The accu-
racy of classification depends on how the matching is per-
formed, but also in large part on the accuracy of the esti-



mates for the class-conditional term probabilities, P{w|c).
Since the vocabulary size can be large, the accuracy of
these estimates is often severely limited by the sparsity of
the available training data. This paper considers combat-
ing this sparseness by hierarchical shrinkage; more specifi-
cally, by convexly combining conditional term distributions
in a hierarchical mixture model.

This paper also presents experiments which compare the
performance of our method to the performance of several
related statistical approaches - Naive Bayes, the Hierarchi-
cal Shrinkage Model [14], Probabilistic Latent Semantic
Analysis [5], as well as two other well-established mod-
els with good performance for text classification = k-NN
and SVMs. We report results on two widely used bench-
marks for text classification - a subset of the 20 News-
groups dataset in which each document has a single correct
class, and Reuters-21578, which requires multi-label classi-
fication. Our experiments show that besides desirable the-
oretical properties, the proposed model has clear advan-
tages in classification accuracy over the non-hierarchical
models and the hierarchical shrinkage model, in particular
in cases where only a small number of training documents
per class is available.

2. HHERARCHICAL MIXTURE MODEL
In this section, we compare our model to that of [14] and [4]
and then describe the assumptions and the technical de-
tails of the parameter estimation procedure of the Hierar-
chical Mixture Model which is the focus of this paper.

2.1 Comparison to the Hierarchical Shrink-
age and Cluger Abdraction Modes

Although our model has similarities to the Hierarchical
Shrinkage Model [14] and the Cluster Abstraction Model [4],
there are significant differences. As in the Hierarchical
Shrinkage model, we assume that a predefined hierarchy
of text categories is given. Based on this hierarchy, we will
define a generative probability model for documents. The
model parameters are learned through an Expectation-
Maximization procedure which aims at maximizing the
model likelihood on training data. Once the model pa-
rameters have been estimated, new documents are classi-
fied following Bayes’ rule by computing (and maximizing)
posterior probabilities over categories, P(c|d), given the
words of the document as observations.

The major difference between our model and [14] is that
the hierarchy of topics is not only used to provide better
estimates for class-conditional term probabilities, P(wl|c)
for word w and class c, for data-sparse classes, but also to
obtain a differentiation of words in the hierarchy according
to their level of generality/specificity. In the hierarchical
shrinkage model, interior nodes in the hierarchy represent
coarser views of the data which are obtained by a simple
pooling scheme of term counts. In the hierarchical mix-
ture model, the inner nodes take a more accentuated role
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and represent abstraction levels with their corresponding
specific vocabulary. It is assumed that each word in a doc-
ument is generated from some node (abstraction level) on
the path from the document class’ (terminal) node to the
root of the hierarchy. Formally, this results in mixture
models along each path through the hierarchy, where term
probabilities at inner nodes are effectively shared among
multiple terminal nodes. Since the abstraction level from
which each word has been generated is unknown, it is mod-
eled as an unobserved, hidden variable. The abstraction
levels of words give more intuitive theoretical model of the
way words are selected to form documents on a particular
topic. In addition, empirical results show practical advan-
tages of this model for obtaining class-conditional term
probabilities  P(wlc) for the purposes of text classification.

Our model also draws from the Cluster Abstraction Model
(CAM) [4], a method for creating a hierarchical model from
unlabeled data. In [4], the goal is the unsupervised learn-
ing of the hierarchical model. An annealed EM procedure
is used for learning the hierarchy, and the phase transi-
tions are used to identify the levels in the tree. In both

CAM and our model, the hierarchy represents hierarchi-
cal relations between document groups. The generative
models for documents are very similar. However, in con-
trast to CAM, our model is given a predefined hierarchy
and labeled training data. The labeled data is used for
estimating the model parameters using an EM procedure,
where the structure of the model is given. The goal of our

model is to categorize new unlabeled data. This is done
by computing the posterior, P(c}d), without the need for
EM or folding-in. We use the generative model to obtain
better class conditional word distributions P(wl|c) using a
mixture of abstraction levels and thus achieving selective
shrinkage as discussed earlier.

2.2 Hierarchical Mixture Model Description
The generative Hierarchical Mixture Model is as follows:
The training data is a collection of documents. Each doc-
ument is a sequence of words d = (w1, wa2... wyay), Where
Z(d) denotes the document length. The document is as-
sumed to be generated from repeated independent random
trials, where the number of trials corresponds to the length
of the document (and hence is fixed). Each trial can be
decomposed into a two-step generative process.

e Select an abstraction level v in the hierarchy with
probability P(v|c(d)).

e Select a word w conditioned on v with probability
P(w|v).

Therefore, the probability of generating word w in a doc-
ument d given that d belongs to class ¢ is given by:

P(ule) = Y_ P(vle)P(ulv),

vtc

1)



where the notation 1 refers to all inner nodes v above
the terminal class node c, ¢ = class(d). The joint class-
conditional probability of the words in a document is thus
given by:
Plwi, wa,.. wyagle) = ] Y PEle)Pw;lv) ( 2 )

J=1..1(d) vte

The likelihood with respect to the overall document col-
lection is then:

H P(wi, wa,. .., wya,)|c(di)) =

i=l...n

= 11 II X PGl@)Pwlv)

i=1l..n j=1...1(d; ) vte(d;)

(®)
(4)

The model parameters are the node-conditional word dis-
tributions P(wlv) and the classconditional distributions
of abstraction levels P(v|c). The probabilities P(v|c) are
set to zero for any node not on the path to the root from
the node corresponding to c. In the spirit of model in-
terpolation, we use separate held-out data for fitting the
mixture weights P(wvlc). Moreover, tempered EM [5, 6], a
generalization of EM, was used for parameter estimation.
This has proven to be advantageous in practice, but we
are not including detailed experimentation on the value of
tempering. It has been shown before [5], that the gains of
tempering can be significant. The Expectation Maximiza-
tion procedure repeats the following E-step and M-step.

E-step

(Expectation  step):

o Pw)P(le)
W) = § Pl ) Pe) ®)

These posterior probabilities have to be computed for each
valid (c, v) pair and for each word w; that occurs in docu-
ments belonging to class c. In the worst case this amounts
to K x M x r posterior calculations, where K is the num-
ber of classes, M is the size of the vocabulary and r is the
maximal depth of the tree.

P(vle,

M-step  (Maximization  step):

zciv ’IljcP(’l)lc, ’lUj)
Ew’EW zcl’u njcp(vlc1 w’)’
where m;c are the cumulative counts nj, = Ed,-,c(d,-)_:c Nij

yNi; denotes the standard term-frequencies and W is the
set of all words in the vocabulary.

P(uylo) = (6

The second part of the M-step deals with the mixing pro-
portions which are estimated from held-out data with cu-
mulative counts

P(U'C) _ EWjEW n_’icP(Ulcy wj)
- EvITC EWjGW ’n;-cP(’U'IC, wj) y

M

The M-step thus consists of two parts
conditional word  distributions P (w|v),

updating the node-
and updating the
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mixing proportions P(w|c) over abstraction levels for each
terminal node (class «¢).

As mentioned before, the mixture weights, P(v|c), were
set in a separate EM procedure which maximizes the like-
lihood of a separate held-out set. In practice, we did not
use additional held-out documents for estimation of these
parameters but used the same training set in a leave-one-
out fashion.

The major benefit of this parameterization according to
the two-step generative model is that words can move
vertically, i.e., more general words become more proba-
ble at higher nodes of the tree, and class-specific words
that discriminate well between classes become more prob-
able at the leaf nodes. The Hierarchical Shrinkage model
[14] fits only the interpolation weights X, which are similar
to the mixture weights P(w|c) here, but treats the node-
conditional term distributions at inner nodes P(wlv) as
fixed. Consequently, the term distributions for inner nodes
do not change and are always formed by pooling data from
their children. Fitting the word-distributions at each node
through EM makes it possible to perform selective shrink-
age, i.e. more general words come from upper levels and
very specialized ones come from the leaf nodes. Empiri-
cally we found that doing more than two to five iterations
of EM for reestimating the node-conditional word distribu-
tions was unnecessary and lead to overfitting. Therefore
the Hierarchical Mixture model does not require signifi-
cant computational resources beyond the requirements of
the simpler Hierarchical Shrinkage model.

This model can be used for classification in the following
way: For single category assignments, the class with the
highest posterior probability given the words of the docu-
ment, P(c|d), is chosen. The posterior P(c}d) is computed
by Bayes rule :

P(c) Hj:l...l(d) P(wj|c)

P(cld) = ch P(c) Hj:l...l(d) P(w;[c)

®

P(wjlc) = ) P(v|c)P(wjlv) 9)

vte

For the case of overlapping categories we suggest to set a
threshold for each class based on the likelihood ratio statis-
tic log P(d|c)=log P(d), where P(d) = Hj:l...l(d) P(w;)
with pooled unigram probabilities P(w;). The threshold is
optimized using held-out data. Intuitively, this measures
how much more likely a document is under the hypothesis
that it belongs to a specific class ¢ compared to the null
hypothesis of not belonging to any class. We use the Hi-
erarchical Shrinkage Model [14] for multi-category classifi-
cation in exactly the same way after obtaining log P(d|c)
and log P(d) according to that model.

3. EXPERIMENTS
3.1 Corpora



We evaluated the performance of the Hierarchical Mixture
model and compared it to the performance of the Naive
Bayes classifier, Probabilistic Latent Semantic Analysis,
Hierarchical Shrinkage, k-NN, and SVMs on two corpora.

3.1.1 20 Newsgroups

The Newsgroups data set {10] was collected by Ken Lang
and contains approximately 20,000 newsgroup postings dis-
tributed among 20 different newsgroups. Each newsgroup
consists of about 1,000 postings. We experimented with
only 15 of the newsgroups, to make our results comparable
to the results in [14]. These are not “easier” newsgroups;
some of the newsgroups are very similar in subject matter
and around 4% of the texts are even cross-posted. The
15 newsgroups fall naturally into 5 upper level categories.
Table 1 shows the 15 newsgroups and their organization in
upper level topics. The hierarchical models were trained
using this hierarchy - root plus five nodes at depth one
plus fifteen nodes (leaves) at depth two. We included the
subject header in the text of the documents. The docu-
ments were tokenized and all letters downcased. We did
not use word stemming. The word types that occurred
less than 3 times in the overall document collection were
discarded. We also used a stop word list to remove some
of the most frequently occurring word types. To examine
the performance of the methods when trained with vary-
ing numbers of training exemplars, equal-sized subsets of
documents from each newsgroup were created for training
and validation, ranging in size from 7 to 677 documents.
For the methods that did not require separate held out
validation exemplars, the training and validation data was
combined and used to train the method. A separate set of
exemplars were used for testing.

Table 1: Topic Hierarchy for 15 Newsgroups

COMPUTERS
comp.os.ms-windows.misc
comp.sys.mac.hardware

comp.graphics
comp.sys.ibm.pc.hardware
comp.windows.x

MOTORS
rec.autos rec.motorcycles
POLITICS
Talk:politics.guns talk.politics.mideast
talk.politics.misc
RELIGION

alt.atheism soc.refigion.christian
talk.religion.misc

SPORTS
rec.sport.baseball TeC.SpOrthockey I

3.1.2 Reuters

We used the ModApte split of the Reuters21758 oorpus,
with the madification used by Yang and Liu[18] suh that
only documents assigned to categories that occur in both

‘The Reuters-21578 data set was obtained at
http://www.research.att.com lewis/reuters21578.html
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Table 2: Mid-level

Clusters of Reuters Categories

COMMODITIES

harTey carcass castor-ol
cocoa aooonut coconut-oil
coffee copra-cake corn
cotton cotton-oil grain

groundnut-oil hog
I-cattle lin-oil livestock
lumber meal-feed oat
oilseed orange palm-oil
palmkernel pet-them potato
rape-oil rapeseed rice
rubber rye ship
sorghum soy-meal soy-oil
soybean sugar sun-meal
sun-oil sunseed tea
veg-0il wheat

FINANCIAC
acq bop cpi
cpu dfl dir
dmk earn gnp
housing income instal-debt
interest ipi jobs
lei money-fx
nkr nzdlr rand
reserves retail trade
wpi yen

METALS
alum gord
iron-steel lead nickel
palladium platinum silver
strategic-metal tin zinc
ENERGY

crude fuel gas
heat jet naphtha
nat-gas propane

the training and test sets are included. In this set, there
. a training set of 7769 documents, and
a set of 3019 documents. We downcased but did not

logic behind the groupings may not be appropriate for our
shrinkage application. For example, 4 (Subject, Economic
Indicator, Currency, Corporate) of the 8 categories are re-
lated t© various aspects of finance. We chose instead to
create a different hierarchy for use in shrinkage. We rep-
resented each category as the sum of the term counts for
all documents assigned to that category. Using agglomer-
ative clustering, four major categories were identified and
used as an intrmediate layer in the category hierarchy.
The four categories roughly corresponded t©  commodities,
financial, metals, and energy, and there were 50, 24, 9 and
7 topics assigned to each, respectively. These categories
seem o oorrespond well with those identified by Weigend
et al. [17]. The topics clusters are shoan in Table 2. Docu-



ments may be assigned to multiple categories at the lowest
level of the hierarchy.

3.1.3 Dimensionality Reduction

To reduce the dimensionality of the document term fre-
quency vectors for some of our experiments, we applied
the now-standard technique of retaining only the N; terms
that are deemed individually most informative about the
document class label, where Nj € {lIk, 2k, 10k}. Specifi-
cally, for each term ¢ in the overall vocabulary, we esti-
mated the average reduction in class uncertainty achieved
by knowing whether or not w occurs in a document (de-
noted w € d) as

R(w) = H(c) = H(c| knowledge of whether w € d) =

=) P(o)log P(o)
ceC
+Pr(w¢d) > Plc| w¢ d)log Plc| w ¢ d)
c€C
+Pr(we d)ZP(c | w € d)log P(c | w € d)
c€eC
(10)
where all probabilities in (10) were estimated from the

training set's category-term cooccurrence matrix. Doing S0
avoids any inconsistencies in the estimates of the marginal
and conditional probabilities that might otherwise arise be-
cause of the presence of multiple category labels for each
document.

3.2 Classfiers
Here we briefly outline the other classification methods
used in the evaluation.

3.2. I Naive Bayes

This model has been discussed extensively in the literature
for more than forty years, cf. [11,15] for an overview. In
our experiments, we have used Naive Bayes with a muiti-
nomial sampling model (cf. [13, 16]).

The Naive Bayes method views documents as bags of words.
At its heart is a crucial conditional independence assump-
tion, namely that the probability of a word occurrence is
independent of all other word occurrences in the document
(the context), given the knowledge about the document's
class membership. The class conditional document proba-
bility thus has the following factorial form:

Plws, ws, suml@) = ] Plusle(d)

J:l...m

(1)

where (w1, we, . . . ,wm) iS the sequence of words in the
document and c(d) is the class to which d belongs.

A new document is assigned to the class which has max-

imum posterior probability given the words of the docu-
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ment:

e(d")

7wm)

(12)
. Wplck)plcx) (13)

The class-conditional word distributions P(wl|ck) are esti-
mated based on relative frequencies extracted from train-
ing data. In our implementation we paid special attention
to the probability assigned to zero frequency events. In-
stead of adding one to the counts of all events, a technique
known as Laplace smoothing, we applied Lidstone smooth-
ing [12] with parameters estimated from held-out data. In
Lidstone smoothing, we add some usually smaller than one
parameter )\ to each count from training data.

arg max P(cklwi,we,. -
k=1...K

= arg ’nkaﬁfzg““’ wa,. .

We used a variation of this model for multi-label catego-
rization. If a document had multiple labels in the training
set, equal fractions of its word counts were added into the
pooled word counts of each of the categories. Similarly
to the hierarchical mixture model, we then set a thresh-
old for each class based on the likelihood ratio statistic
log P(d|c) — log P(d), where P(d) = Il .. i) P(w;)-The
thresholds were optimized on held-out data. We learned
only one probability model for all categories, as opposed
to having a separate binary classifier for each category.

322 Probabilistic Latent Semantic Analysis

This approach was proposed in [5]. It defines a genera-
tive data model. Here, a document is not generated by
the single class to which the document belongs, but by a
document-specific  mixture of topics.

P(w, d) = P(d)P(w|d)
= P(d) Y P(w|ck)P(ckld)

k=1...K

(14)

The word-document co-occurrence events are assumed to
be independent. Each occurrence of a word in a document
is generated by an unobserved topic c. If we know the
document  specific  distribution over classes P(c|d), we can
classify the document to the most likely class. Given a set
of training documents with corresponding classes, we can
estimate topic-specific word distributions and document-
specific topic distributions. We used EM to find the max-
imum  likelihood parameters from training data. Given a
new test document, we can classify it by first doing sev-
eral EM iterations to estimate its document specific topic
distribution. We estimated the model parameters by first
initializing the topic specific word distributions by the rela-
tive frequency estimates from training data smoothed with
Lidstone smoothing with held-out estimation as above.
The document-specific topic  distributions were initialized
as P(c|ld) = 1 if d had a class ¢ and close to O otherwise.

3.2.3 Hierarchical Shrinkage

We tried to replicate the Hierarchical Shrinkage model for
text classification proposed in [14] as accurately as pos-
sible. The key idea in this model is to use a hierarchy



of classes and to interpolate the parameters for the class-
conditional term distributions of a Naive Bayes classifier
with more reliable estimates from data-rich parents in the
hierarchy. This form of shrinkage -effectively trades in some
estimation bias for a reduction of in the estimator's vari-
ance: data that is known not to belong to a particular
class c¢ is utilized in order to estimate the class-conditional
term probabilities P(w|c). As was shown in [14], introduc-
ing this bhias pays-off, in particular in the regime of very
sparse data. Having the hierarchy of topics, we can com-
pute  maximum likelihood estimates for node-conditional
word distributions at each node. The documents that be-
long to a class (leaf node in the tree) are also assumed to
belong to each of the nodes along the path to the root.
Thus the root contains all documents in the training data
and its estimates are most reliable, but they are too class-
unspecific. A separate node above the root is added as
well, which holds the uniform distributions over words.
The new estimates for class-conditional word distributions
are linear combinations of the MLE estimates for the word-
conditional distributions on the path from the leaf of this
class to the root.

The interpolation parameters ) are obtained through max-
imization of the likelihood on held-out data. This model
has been shown to improve the classification accuracy com-
pared to Naive Bayes on three data sets especially on
classes for which little training data was available [14].

3.2.4 k-NN

The k-nearest neighbor (k-NN) classifier is one of the top-
performing classifiers for the categorization task [18]. For
a given test document, the system identifies the k nearest
neighbors. Based on the categories assigned to these neigh-
bors, a score for each category is computed and the doc-
ument is classified. We implemented kNN based on the
work given in [18]. In their work, binary category assign-
ments are made using a learned category-specific thresh-
old. In particular, for each test document, =, a score indi-
cating whether a document belongs to category ¢; is com-
puted as:

y(w: )= Z sim(a:, dl) - bj

di€ENN;

(15)

where d; represents a training document, and kNN; rep-
resents the subset of training documents in the k near-
est neighbors that are labeled as class ¢;. The similar-
ity between test document g and training documentd;,
sim(z,d;), was computed using a TF-IDF weighted co-
sine distance. The category-specific threshold, &; , is set to
the threshold that yields the best J; score on a validation
set of documents. F; was calculated as Fl( = 112
where precision p and recall » are equally welghted In" our
work, rather than using a separate validation set, we em-
ployed leave-one-out and renormalized to set the category-
specific thresholds. In the multi-category task, a document
is assigned to category ¢; if the score y{z, ¢;) computed in
Equation 15 is positive. In the single category task, the

110

category with the largest value of y(z, c¢;) is selected. For
the experiments with the Reuters dataset, we tested the
method using the full term vector and term vectors con-
taining the Ik, 2k, and 10k most informative terms, as
described in Section 3.1.3. The vectors with 2k terms had
the best microF1 performance, so those results are what
we report in Section 4.

3.25  Support Vector Machines

Support-vector machine classifiers have distinguished them-
selves in recent years as a well-performing, computation-
ally attractive, and theoretically rich method for text clas-
sification [3, 8]. As a representative and conveniently avail-
able implementation, we selected version 350 of Joachims'
SVMLight package [8] to generate results against which to
compare. To classify documents into multiple categories,
a separate SVM classifier was used for each class. Except
for the specification of misclassification costs, the default
training parameters were used, including a linear kernel
function. Unequal misclassification costs were specified in
order to obtain a point on the ROC curve (which com-
pares the true positive vs false positive rates) that allowed
for better comparison with the other methods. Specifi-
cally, false negatives were weighted ten times higher than
false positives during the training process.

In addition to the dimensionality reduction procedure de-
scribed in Section 3.1.3, we also applied the following ver-
sion of the tfidf term-weighting scheme for each term in
each  document:

Ny
df

where Ny is the number of documents, ¢f is the number
of times the term occurred in the document, and df is the
number of documents in which the term occurred. These
weights were “cosine normalized” to have unit magnitude
for each document.

weight = (1 + log t ) log =2

4. RESULTS AND DISCUSSION

Figure 1 shows the accuracy of classification on the 15
newsgroups for different sizes of data sets. The horizontal
axis shows the total number of documents per class used in
training, which includes training and held-out data. These
results were obtained through lo-fold cross-validation, that
is, the total available documents were separated into train
and test splits in 10 different ways and accuracy results for
the 10 splits were averaged (arithmetic mean). The verti-
cal axis is the averaged accuracy. The figure displays the
learning curves for Naive Bayes, Probabilistic Latent Se-
mantic  Analysis (PLSA), the Hierarchical Shrinkage, the
Hierarchical Mixture model, and k-NN. One interesting
observation is that PLSA performs very similarly to the
Hierarchical Shrinkage model for all data set sizes. Naive
Bayes is significantly weaker than the other three for small
data sets (10-100) and all models have similar performance
once the whole labeled document set is used (size 667).Fig-
ure 1 shows the learning curves for data size per class up



to about 67. The accuracy figures for all data sizes that

we experimented with can be seen in Table 3.

[ 10 20 30 L] 5 L
Number of training + verification samples

Figure 1: Performance curves for the news-
groups dataset for Naive Bayes, PLSA, Hierarchi-
cal Shrinkage and Hierarchical Mixture models.

Table 3: Performance Summary for Newsgroups
Method 7 14 20 34 48 67 133 667
NB 467 566 .607 .688 .739 .749 307 .8%4
PLSA  .527 619 663 .725 764 .764 .813 .886
HS 533 .618 654 727 .754 .763 .814 .888
kNN 511 .627 .650 .706 762 .78( -824 .879
HM .585 .631 .665 .728 .771 .773 .814 .888
Table 4: Performance Summary for Reuters
Method miP miR miF1 maP maR maF1 acc
HM 872 771 818 .815 .408 .459 .9953
SsvM 881 .868 .875 .837 .524 .hb4 .9966
kNN  .790 .813 .802 759 .503 .491 .9938
HS 849 780 .813 .765 .392 .432 .9950
NB 825 713 .765 .763 .283 .337 .9940

When training data is extremely sparse (7 documents in
Figure 1 for training and validation per class), the Hierar-
chical Mixture model has 11% error reduction compared
to the second-best performing model (Hierarchical Shrink-
age), and 22% error reduction as compared to Naive Bayes.
It can be noted in Table 3 that the advantage of the Hi-
erarchical Mixture model is less striking as training data
increases, and all methods perform similarly when there is
a sizable amount of training data.
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Figure 2: Performance difference between HS and
HM for Reuters categories with a small number of
training documents.

For reference, Table 4 shows the categorization perfor-
mance results for the HM, SVM, k-NN, HS, and NB clas-
sifiers on the Reuters data when all of the available la-
beled data is used for training. The performance was mea-
sured as micro-averaged precision (miP), micro-averaged
recall (miR), micro-averaged F1(miF1), macro-averaged
precision (maP) , macro-averaged recall (maR) , and macro-
averaged F1 (maF1)[12]. The SVM technique performs
well; in fact better than that reported by [18], who re-
ported miF1= 8599 and maF1=.5251. More work is re-
quired to assess how its performance responds when the
amount of available data becomes severely limited. Our
results for kNN and NB are somewhat lower than that pub-
lished by [18] (miF1/maF1 of .8567/.5242 and .7956/.3886
for kNN and NB, respectively). We hypothesize that the
differences in our results are due to differences in data
preparation, although we did not find details on data prepa-
ration in [18]. For example, we did not perform stemming,
the stop word lists are probably different, and different
term weighting schemes may have been used.

We also examined the difference in performance between
the Hierarchical Shrinkage and the Hierarchical Mixture
models on categories with a small number of positive ex-
amples. This is shown in Figure 2 for the Reuters cate-
gories, which have varying numbers of training documents.
The horizontal axis is number of training documents in
the category and the vertical axis is macro-averaged F1
on categories with this number of training samples. For
example, at 10 on the horizontal axis, the macro-averaged
F1 of the two classifiers on all categories with less than or
equal to 10 training documents is shown. At 20 on the
horizontal axis, the macro-average F1 on categories with
more than 10 and less than 20 training documents, etc. is
shown. Even though the Hierarchical Shrinkage model is
using the topic hierarchy to provide better estimates for
categories with a small number of labeled documents, the



Hierarchical Mixture model achieves better results by also
fitting the node-conditional word distributions and differ-
entiating better among class-specific and general terms.

5. SUMMARY

We have presented a method for text categorization that
effectively makes use of hierarchical topic structure to in-
crease performance when the amount of labeled data is lim-
ited. This is achieved through the use of selective shrinkage
to provide better estimates of the class-conditional word
distributions, which was found to be particularly effective
when the amount of labeled data is small, e.g., around
7 documents per category. We evaluated the method on
single category and multi-category categorization tasks on
the Newsgroups and Reuters-21578 datasets, respectively,
comparing the method against Naive Bayes, hierarchical
shrinkage, PLSA, kNN, and SVM models. For the New-
groups experiments, we varied the amount of labeled doc-
uments used for training. When a large number of labeled
documents was available, all methods were found to per-
form quite well. In our Newsgroups experiments involv-
ing the practically important situation of severely limited
labeled data, the hierarchical mixture model appears to
offer distinct performance advantages over the other tech-
niques considered. For the experiments with the Reuters
corpus, we have presented a method for multi-category
classification and showed that it can outperform Hierar-
chical Shrinkage and Naive Bayes.
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