
JMLR: Workshop and Conference Proceedings 2012 11th International Conference on Grammatical Inference

Bootstrapping Dependency Grammar Inducers
from Incomplete Sentence Fragments via Austere Models

Valentin I. Spitkovsky valentin@cs.stanford.edu

Computer Science Department, Stanford University and Google Research, Google Inc.

Hiyan Alshawi hiyan@google.com

Google Research, Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA, 94043

Daniel Jurafsky jurafsky@stanford.edu

Departments of Linguistics and Computer Science, Stanford University, Stanford, CA, 94305

Editors: Jeffrey Heinz, Colin de la Higuera, and Tim Oates

Abstract

Modern grammar induction systems often employ curriculum learning strategies that begin
by training on a subset of all available input that is considered simpler than the full data.
Traditionally, filtering has been at granularities of whole input units, e.g., discarding entire
sentences with too many words or punctuation marks. We propose instead viewing inter-
punctuation fragments as atoms, initially, thus making some simple phrases and clauses of
complex sentences available to training sooner. Splitting input text at punctuation in this
way improved our state-of-the-art grammar induction pipeline. We observe that resulting
partial data, i.e., mostly incomplete sentence fragments, can be analyzed using reduced
parsing models which, we show, can be easier to bootstrap than more nuanced grammars.
Starting with a new, bare dependency-and-boundary model (DBM-0), our grammar inducer
attained 61.2% directed dependency accuracy on Section 23 (all sentences) of the Wall
Street Journal corpus: more than 2% higher than previous published results for this task.

Keywords: Dependency Grammar Induction; Unsupervised Dependency Parsing;
Curriculum Learning; Partial EM; Punctuation; Unsupervised Structure Learning.

1. Introduction

“Starting small” strategies (Elman, 1993) that gradually increase complexities of training
models (Lari and Young, 1990; Brown et al., 1993; Frank, 2000; Gimpel and Smith, 2011)
and/or input data (Brent and Siskind, 2001; Bengio et al., 2009; Krueger and Dayan, 2009;
Tu and Honavar, 2011) have long been known to aid various aspects of language learning.
In dependency grammar induction, pre-training on sentences up to length 15 before moving
on to full data can be particularly effective (Spitkovsky et al., 2010a,b, 2011a,b). Focusing
on short inputs first yields many benefits: faster training, better chances of guessing larger
fractions of correct parse trees, and a preference for more local structures, to name a few.
But there are also drawbacks: notably, unwanted biases, since many short sentences are not
representative, and data sparsity, since most typical complete sentences can be quite long.

We propose starting with short inter-punctuation fragments of sentences, rather than
with small whole inputs exclusively. Splitting text on punctuation allows more and simpler
word sequences to be incorporated earlier in training, alleviating data sparsity and complex-

c© 2012 V.I. Spitkovsky, H. Alshawi & D. Jurafsky.

ity concerns. Many of the resulting fragments will be phrases and clauses, since punctuation
correlates with constituent boundaries (Ponvert et al., 2010, 2011; Spitkovsky et al., 2011a),
and may not fully exhibit sentence structure. Nevertheless, we can accommodate these and
other unrepresentative short inputs using our dependency-and-boundary models (DBMs),
which distinguish complete sentences from incomplete fragments (Spitkovsky et al., 2012).

DBMs consist of overlapping grammars that share all information about head-dependent
interactions, while modeling sentence root propensities and head word fertilities separately,
for different types of input. Consequently, they can glean generalizable insights about local
substructures from incomplete fragments without allowing their unrepresentative lengths
and root word distributions to corrupt grammars of complete sentences. In addition, chop-
ping up data plays into other strengths of DBMs — which learn from phrase boundaries,
such as the first and last words of sentences — by increasing the number of visible edges.

Figure 1: Three types of input: (a) fragments lacking sentence-final punctuation are always
considered incomplete; (b) sentences with trailing but no internal punctuation
are considered complete though unsplittable; and (c) text that can be split on
punctuation yields several smaller incomplete fragments, e.g., Bach’s, Air and
followed . In modeling stopping decisions, Bach’s is still considered left-complete
— and followed right-complete — since the original input sentence was complete.

Odds and Ends
(a) An incomplete fragment.

“It happens.”
(b) A complete sentence that can-

not be split on punctuation.

Bach’s “Air” followed.
(c) A complete sentence that can

be split into three fragments.

2. Methodology

All of our experiments make use of DBMs, which are head-outward (Alshawi, 1996) class-
based models, to generate projective dependency parse trees for Penn English Treebank’s
Wall Street Journal (WSJ) portion (Marcus et al., 1993). Instead of gold parts-of-speech,
we use context-sensitive unsupervised tags,1 obtained by relaxing a hard clustering produced
by Clark’s (2003) algorithm using an HMM (Goldberg et al., 2008). As in our original set-
up without gold tags (Spitkovsky et al., 2011b), training is split into two stages of Viterbi
EM (Spitkovsky et al., 2010b): first on shorter inputs (15 or fewer tokens), then on most
sentences (up to length 45). Evaluation is against the reference parse trees of Section 23.2

Our baseline system learns DBM-2 in Stage I and DBM-3 (with punctuation-induced
constraints) in Stage II, starting from uniform punctuation-crossing attachment probabili-
ties (see Appendix A for details of DBMs). Smoothing and termination of both stages are
as in Stage I of the original system. This strong baseline achieves 59.7% directed depen-
dency accuracy — somewhat higher than our previous state-of-the-art result (59.1%, see
also Table 1). In all experiments we will only make changes to Stage I’s training, initialized
from the same exact trees as in the baselines and affecting Stage II only via its initial trees.

1. http://nlp.stanford.edu/pubs/goldtags-data.tar.bz2:untagger.model
2. Unlabeled dependencies are converted from labeled constituents using deterministic “head-percolation”

rules (Collins, 1999) — after discarding punctuation marks, tokens that are not pronounced where they
appear (i.e., having gold part-of-speech tags $ and #) and any empty nodes — as is standard practice.

http://nlp.stanford.edu/pubs/goldtags-data.tar.bz2
untagger.model

Table 1: Directed dependency and exact tree accuracies (DDA / TA) for our baseline,
experiments with split data, and previous state-of-the-art on Section 23 of WSJ.

Stage I Stage II DDA TA
Baseline (§2) DBM-2 constrained DBM-3 59.7 3.4

Experiment #1 (§3) split DBM-2 constrained DBM-3 60.2 3.5
Experiment #2 (§4) split DBM-i constrained DBM-3 60.5 4.9
Experiment #3 (§5) split DBM-0 constrained DBM-3 61.2 5.0

(Spitkovsky et al., 2011b, §5.2) constrained DMV constrained L-DMV 59.1 —

Table 2: Feature-sets parametrizing dependency-and-boundary models three, two, i and
zero: if comp is false, then so are comproot and both of compdir; otherwise, comproot is
true for unsplit inputs, compdir for prefixes (if dir = L) and suffixes (when dir = R).

Model PATTACH (root-head) PATTACH (head-dependent) PSTOP (adjacent/not)

DBM-3 (Appendix A) (⋄, L, cr, comproot) (ch, dir, cd, cross) (compdir, ce, dir, adj)
DBM-2 (§3, Appendix A) (⋄, L, cr, comproot) (ch, dir, cd) (compdir, ce, dir, adj)

DBM-i (§4, Appendix B) (⋄, L, cr, comproot) (ch, dir, cd) (compdir, ce, dir)
DBM-0 (§5, Appendix B) (⋄, L, cr) iff comproot (ch, dir, cd) (compdir, ce, dir)

3. Experiment #1 (DBM-2): Learning from Fragmented Data

In our experience (Spitkovsky et al., 2011a), punctuation can be viewed as implicit partial
bracketing constraints (Pereira and Schabes, 1992): assuming that some (head) word from
each inter-punctuation fragment derives the entire fragment is a useful approximation in
the unsupervised setting. With this restriction, splitting text at punctuation is equivalent
to learning partial parse forests — partial because longer fragments are left unparsed, and
forests because even the parsed fragments are left unconnected (Moore et al., 1995). We
allow grammar inducers to focus on modeling lower-level substructures first,3 before forcing
them to learn how these pieces may fit together. Deferring decisions associated with poten-
tially long-distance inter-fragment relations and dependency arcs from longer fragments to a
later training stage is thus a variation on the “easy-first” strategy (Goldberg and Elhadad,
2010), which is a fast and powerful heuristic from the supervised dependency parsing setting.

We bootstrapped DBM-2 using snippets of text obtained by slicing up all input sen-
tences at punctuation. Splitting data increased the number of training tokens from 163,715
to 709,215 (and effective short training inputs from 15,922 to 34,856). Ordinarily, tree gen-
eration would be conditioned on an exogenous sentence-completeness status (comp), using
presence of sentence-final punctuation as a binary proxy. We refined this notion, accounting
for new kinds of fragments: (i) for the purposes of modeling roots, only unsplit sentences
could remain complete; as for stopping decisions, (ii) leftmost fragments (prefixes of com-
plete original sentences) are left-complete; and, analogously, (iii) rightmost fragments (suf-
fixes) retain their status vis-à-vis right stopping decisions (see Figure 1). With this set-up,
performance improved from 59.7 to 60.2% (from 3.4 to 3.5% for exact trees — see Table 1).

Next, we will show how to make better use of the additional fragmented training data.

3. About which our loose and sprawl punctuation-induced constraints agree (Spitkovsky et al., 2011a, §2.2).

4. Experiment #2 (DBM-i): Learning with a Coarse Model

In modeling head word fertilities, DBMs distinguish between the adjacent case (adj = T,
deciding whether or not to have any children in a given direction, dir ∈ {L, R}) and non-
adjacent cases (adj = F, whether to cease spawning additional daughters — see PSTOP in
Table 2). This level of detail can be wasteful for short fragments, however, since non-
adjacency will be exceedingly rare there: most words will not have many children. Therefore,
we can reduce the model by eliding adjacency. On the down side, this leads to some loss of
expressive power; but on the up side, pooled information about phrase edges could flow more
easily inwards from input boundaries, since it will not be quite so needlessly subcategorized.

We implemented DBM-i by conditioning all stopping decisions only on the direction in
which a head word is growing, the input’s completeness status in that direction and the
identity of the head’s farthest descendant on that side (the head word itself, in the adjacent
case — see Table 2 and Appendix B). With this smaller initial model, directed dependency
accuracy on the test set improved only slightly, from 60.2 to 60.5%; however, performance
at the granularities of whole trees increased dramatically, from 3.5 to 4.9% (see Table 1).

5. Experiment #3 (DBM-0): Learning with an Ablated Model

DBM-i maintains separate root distributions for complete and incomplete sentences (see
PATTACH for ⋄ in Table 2), which can isolate verb and modal types heading typical sentences
from the various noun types deriving captions, headlines, titles and other fragments that
tend to be common in news-style data. Heads of inter-punctuation fragments are less homo-
geneous than actual sentence roots, however. Therefore, we can simplify the learning task
by approximating what would be a high-entropy distribution with a uniform multinomial,
which is equivalent to updating DBM-i via a “partial” EM variant (Neal and Hinton, 1999).

We implemented DBM-0 by modifying DBM-i to hardwire the root probabilities as one
over the number of word classes (1/200, in our case), for all incomplete inputs. With this
more compact, asymmetric model, directed dependency accuracy improved substantially,
from 60.5 to 61.2% (though only slightly for exact trees, from 4.9 to 5.0% — see Table 1).

6. Conclusion

We presented an effective divide-and-conquer strategy for bootstrapping grammar inducers.
Our procedure is simple and efficient, achieving state-of-the-art results on a standard En-
glish dependency grammar induction task by simultaneously scaffolding on both model and
data complexity, using a greatly simplified dependency-and-boundary model with inter-
punctuation fragments of sentences. Future work could explore inducing structure from
sentence prefixes and suffixes — or even bootstrapping from intermediate n-grams, perhaps
via novel parsing models that may be better equipped for handling distituent fragments.

Acknowledgments

We thank the anonymous reviewers and conference organizers for their help and suggestions.
Funded, in part, by Defense Advanced Research Projects Agency (DARPA) Machine Reading

Program, under Air Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0181.

References

H. Alshawi. Head automata for speech translation. In ICSLP, 1996.
Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.
M. R. Brent and J. M. Siskind. The role of exposure to isolated words in early vocabulary develop-

ment. Cognition, 81, 2001.
P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and R. L. Mercer. The mathematics of statistical

machine translation: Parameter estimation. Computational Linguistics, 19, 1993.
A. Clark. Combining distributional and morphological information for part of speech induction. In

EACL, 2003.
M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, University

of Pennsylvania, 1999.
J. L. Elman. Learning and development in neural networks: The importance of starting small.

Cognition, 48, 1993.
R. Frank. From regular to context-free to mildly context-sensitive tree rewriting systems: The path

of child language acquisition. In A. Abeillé and O. Rambow, editors, Tree Adjoining Grammars:

Formalisms, Linguistic Analysis and Processing. CSLI Publications, 2000.
K. Gimpel and N. A. Smith. Concavity and initialization for unsupervised dependency grammar

induction. Technical report, CMU, 2011.
Y. Goldberg and M. Elhadad. An efficient algorithm for easy-first non-directional dependency

parsing. In NAACL-HLT, 2010.
Y. Goldberg, M. Adler, and M. Elhadad. EM can find pretty good HMM POS-taggers (when given

a good start). In HLT-ACL, 2008.
K. A. Krueger and P. Dayan. Flexible shaping: How learning in small steps helps. Cognition, 110,

2009.
K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-outside

algorithm. Computer Speech and Language, 4, 1990.
M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of English:

The Penn Treebank. Computational Linguistics, 19, 1993.
R. Moore, D. Appelt, J. Dowding, J. M. Gawron, and D. Moran. Combining linguistic and statistical

knowledge sources in natural-language processing for ATIS. In SLST, 1995.
R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and

other variants. In M. I. Jordan, editor, Learning in Graphical Models. MIT Press, 1999.
F. Pereira and Y. Schabes. Inside-outside reestimation from partially bracketed corpora. In ACL,

1992.
E. Ponvert, J. Baldridge, and K. Erk. Simple unsupervised identification of low-level constituents.

In ICSC, 2010.
E. Ponvert, J. Baldridge, and K. Erk. Simple unsupervised grammar induction from raw text with

cascaded finite state models. In ACL-HLT, 2011.
V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. From Baby Steps to Leapfrog: How “Less is More”

in unsupervised dependency parsing. In NAACL-HLT, 2010a.
V. I. Spitkovsky, H. Alshawi, D. Jurafsky, and C. D. Manning. Viterbi training improves unsuper-

vised dependency parsing. In CoNLL, 2010b.
V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Punctuation: Making a point in unsupervised

dependency parsing. In CoNLL, 2011a.
V. I. Spitkovsky, A. X. Chang, H. Alshawi, and D. Jurafsky. Unsupervised dependency parsing

without gold part-of-speech tags. In EMNLP, 2011b.
V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Three dependency-and-boundary models for grammar

induction. In EMNLP-CoNLL, 2012.
K. Tu and V. Honavar. On the utility of curricula in unsupervised learning of probabilistic grammars.

In IJCAI, 2011.

Appendix A. The Dependency-and-Boundary Models (DBMs 1, 2 and 3)

All DBMs begin by choosing a class for the root word (cr). Remainders of parse structures,
if any, are produced recursively. Each node spawns off ever more distant left dependents by
(i) deciding whether to have more children, conditioned on direction (left), the class of the
(leftmost) fringe word in the partial parse (initially, itself), and other parameters (such as
adjacency of the would-be child); then (ii) choosing its child’s category, based on direction,
the head’s own class, etc. Right dependents are generated analogously, but using separate
factors. Unlike traditional head-outward models, DBMs condition their generative process
on more observable state: left and right end words of phrases being constructed. Since left
and right child sequences are still generated independently, DBM grammars are split-head.

DBM-2 maintains two related grammars: one for complete sentences (comp = T), ap-
proximated by presence of final punctuation, and another for incomplete fragments. These
grammars communicate through shared estimates of word attachment parameters, making
it possible to learn from mixtures of input types without polluting root and stopping factors.

DBM-3 conditions attachments on additional context, distinguishing arcs that cross
punctuation boundaries (cross = T) from lower-level dependencies. We allowed only heads of
fragments to attach other fragments as part of (loose) constrained Viterbi EM; in inference,
entire fragments could be attached by arbitrary external words (sprawl). All missing families
of factors (e.g., those of punctuation-crossing arcs) were initialized as uniform multinomials.

Appendix B. Partial Dependency-and-Boundary Models (DBMs i and 0)

Since dependency structures are trees, few heads get to spawn multiple dependents on the
same side. High fertilities are especially rare in short fragments, inviting economical models
whose stopping parameters can be lumped together (because in adjacent cases heads and
fringe words coincide: adj = T → h = e, hence ch = ce). Eliminating inessential components,
such as the likely-heterogeneous root factors of incomplete inputs, can also yield benefits.

Consider the sentence a© z©. It admits two structures:
y

a© z© and
x

a© z©. In theory, nei-
ther should be preferred. In practice, if the first parse occurs 100p% of the time, a multi-
component model could re-estimate total probability as pn + (1 − p)n, where n may exceed
its number of independent components. Only root and adjacent stopping factors are non-
deterministic here: PROOT(a©) = PSTOP(z©, L) = p and PROOT(z©) = PSTOP(a©, R) = 1− p; attachments are
fixed (a© can only attach z© and vice-versa). Tree probabilities are thus cubes (n = 3): a root
and two stopping factors (one for each word, on different sides), P(a© z©) = P(

y

a© z©) + P(
x

a© z©)

=

p
︷ ︸︸ ︷

PROOT(a©)PSTOP(a©, L)
︸ ︷︷ ︸

1

p
︷ ︸︸ ︷

(1− PSTOP(a©, R))PATTACH(a©, R, z©)
︸ ︷︷ ︸

1

p
︷ ︸︸ ︷

PSTOP(z©, L)PSTOP(z©, R)
︸ ︷︷ ︸

1

+

1−p
︷ ︸︸ ︷

PROOT(z©)PSTOP(z©, R)
︸ ︷︷ ︸

1

1−p
︷ ︸︸ ︷

(1− PSTOP(z©, L))PATTACH(z©, L, a©)
︸ ︷︷ ︸

1

1−p
︷ ︸︸ ︷

PSTOP(a©, R)PSTOP(a©, L)
︸ ︷︷ ︸

1

= p3 + (1− p)3.

For p ∈ [0, 1] and n ∈ Z
+, pn+(1−p)n ≤ 1, with strict inequality if p /∈ {0, 1} and n > 1. Clearly, as

n grows above one, optimizers will more strongly prefer extreme solutions p ∈ {0, 1}, despite
lacking evidence in the data. Since the exponent n is related to numbers of input words
and independent modeling components, a recipe of short inputs — combined with simpler,
partial models — could help alleviate some of this pressure towards arbitrary determinism.

	Introduction
	Methodology
	Experiment #1 (DBM-2): Learning from Fragmented Data
	Experiment #2 (DBM-i): Learning with a Coarse Model
	Experiment #3 (DBM-0): Learning with an Ablated Model
	Conclusion
	The Dependency-and-Boundary Models (DBMs 1, 2 and 3)
	Partial Dependency-and-Boundary Models (DBMs i and 0)

