TokensRegex

August 15, 2013
Angel X. Chang

TokensRegex

* Regular expressions over tokens
* Library for matching patterns over tokens

* Integration with Stanford CoreNLP pipeline

e access to all annotations

* Support for multiple regular expressions

* cascade of regular expressions (FASTUS-like)
* Used to implement SUTime

* http://nlp.stantord.edu/software/tokensregex.shtml

http://nlp.stanford.edu/software/tokensregex.shtml

Motivation

* Complementary to supervised statistical models
» Supervised system requires training data
« Example: Extending NER for shoe brands

* Why regular expressions over tokens?

 Allow for matching attributes on tokens (POS tags,
lemmas, NER tags)

* More natural to express regular patterns over words (than
one huge regular expression)

Annotators

e TokensRegexNERAnnotator

« Simple, rule-based NER over token sequences using
regular expressions

* Similar to RegexNERAnNnotator but with support for
regular expressions over tokens

e TokensRegexAnnotator

* More generic annotator, uses TokensRegex rules to define
patterns to match and what to annotate

* Not restricted to NER

TokensRegexNERAnNNotator

* Custom named entity recognition

* Uses same input file format as RegexNERAnnotator
* Tab delimited file of regular expressions and NER type
* Tokens separated by space
» Can have optional priority

* Examples:

San Francisco CITY
Lt\. Cmdr\. TITLE
<7 [A—ZO—9._%-I——] +Q@[A-Z0-9.-]1+\.[A-Z]{2,4}>7 EMATL

Supports TokensRegex regular expressions for matching
attributes other than text of token

(/University/ /of/ [{ ner:LOCATION }]) SCHOOL

TokensRegex Patterns

 Similar to standard Java regular expressions
* Supports wildcards, capturing groups etc.

* Main difference is syntax for matching tokens

Token Syntax

* Token represented by [<attributes>]

<attributes> = <basic attrexpr> | <compound attrexpr>
* Basic attribute
i form { <attrl>; <attr2> ..}

i each <attr> consist Of <name> <matchfunc> <value>

 Attributes use standard names (word, tag, lemma, ner)

Token Syntax

Attribute matching

¢ Strlng Equahty <attr>:"text”

[{ word:"cat" }] matchestoken with text "cat"

* Pattern Matching: <name>:/regex/
[{ word:/cat|dog/ }] matchestoken with text "cat" or "dog"

 Numeric comparison: <attr> [==|>|<|>=|<=] <value>

[{ word>=4 }] matches token with text of numeric value >=4

e Boolean functions: <attr>::<func>

word: : IS NUM matches token with text parsable as number

Token Syntax

Compound Expressions: compose using !, &, and |

* Negation: 1 (x)

[!'{ tag:/VB.*/ } 1 anytoken thatisnnotaverb
e Conjunction: (x} & {v)

[{word>=1000} & {word <=2000}]

word is a number between 1000 and 2000

* Disjunction: (x3 | (v}
[{word::IS NUM} | {tag:CD}] wordis numeric or taggedas CD

* Use () to group expressions

Sequence Syntax

Putting tokens together into sequences

* Match expressions like “from 8:00 to 10:00”
/from/ /\\d\\d?:\\d\\d/ /to/ /\\d\\d?:\\d\\d/
e Match expressions like “yesterday” or “the day after

tomorrow”
(2: [{ tag:DT }] /day/ /before|after/)?
/yesterday|today|tomorrow/
* Supports wildcards, capturing / non-capturing groups
and quantifiers

Using TokensRegex in Java

TokensRegex usage is like java.util.regex

* Compile pattern

TokenSequencePattern pattern =
TokenSequencePattern.compile (“/the/ /first/ /day/”):

e Get matcher
TokenSequenceMatcher matcher = pattern.getMatcher (tokens);

e Perform match
matcher.matches ()

matcher.find ()

* Get captured groups
String matched = matcher.group()
List<CorelLabel> matchedNodes = matcher.groupNodes () ;

Matching Multiple Regular Expressions

 Utility class to match multiple expressions

List<CoreLabel> tokens = ...;
List<TokenSequencePattern> tokenSequencePatterns = ...;

MultiPatternMatcher multiMatcher =
TokenSequencePattern.getMultiPatternMatcher (

tokenSequencePatterns

) ;
List<SequenceMatchResult<CoreMap>>

multiMatcher.findNonOverlapping (tokens) ;

* Define rules for more complicated regular expression
matches and extraction

Extraction using TokensRegex rules

* Define TokensRegex rules

* Create extractor to apply rules

CoreMapExpressionExtractor extractor =
CoreMapExpressionkExtractor.createExtractorFromFiles (

TokenSequencePattern.getNewEnv (), rulefilel, rulefileZ,...);

* Apply rules to get matched expression

for (CoreMap sentence:sentences) {

List<MatchedExpression> matched =
extractor.extractExpressions (sentence);

}
* Each matched expression contains the text matched, the
list of tokens, offsets, and an associated value

TokensRegex Extraction Rules

» Specified using JSON-like format

* Properties include: rule type, pattern to match, priority,
action and resulting value

* Example
{

ruleType: "tokens"V,

pattern: (([{ner:PERSON}]) /was/ /born/ /on/ ([{ner:DATE}])),

result: "DATE OF BIRTH™
}

TokensRegex Rules

* Four types of rules

* Text: applied on raw text, match against regular
expressions over strings

* Tokens: applied on the tokens and match against regular
expressions over tokens

* Composite: applied on previously matched expressions
(text, tokens, or previous composite rules), and repeatedly
applied until no new matches

* Filter: applied on previously matched expressions,
matches are filtered out and not returned

TokensRegex Extraction Pipeline

e Rules are grouped into stages in the extraction pipeline

* In each stage, the rules are applied as in the diagram
below:

Token/text level rules

v

EXt a Ct c Composite rules
\

Filtering rules

v

SUTime Example

It rained last Tuesday afternoon .
\/ v \ Token rules
MOD DATE TIME

LAST XXXX-WXX-2 TAF

~

TIME Composite
XXXX-WXX-2TAF rules

/

TIME
LAST XXXX-WXX-2TAF

TokensRegexAnnotator

* Fully customizable with rules read from file

e Can specify patterns to match and fields to annotate

Create OR pattern of regular expression over tokens to hex RGB
code for colors and save 1t 1n a variable

SColors = (
/red/ => "#FF0000" | /green/ => "#00FFOO" |
/blue/ => "#0000FF" | /black/ => "#000000" |
/white/ => "#FFFFFF" | (/pale|light/) /blue/ => "#ADDSEG"

)

Define rule that upon matching pattern defined by $Color
annotate matched tokens ($0) with ner="COLOR" and
normalized=matched value ($$0.value)

{ ruleType: “tokens”,
pattern: (SColors),

action: (Annotate ($0, ner, "COLOR"), Annotate($0, normalized,
SsSO0.value)) }

The End

e Many more features!

* Check it out:
http://nlp.stanford.edu/software/tokensregex.shtml

http://nlp.stanford.edu/software/tokensregex.shtml

