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Abstract

Treebanks are key resources for develop-
ing accurate statistical parsers. However,
building treebanks is expensive and time-
consuming for humans. For domains re-
quiring deep subject matter expertise such
as law and medicine, treebanking is even
more difficult. To reduce annotation costs
for these domains, we develop methods to
improve cross-domain parsing inference
using paraphrases. Paraphrases are eas-
ier to obtain than full syntactic analyses as
they do not require deep linguistic knowl-
edge, only linguistic fluency. A sentence
and its paraphrase may have similar syn-
tactic structures, allowing their parses to
mutually inform each other. We present
several methods to incorporate paraphrase
information by jointly parsing a sentence
with its paraphrase. These methods are ap-
plied to state-of-the-art constituency and
dependency parsers and provide signif-
icant improvements across multiple do-
mains.

1 Introduction

Parsing is the task of reconstructing the syntac-
tic structure from surface text. Many natural lan-
guage processing tasks use parse trees as a basis
for deeper analysis.

The most effective sources of supervision for
training statistical parsers are treebanks. Unfortu-
nately, treebanks are expensive, time-consuming
to create, and not available for most domains.
Compounding the problem, the accuracy of statis-
tical parsers degrades as the domain shifts away
from the supervised training corpora (Gildea,
2001; Bacchiani et al., 2006; McClosky et al.,
2006b; Surdeanu et al., 2008). Furthermore, for
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domains requiring subject matter experts, e.g., law
and medicine, it may not be feasible to produce
large scale treebanks since subject matter experts
generally don’t have the necessary linguistic back-
ground. It is natural to look for resources that
are more easily obtained. In this work, we ex-
plore using paraphrases. Unlike parse trees, para-
phrases can be produced quickly by humans and
don’t require extensive linguistic training. While
paraphrases are not parse trees, a sentence and its
paraphrase may have similar syntactic structures
for portions where they can be aligned.

We can improve parsers by jointly parsing a
sentence with its paraphrase and encouraging cer-
tain types of overlaps in their syntactic structures.
As a simple example, consider replacing an un-
known word in a sentence with a synonym found
in the training data. This may help disambiguate
the sentence without changing its parse tree. More
disruptive forms of paraphrasing (e.g., topicaliza-
tion) can also be handled by not requiring strict
agreement between the parses.

In this paper, we use paraphrases to improve
parsing inference within and across domains.
We develop methods using dual-decomposition
(where the parses of both sentences from a depen-
dency parser are encouraged to agree, Section 3.2)
and pair-finding (which can be applied to any n-
best parser, Section 3.3). Some paraphrases signif-
icantly disrupt syntactic structure. To counter this,
we examine relaxing agreement constraints and
building classifiers to predict when joint parsing
won’t be beneficial (Section 3.4). We show that
paraphrases can be exploited to improve cross-
domain parser inference for two state-of-the-art
parsers, especially on domains where they perform
poorly.

2 Related Work

Many constituency parsers can parse English
newswire text with high accuracy (Collins, 2000;



Charniak and Johnson, 2005; Petrov et al., 2006;
Socher et al., 2013; Coppola and Steedman,
2013). Likewise, dependency parsers have rapidly
improved their accuracy on a variety of lan-
guages (Eisner, 1996; McDonald et al., 2005;
Nivre et al., 2007; Koo and Collins, 2010; Zhang
and McDonald, 2014; Lei et al., 2014). There
are many approaches tackling the problem of im-
proving parsing accuracy both within and across
domains, including self-training/uptraining (Mc-
Closky et al., 2006b; Petrov et al., 2010), rerank-
ing (Collins, 2000; McClosky et al., 2006b), incor-
porating word clusters (Koo et al., 2008), model
combination (Petrov, 2010), automatically weight-
ing training data (McClosky et al., 2010), and us-
ing n-gram counts from large corpora (Bansal and
Klein, 2011). Using paraphrases falls into the
semi-supervised category. As we show later, in-
corporating paraphrases provides complementary
benefits to self-training.

2.1 Paraphrases

While paraphrases are difficult to define rigor-
ously (Bhagat and Hovy, 2013), we only require a
loose definition in this work: a pair of phrases that
mean approximately the same thing. Paraphrases
can be constructed in various ways: replacing
words with synonyms, reordering clauses, adding
relative clauses, using negation and antonyms, etc.
Table 1 lists some example paraphrases.

There are a variety of paraphrase resources pro-
duced by humans (Dolan and Brockett, 2005) and
automatic methods (Ganitkevitch et al., 2013).
Recent works have shown that reliable para-
phrases can be crowdsourced at low cost (Ne-
gri et al., 2012; Burrows et al., 2013; Tschir-
sich and Hintz, 2013). Paraphrases have been
shown to help summarization (Cohn and Lap-
ata, 2013), question answering (Duboue and Chu-
Carroll, 2006; Fader et al., 2013), machine trans-
lation (Callison-Burch et al., 2006), and seman-
tic parsing (Berant and Liang, 2014). Paraphrases
have been applied to syntactic tasks, such as
prepositional phrase attachment and noun com-
pounding, where the corpus frequencies of differ-
ent syntactic constructions (approximated by web
searches) are used to help disambiguate (Nakov
and Hearst, 2005). One method for transforming
constructions is to use paraphrase templates.

How did Bob Marley die?
What killed Bob Marley?
How fast does a cheetah run?
What is a cheetah’s top speed?
He came home unexpectedly.
He wasn’t expected to arrive home like that.
They were far off and looked tiny.
From so far away, they looked tiny.
He turned and bent over the body of the Indian.
Turning, he bent over the Indian’s body.
No need to dramatize.
There is no need to dramatize.

Table 1: Example paraphrases from our dataset.

2.2 Bilingual Parsing
The closest task to ours is bilingual parsing where
sentences and their translations are parsed simul-
taneously (Burkett et al., 2010). While our meth-
ods differ from those used in bilingual parsing, the
general ideas are the same.1 Translating and para-
phrasing are related transformations since both ap-
proximately preserve meaning. While syntax is
only partially preserved across these transforma-
tions, the overlapping portions can be leveraged
with joint inference to mutually disambiguate. Ex-
isting bilingual parsing methods typically require
parallel treebanks for training and parallel text at
runtime while our methods only require parallel
text at runtime. Since we do not have a paral-
lel paraphrase treebank for training, we cannot di-
rectly compare to these methods.

3 Jointly Parsing Paraphrases

With a small number of exceptions, parsers typi-
cally assume that the parse of each sentence is in-
dependent. There are good reasons for this inde-
pendence assumption: it simplifies parsing infer-
ence and oftentimes it is not obvious how to relate
multiple sentences (though see Rush et al. (2012)
for one approach). In this section, we present two
methods to jointly parse paraphrases without com-
plicating inference steps. Before going into de-
tails, we give a high level picture of how jointly
parsing paraphrases can help in Figure 1. With
the baseline parser, the parse tree of the target sen-
tence is incorrect but its paraphrase (parsed by the
same parser) is parsed correctly. We use rough
alignments to map words across sentence pairs.

1Applying our methods to bilingual parsing is left as fu-
ture work.



Note the similar syntactic relations when they are
projected across the aligned words.

Our goal is to encourage an appropriate level
of agreement between the two parses across align-
ments. We start by designing “hard” methods
which require complete agreement between the
parses. However, since parsers are imperfect and
alignments approximate, we also develop “soft”
methods which allow for disagreements. Addi-
tionally, we make procedures to decide whether to
use the original (non-joint) parse or the new joint
parse for each sentence since joint parses may be
worse in cases where the sentences are too differ-
ent and alignment fails.

3.1 Objective

In a typical parsing setting, given a sentence (x)
and its paraphrase (y), parsers find a∗(x) and b∗(y)
that satisfy the following equation:2

a∗, b∗ = argmax
a∈T (x),b∈T (y)

f(a) + f(b)

= argmax
a∈T (x)

f(a) + argmax
b∈T (y)

f(b)
(1)

where f is a parse-scoring function and T returns
all possible trees for a sentence. f can take many
forms, e.g., summing the scores of arcs (Eisner,
1996; McDonald et al., 2005) or multiplying prob-
abilities together (Charniak and Johnson, 2005).
The argmax over a and b of equation (1) is sepa-
rable; parsers make two sentence-level decisions.
For joint parsing, we modify the objective so that
parsers make one global decision:

a∗, b∗ = argmax
a∈T (x),b∈T (y)

: c(a,b)=0

f(a) + f(b) (2)

where c (defined below) measures the syntactic
similarity between the two trees. The smaller
c(a, b) is, the more similar a and b are. Intuitively,
joint parsers must retrieve the most similar pair of
trees with the highest sum of scores.

3.1.1 Constraints
The constraint function, c, ties two trees together
using alignments as a proxy for semantic informa-
tion. An alignment is a pair of words from sen-
tences x and y that approximately mean the same
thing. For example, in Figure 1, (helpx, helpy)
is one alignment and (pestilencex, diseasey) is

2When it is clear from context, we omit x and y to sim-
plify notation.

Set u0(i, j) = 0 for all i, j ∈ E
for k = 1 to K do
ak = argmax

a∈T (x)

(
f(a)+

∑
i,j∈E

uk(i, j)a(i, j)
)

bk = argmax
b∈T (y)

(
f(b)−

∑
i,j∈E

uk(i, j)b(i, j)
)

v, uk+1 = UPDATE(uk, δk, ak, bk)
if v = 0 then return ak, bk

return aK , bK

function UPDATE(u, δ, a, b)
v = 0, u′(i, j) = 0 for all i, j ∈ E
for i, j ∈ E do
u′(i, j) = u(i, j)− δ(a(i, j)− b(i, j))
if a(i, j) 6= b(i, j) then v = v + 1

return v, u′

Algorithm 1: Dual decomposition for jointly
parsing paraphrases pseudocode. E is the
set of all possible edges between any pair of
aligned words. Given ` aligned word pairs,
E = {1, . . . , `} × {1, . . . , `}. a(i, j) is one if
the ith aligned word is the head of jth aligned
word, zero otherwise. u(i, j) is the dual value
of an edge from the ith aligned word to the jth
aligned word. δk is the step size at kth itera-
tion.

another. To simplify joint parsing, we assume
the aligned words play the same syntactic roles
(which is obviously not always true and should
be revisited in future work). c measures the syn-
tactic similarity by computing how many pairs of
alignments have different syntactic head relations.
For the two trees in Figure 1, we see two differ-
ent relations: (help x−→ dying, help 6y−→ dying)
and (natives 6x−→ dying, natives

y−→ dying). The
rest have the same relation so c(a, b) = 2. As
we’ll show in Section 5, the constraints defined
above are too restrictive because of this strong as-
sumption. To alleviate the problem, we present
ways of appropriately changing constraints later.
We now turn to the first method of incorporating
constraints into joint parsing.

3.2 Constraints via Dual Decomposition
Dual decomposition (Rush and Collins, 2012) is
well-suited for finding the MAP assignment to
equation (2). When the parse-scoring function f
includes an arc-factored component as in McDon-
ald et al. (2005), it is straightforward to incorpo-



(target sentence) x: help some natives dying of pestilence
(paraphrase) y: help some natives who were dying of disease

wrong

right

Figure 1: An illustration of joint parsing a sentence with its paraphrase. Unaligned words are gray. Joint
parsing encourages structural similarity and allows the parser to correct the incorrect arc.

rate constraints as shown in Algorithm 1. Essen-
tially, dual decomposition penalizes relations that
are different in two trees by adding/subtracting
dual values to/from arc scores. When dual de-
composition is applied in Figure 1, the arc score
of (help x−→ dying) decreases and the score for
(natives x−→ dying) increases in the second itera-
tion, which eventually leads the algorithm to favor
the latter.

We relax the constraints by employing soft dual
decomposition (Anzaroot et al., 2014) and replac-
ing UPDATE in Algorithm 1 with S-UPDATE from
Algorithm 2. The problem with the original con-
straints is they force every pair of alignments to
have the same relation even when some aligned
words certainly play different syntactic roles. The
introduced slack variable lets some alignments
have different relations when parsers prefer them.
Penalties bounded by the slack tend to help fix in-
correct ones and not change correct parses. In this
work, we use a single slack variable but it’s possi-
ble to have a different slack variable for each type
of dependency relation.3

3.3 Constraints via Pair-finding

One shortcoming of the dual decomposition ap-
proach is that it only applies to parse-scoring func-
tions with an arc-factored component. We intro-
duce another method for estimating equation (2)
that applies to all n-best parsers.

Given the n-best parses of x and the m-best
parses of y, Algorithm 3 scans through n×m pairs
of trees and chooses the pair that satisfies equa-
tion (2). If it finds one pair with c(a, b) = 0, then it
has found the answer to the equation. Otherwise, it

3We did pilot experiments with multiple slack variables.
Since they showed only small improvements and were harder
to tune, we stuck with a single slack variable for remaining
experiments.

function S-UPDATE(u, δ, a, b, s)
v = 0, u′(i, j) = 0 for all i, j ∈ E
for i, j ∈ E do
t = max(u(i, j)− δ(a(i, j)− b(i, j)), 0)
u′(i, j) = min(t, s)
if u′(i, j) 6= 0, u′(i, j) 6= s then
v = v + 1

return v, u′

Algorithm 2: The new UPDATE function of
soft dual decomposition for joint parsing. It
projects all dual values between 0 and s ≥ 0.
s is a slack variable that allows the algorithm
to avoid satisfying some constraints.

chooses the pair with the smallest c(a, b), breaking
ties using the scores of the parses (f(a) + f(b)).
This algorithm is well suited for finding solutions
to the equation but the solutions are not necessar-
ily good trees due to overly hard constraints.

The algorithm often finds bad trees far down the
n-best list because it is mainly interested in re-
trieving pairs of trees that satisfy all constraints.
Parsers find such pairs with low scores if they are
allowed to search through unrestricted space. To
mitigate the problem, we shrink the search space
by limiting n. Reducing the search space relies on
the fact that higher ranking trees are more likely to
be correct than the lower ranking ones. Note that
we decrease n because we are interested in recov-
ering the tree of the target sentence, x. m should
also be decreased to improve the parse of its para-
phrase, y.

3.4 Logistic Regression
One caveat of the previous two proposed methods
is that they do not know whether the original or
joint parse of x is more accurate. Sometimes they
increase agreement between the parses at the cost



function PAIR-FINDING(a1:n, b1:m)
Set a, b = null,min =∞,max = −∞
for i = 1 to n do

for j = 1 to m do
v = C (ai, bj)
sum = f(ai) + f(bj)
if v < min then
a = ai, b = bj
min = v,max = sum

else if v = min, sum > max then
a = ai, b = bj
max = sum

return a, b

function C(a, b)
v = 0
for i, j ∈ E do

if a(i, j) 6= b(i, j) then v = v + 1
return v

Algorithm 3: The pair-finding scheme with a
constraint function, c. a1:n are the n-best trees
of x and b1:m are the m-best of y.

of accuracy. To remedy this problem, we use a
classifier (specifically logistic regression) to deter-
mine whether a modified tree should be used. The
classifier can learn the error patterns produced by
each method.

3.4.1 Features
Classifier features use many sources of informa-
tion: the target sentence x and its paraphrase y,
the original and new parses of x (a0 and a), and
the alignments between x and y.

Crossing Edges How many arcs cross when
alignments are drawn between paraphrases
on a plane divided by the length of x. It
roughly measures how many reorderings are
needed to change x to y.

Non-projective Edges Whether there are more
non-projective arcs in new parse (a) than the
original (a0).

Sentence Lengths Whether the length of x is
smaller than that of y. This feature exists be-
cause baseline parsers tend to perform better
on shorter sentences.

Word Overlaps The number of words in com-
mon between x and y normalized by the
length of x.

REL REL + RELp
REL + RELp + RELgp REL + RELgp
CP CP + CPp
CP + CPp + CPgp CP + CPgp
REL + CP REL + CP + CPp
REL + CPp + RELgp

Table 2: Feature templates: REL is the dependency
relation between the word and its parent. CP is
the coarse part-of-speech tag (first two letters) of a
word. p and gp select the parent and grandparent
of the word respectively.

Parse Structure Templates The feature genera-
tor goes through every word in {a0, a} and
sets the appropriate boolean features from Ta-
ble 2. Features are prefixed by whether they
come from a0 or a.

4 Data and Programs

This section describes our paraphrase dataset,
parsers, and other tools used in experiments.

4.1 Paraphrase Dataset

To evaluate the efficacy of the proposed methods
of jointly parsing paraphrases, we built a corpus
of paraphrases where one sentence in a pair of
paraphrases has a gold tree.4 We randomly sam-
pled 4,000 sentences5 from four gold treebanks:
Brown, British National Corpus (BNC), Question-
Bank6 (QB) and Wall Street Journal (section 24)
(Francis and Kučera, 1989; Foster and van Gen-
abith, 2008; Judge et al., 2006; Marcus et al.,
1993). A linguist provided a paraphrase for each
sampled sentence according to these instructions:

The paraphrases should more or less
convey the same information as the orig-
inal sentence. That is, the two sentences
should logically entail each other. The
paraphrases should generally use most
of the same words (but not necessarily
in the same order). Active/passive trans-
forms, changing words with synonyms,
and rephrasings of the same idea are all
examples of transformations that para-
phrases can use (others can be used too).

4The dataset is available upon request.
5We use sentences with 6 to 25 tokens to keep the para-

phrasing task in the nontrivial to easy range.
6With Stanford’s updates: http://nlp.stanford.

edu/data/QuestionBank-Stanford.shtml



They can be as simple as just chang-
ing a single word in some cases (though,
ideally, a variety of paraphrasing tech-
niques would be used).

We also provided 10 pairs of sentences as ex-
amples. We evaluate our methods only on the
sampled sentences from the gold corpora because
the new paraphrases do not include syntactic trees.
The data was divided into development and test-
ing sets such that development and testing share
the same distribution over the four corpora. Para-
phrases were tokenized by the BLLIP tokenizer.
See Table 3 for statistics of the dataset.7

4.2 Meteor Word Aligner

We use Meteor, a monolingual word aligner de-
veloped by Denkowski and Lavie (2014), to find
alignments between paraphrases. It uses the ex-
act matches, stems, synonyms, and paraphrases8

to form these alignments. Because it uses para-
phrases, it sometimes aligns multiple words from
sentence x to one or more words from sentence y
or vice versa. We ignore these multiword align-
ments because our methods currently only handle
single word alignments. In pilot experiments, we
also tried using a simple aligner which required
exact word matches. Joint parsing with simpler
alignments improved parsing accuracy but not as
much as Meteor.9 Thus, all results in Section 5 use
Meteor for word alignment. On average across the
four corpora, 73% of the tokens are aligned.

4.3 Parsers

We use a dependency and constituency parser for
our experiments: RBG and BLLIP. RBG parser
(Lei et al., 2014) is a state-of-the-art dependency
parser.10 It is a third-order discriminative depen-
dency parser with low-rank tensors as part of its
features. BLLIP (Charniak and Johnson, 2005)
is a state-of-the-art constituency parser, which is

7The distribution over four corpora is skewed because
each corpus has a different number of sentences within length
constraints. Samples are collected uniformly over all sen-
tences that satisfy the length criterion.

8Here paraphrase means a single/multiword phrase that is
semantically similar to another single/multiword.

9The pilot was conducted on fewer than 700 sentence
pairs before all paraphrases were created. We give Meteor
tokenized paraphrases with capitalization. Maximizing accu-
racy rather than coverage worked better in pilot experiments.

10http://github.com/taolei87/RBGParser,
‘master’ version from June 24th, 2014.

composed of a generative parser and a discrimina-
tive reranker.11

To train RBG and BLLIP, we used the standard
WSJ training set (sections 2–21, about 40,000 sen-
tences).12 We also used the self-trained BLLIP
parsing model which is trained on an additional
two million Gigaword parses generated by the
BLLIP parser (McClosky et al., 2006a).

4.4 Logistic Regression

We use the logistic regression implementation
from Scikit-learn13 with hand-crafted features
from Section 3.4.1. The classifier decides to
whether to keep the parse trees from the joint
method. When it decides to disregard them, it re-
turns the parse from the baseline parser. We train
a separate classifier for each joint method.

5 Experiments

We ran all tuning and model design experiments
on the development set. For the final evaluation,
we tuned parameters on the development set and
evaluate them on the test set. Constituency trees
were converted to basic non-collapsed dependency
trees using Stanford Dependencies (De Marneffe
et al., 2006).14 We report unlabeled attachment
scores (UAS) for all experiments and labeled at-
tachment scores (LAS) as well in final evalua-
tion, ignoring punctuation. Averages are micro-
averages across all sentences.

5.1 Dual Decomposition

Since BLLIP is not arc-factored, these experi-
ments only use RBG. Several parameters need to
be fixed beforehand: the slack constant (s), the
learning rate (δ), and the maximum number of it-
erations (K). We set δ0 = 0.1 and δk = δ0

2t where
t is the number of times the dual score has in-
creased (Rush et al., 2010). We choose K = 20.
These numbers were chosen from pilot studies.
The slack variable (s = 0.5) was tuned with a
grid search on values between 0.1 and 1.5 with in-
terval 0.1. We chose a value that generalizes well
across four corpora as opposed to a value that does

11http://github.com/BLLIP/bllip-parser
12RBG parser requires predicted POS tags. We used the

Stanford tagger (Toutanova et al., 2003) to tag WSJ and
paraphrase datasets. Training data was tagged using 20-fold
cross-validation and the paraphrases were tagged by a tagger
trained on all of WSJ training.

13http://scikit-learn.org
14Version 1.3.5, previously numbered as version 2.0.5



Development Test
BNC Brown QB WSJ Total BNC Brown QB WSJ Total

Sentences 247 558 843 352 2,000 247 558 844 351 2,000
Tokens 4,297 7,937 8,391 5,924 26,549 4,120 8,025 8,253 5,990 26,388
Tokens‖ 4,372 8,088 8,438 6,122 27,020 4,272 8,281 8,189 6,232 26,974
Word types 1,727 2,239 2,261 1,955 6,161 1,710 2,337 2,320 1,970 6,234
Word types‖ 1,676 2,241 2,261 1,930 6,017 1,675 2,335 2,248 1,969 6,094
OOV 11.2 5.1 5.4 2.4 5.6 11.5 5.1 5.8 2.2 5.7
OOV‖ 8.6 4.7 5.4 2.6 5.1 9.3 4.8 6.0 2.4 5.3
Tokens/sent. 17.4 14.2 10.0 16.8 13.3 16.7 14.4 7.8 17.1 13.2
Avg. aligned 13.1 10.5 6.9 13.0 9.7 12.6 10.7 6.7 13.0 9.7

Table 3: Statistics for the four corpora of the paraphrase dataset. Most statistics are counted from sen-
tences with gold trees, including punctuation. ‖ indicates the statistic is from the paraphrased sentences.
“Avg. aligned” is the average number of aligned tokens from the original sentences using Meteor. OOV
is the percentage of tokens not seen in the WSJ training.

Avg BNC Brown QB WSJ
RBG 86.4 89.2 90.9 75.8 93.7
+ Dual 84.7 87.5 87.8 76.0 91.0
+ S-Dual 86.8 89.8 90.9 76.5 94.0

Table 4: Comparison of hard and soft dual de-
composition for joint parsing (development sec-
tion, UAS).

very well on a single corpus. As shown in Ta-
ble 4, joint parsing with hard dual decomposition
performs worse than independent parsing (RBG).
This is expected because hard dual decomposition
forces every pair of alignments to form the same
relation even when they should not. With relaxed
constraints (S-Dual), joint parsing performs sig-
nificantly better than independent parsing. Soft
dual decomposition improves across all domains
except for Brown (where it ties).

5.2 Pair-finding

These experiments use the 50-best trees from
BLLIP parser. When converting to dependencies,
some constituency trees map to the same depen-
dency tree. In this case, trees with lower rankings
are dropped. Like joint parsing with hard dual de-
composition, joint parsing with unrestricted pair-
finding (n = 50) allows significantly worse parses
to be selected (Table 5). With small n values,
pair-finding improves over the baseline BLLIP
parser.15 Experiments with self-trained BLLIP
exhibit similar results so we use n = 2 for all

15Decreasing m did not lead to further improvement and
thus we don’t report the results of changing m.

n Avg BNC Brown QB WSJ
1 89.5 91.1 91.6 83.3 94.2
2 90.0 91.4 92.3 84.1 94.1
3 89.8 91.5 92.0 84.2 93.9
5 89.2 91.9 91.4 83.0 93.2
10 87.9 90.5 90.3 81.4 92.2
50 86.3 90.2 88.7 78.6 91.1

Table 5: UAS of joint parsing using the pair-
finding scheme with various n values on the de-
velopment portion. n = 1 is the baseline BLLIP
parser and n > 1 is BLLIP with pair-finding.

other experiments. Interestingly, each corpus has
a different optimal value for n which suggests we
might improve accuracy further if we know the do-
main of each sentence.

5.3 Logistic Regression

The classifier is trained on sentences where parse
scores (UAS) of the proposed methods are higher
or lower than those of the baselines16 from
the development set using leave-one-out cross-
validation. We use random greedy search to select
specific features from the 15 feature templates de-
fined in Section 3.4.1. Features seen fewer than
three times in the development are thrown out.
Separate regression models are built for three dif-
ferent parsers. The logistic regression classifier
uses an L1 penalty with regularization parameter
C = 1.

Logistic regression experiments are reported in

16We only use sentences with different scores to limit ceil-
ing effects.



Avg BNC Brown QB WSJ
RBG 86.4 89.2 90.9 75.8 93.7
+ S-Dual 86.8 89.8 90.9 76.5 94.0
+ Logit 86.9 89.8 91.1 76.5 94.0
BLLIP 89.5 91.1 91.6 83.3 94.2
+ Pair 90.0 91.4 92.3 84.1 94.1
+ Logit 90.3 91.3 92.1 85.2 94.3
BLLIP-ST 90.1 92.7 92.3 84.3 93.8
+ Pair 90.7 93.5 92.5 85.6 93.8
+ Logit 91.1 93.3 92.6 86.7 93.9

Table 6: Effect of using logistic regression on
top of each method (UAS). Leave-one-out cross-
validation is performed on the development data.
+X means augmenting the above system with X.

Table 6. All parsers benefit from employing logis-
tic regression models on top of paraphrase meth-
ods. BLLIP experiments show a larger improve-
ment than RBG. This may be because BLLIP can-
not use soft constraints so its errors are more pro-
nounced.

5.4 Final Evaluation
We evaluate the three parsers on the test set using
the tuned parameters and logistic regression mod-
els from above. Joint parsing with paraphrases sig-
nificantly improves accuracy for all systems (Ta-
ble 7). Self-trained BLLIP with logistic regres-
sion is the most accurate, though RBG with S-
Dual provides the most consistent improvements.

Joint parsing without logistic regression (RBG
+ S-Dual) is more accurate than independent pars-
ing (RBG) overall. With the help of logistic re-
gression, the methods do at least as well as their
baseline counterparts on all domains with the ex-
ception of self-trained BLLIP on BNC. We believe
that the drop on BNC is largely due to noise as our
BNC test set is the smallest of the four. As on de-
velopment, logistic regression does not change the
accuracy much over the RBG parser with soft dual
decomposition.

Joint parsing provides the largest gains on
QuestionBank, the domain with the lowest base-
line accuracies. This fits with our goal of using
paraphrases for domain adaptation — parsing with
paraphrases helps the most on domains furthest
from our training data.

5.5 Error analysis
We analyzed the errors from RBG and BLLIP
along several dimensions: by dependency label,

sentence length, dependency length, alignment
status (whether a token was aligned), percentage
of tokens aligned in the sentence, and edit distance
between the sentence pairs. Most errors are fairly
uniformly distributed across these dimensions and
indicate general structural improvements when us-
ing paraphrases. BLLIP saw a 2.2% improvement
for the ROOT relation, though RBG’s improvement
here was more moderate. For sentence lengths,
BLLIP obtains larger boosts for shorter sentences
while RBG’s are more uniform. RBG gets a 1.4%
UAS improvement on longer dependencies (6 or
more tokens) while shorter dependencies are more
modestly improved by about 0.3-0.5% UAS. Sur-
prisingly, alignment information provides no sig-
nal as to whether accuracy improves.

Additionally, we had our annotator label a por-
tion of our dataset with the set of paraphrasing
operations employed.17 While most paraphrasing
operations generally improved performance un-
der joint inference, the largest reliable gains came
from lexical replacements (e.g., synonyms).

6 Conclusions and Future Work

Our methods of incorporating paraphrases im-
prove parsing across multiple domains for state-
of-the-art constituency and dependency parsers.
We leverage the fact that paraphrases often express
the same semantics with similar syntactic realiza-
tions. These provide benefits even on top of self-
training, another domain adaptation technique.

Since paraphrases are not available at most
times, our methods may seem limited. However,
there are several possible use cases. The best
case scenario is when users can be directly asked
to rephrase a question and provide a paraphrase.
For instance, question answering systems can ask
users to rephrase questions when an answer is
marked as wrong by users. Another option is to
use crowdsourcing to quickly create a paraphrase
corpus (Negri et al., 2012; Burrows et al., 2013;
Tschirsich and Hintz, 2013). As part of future
work, we plan to integrate existing larger para-
phrase resources, such as WikiAnswers (Fader et
al., 2013) and PPDB (Ganitkevitch et al., 2013).
WikiAnswers provides rough equivalence classes
of questions. PPDB includes phrasal and syntactic
alignments which could supplement our existing
alignments or be used as proxies for paraphrases.

17See the extended version of this paper for more informa-
tion about this task and its results.



Avg BNC Brown QB WSJ
RBG 86.7 (81.3) 89.3 (83.7) 90.2 (84.1) 77.0 (71.0) 93.7 (89.9)
+ S-Dual 87.3 (81.7) 89.6 (83.8) 90.7 (84.6) 78.1 (71.8) 94.0 (90.2)
+ Logit 87.2 (81.6) 89.7 (83.9) 90.6 (84.5) 77.9 (71.7) 93.8 (89.9)
BLLIP 89.6 (86.1) 90.6 (87.2) 91.7 (87.9) 83.6 (79.9) 94.3 (91.6)
+ Pair 90.1 (86.5) 90.8 (87.3) 92.1 (88.4) 84.7 (80.7) 94.4 (91.6)
+ Logit 90.3 (86.8) 90.6 (87.2) 91.9 (88.1) 85.5 (81.7) 94.5 (91.7)
BLLIP-ST 90.4 (87.0) 91.8 (88.3) 92.7 (89.0) 84.8 (81.2) 94.3 (91.4)
+ Pair 90.5 (87.1) 91.1 (87.6) 92.7 (89.1) 85.5 (81.8) 94.2 (91.4)
+ Logit 91.0 (87.6) 91.4 (88.0) 92.9 (89.3) 86.6 (82.9) 94.3 (91.4)

Table 7: Final evaluation on testing data. Numbers are unlabeled attachment score (labeled attachment
score). +X indicates extending the above system with X. BLLIP-ST is BLLIP using the self-trained
model. Coloring indicates a significant difference over baseline (p < 0.01).

While these resources are noisy, the quantity of
data may provide additional robustness. Lastly, in-
tegrating our methods with paraphrase detection
or generation systems could help provide para-
phrases on demand.

There are many other ways to extend this work.
Poor alignments are one of the larger sources of
errors and improving alignments could help dra-
matically. One simple extension is to use multiple
paraphrases and their alignments instead of just
one. More difficult would be to learn the align-
ments jointly while parsing and adaptively learn
how alignments affect syntax. Our constraints can
only capture certain types of paraphrase transfor-
mations currently and should be extended to un-
derstand common tree transformations for para-
phrases, as in (Heilman and Smith, 2010). Fi-
nally, and perhaps most importantly, our methods
apply only at inference time. We plan to investi-
gate methods which use paraphrases to augment
parsing models created at train time.
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