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Abstract

Model combination techniques have con-
sistently shown state-of-the-art perfor-
mance across multiple tasks, including
syntactic parsing. However, they dramat-
ically increase runtime and can be diffi-
cult to employ in practice. We demon-
strate that applying constituency model
combination techniques to n-best lists in-
stead of n different parsers results in sig-
nificant parsing accuracy improvements.
Parses are weighted by their probabilities
and combined using an adapted version
of Sagae and Lavie (2006). These accu-
racy gains come with marginal computa-
tional costs and are obtained on top of ex-
isting parsing techniques such as discrim-
inative reranking and self-training, result-
ing in state-of-the-art accuracy: 92.6% on
WSJ section 23. On out-of-domain cor-
pora, accuracy is improved by 0.4% on
average. We empirically confirm that six
well-known n-best parsers benefit from
the proposed methods across six domains.

1 Introduction

Researchers have proposed many algorithms to
combine parses from multiple parsers into one fi-
nal parse (Henderson and Brill, 1999; Zeman and
Žabokrtskỳ, 2005; Sagae and Lavie, 2006; Now-
son and Dale, 2007; Fossum and Knight, 2009;
Petrov, 2010; Johnson and Ural, 2010; Huang et
al., 2010; McDonald and Nivre, 2011; Shindo et
al., 2012; Narayan and Cohen, 2015). These new
parses are substantially better than the originals:
Zhang et al. (2009) combine outputs from mul-
tiple n-best parsers and achieve an F1 of 92.6%
on the WSJ test set, a 0.5% improvement over
their best n-best parser. Model combination ap-
proaches tend to fall into the following categories:

hybridization, where multiple parses are combined
into a single parse; switching, which picks a sin-
gle parse according to some criteria (usually a
form of voting); grammar merging where gram-
mars are combined before or during parsing; and
stacking, where one parser sends its prediction
to another at runtime. All of these have at least
one of the caveats that (1) overall computation
is increased and runtime is determined by the
slowest parser and (2) using multiple parsers in-
creases the system complexity, making it more
difficult to deploy in practice. In this paper, we
describe a simple hybridization extension (“fu-
sion”) which obtains much of hybridization’s ben-
efits while using only a single n-best parser and
minimal extra computation. Our method treats
each parse in a single parser’s n-best list as a
parse from n separate parsers. We then adapt
parse combination methods by Henderson and
Brill (1999), Sagae and Lavie (2006), and Fos-
sum and Knight (2009) to fuse the constituents
from the n parses into a single tree. We empir-
ically show that six n-best parsers benefit from
parse fusion across six domains, obtaining state-
of-the-art results. These improvements are com-
plementary to other techniques such as rerank-
ing and self-training. Our best system obtains
an F1 of 92.6% on WSJ section 23, a score pre-
viously obtained only by combining the outputs
from multiple parsers. A reference implementa-
tion is available as part of BLLIP Parser at http:
//github.com/BLLIP/bllip-parser/

2 Fusion

Henderson and Brill (1999) propose a method to
combine trees from m parsers in three steps: pop-
ulate a chart with constituents along with the num-
ber of times they appear in the trees; remove any
constituent with count less than m/2 from the
chart; and finally create a final tree with all the
remaining constituents. Intuitively their method
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constructs a tree with constituents from the ma-
jority of the trees, which boosts precision signif-
icantly. Henderson and Brill (1999) show that
this process is guaranteed to produce a valid tree.
Sagae and Lavie (2006) generalize this work by
reparsing the chart populated with constituents
whose counts are above a certain threshold. By
adjusting the threshold on development data, their
generalized method balances precision and recall.
Fossum and Knight (2009) further extend this line
of work by using n-best lists from multiple parsers
and combining productions in addition to con-
stituents. Their model assigns sums of joint proba-
bilities of constituents and parsers to constituents.
Surprisingly, exploiting n-best trees does not lead
to large improvement over combining 1-best trees
in their experiments.

Our extension takes the n-best trees from a
parser as if they are 1-best parses from n parsers,
then follows Sagae and Lavie (2006). Parses
are weighted by the estimated probabilities from
the parser. Given n trees and their weights, the
model computes a constituent’s weight by sum-
ming weights of all trees containing that con-
stituent. Concretely, the weight of a constituent
spanning from ith word to jth word with label ` is

c`(i→ j) =
n∑
k=1

W (k)Ck` (i→ j) (1)

where W (k) is the weight of kth tree and Ck` (i→
j) is one if a constituent with label ` spanning from
i to j is in kth tree, zero otherwise. After populat-
ing the chart with constituents and their weights,
it throws out constituents with weights below a set
threshold t. Using the threshold t = 0.5 emulates
the method of Henderson and Brill (1999) in that
it constructs the tree with the constituents in the
majority of the trees. The CYK parsing algorithm
is applied to the chart to produce the final tree.

Note that populating the chart is linear in the
number of words and the chart contains substan-
tially fewer constituents than charts in well-known
parsers, making this a fast procedure.

2.1 Score distribution over trees

We assume that n-best parsers provide trees along
with some kind of scores (often probabilities or
log probabilities). Given these scores, a natural
way to obtain weights is to normalize the prob-
abilities. However, parsers do not always provide
accurate estimates of parse quality. We may obtain

better performance from parse fusion by altering
this distribution and passing scores through a non-
linear function, f(·). The kth parse is weighted:

W (k) =
f(SCORE(k))∑n
i=1 f(SCORE(i))

(2)

where SCORE(i) is the score of ith tree.1 We ex-
plore the family of functions f(x) = xβ which can
smooth or sharpen the score distributions. This in-
cludes a tunable parameter, β ∈ R+

0 :

W (k) =
SCORE(k)β∑n
i=1 SCORE(i)β

(3)

Employing β < 1 flattens the score distribution
over n-best trees and helps over-confident parsers.
On the other hand, having β > 1 skews the distri-
bution toward parses with higher scores and helps
under-confident parsers. Note that setting β = 0
weights all parses equally and results in majority
voting at the constituent level. We leave develop-
ing other nonlinear functions for fusion as future
work.

3 Experiments

Corpora: Parse fusion is evaluated on British
National Corpus (BNC), Brown, GENIA, Ques-
tion Bank (QB), Switchboard (SB) and Wall Street
Journal (WSJ) (Foster and van Genabith, 2008;
Francis and Kučera, 1989; Kim et al., 2003;
Judge et al., 2006; Godfrey et al., 1992; Mar-
cus et al., 1993). WSJ is used to evaluate in-
domain parsing, the remaining five are used for
out-of-domain. For divisions, we use tune and test
splits from Bacchiani et al. (2006) for Brown, Mc-
Closky’s test PMIDs2 for GENIA, Stanford’s test
splits3 for QuestionBank, and articles 4000–4153
for Switchboard.
Parsers: The methods are applied to six widely
used n-best parsers: Charniak (2000), Stanford
(Klein and Manning, 2003), BLLIP (Charniak and
Johnson, 2005), Self-trained BLLIP (McClosky et
al., 2006)4, Berkeley (Petrov et al., 2006), and
Stanford RNN (Socher et al., 2013). The list of
parsers and their accuracies on the WSJ test set
is reported in Table 1. We convert to Stanford

1For parsers that return log probabilities, we turn these
into probabilities first.

2http://nlp.stanford.edu/˜mcclosky/
biomedical.html

3http://nlp.stanford.edu/data/
QuestionBank-Stanford.shtml

4Using the ‘WSJ+Gigaword-v2’ BLLIP model.
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Parser F1 UAS LAS
Stanford 85.4 90.0 87.3
Stanford RNN5 89.6 92.9 90.4
Berkeley 90.0 93.5 91.2
Charniak 89.7 93.2 90.8
BLLIP 91.5 94.4 92.0
Self-trained BLLIP 92.2 94.7 92.2

Table 1: Six parsers along with their 1-best F1

scores, unlabeled attachment scores (UAS) and la-
beled attachment scores (LAS) on WSJ section 23.

Dependencies (basic dependencies, version 3.3.0)
and provide dependency metrics (UAS, LAS) as
well.

Supervised parsers are trained on the WSJ
training set (sections 2–21) and use section 24
for development. Self-trained BLLIP was self-
trained using two million sentences from Giga-
word and Stanford RNN uses word embeddings
trained from larger corpora.
Parameter tuning: There are three parameters for
our fusion process: the size of the n-best list (2 <
n ≤ 50), the smoothing exponent from Section 2.1
(β ∈ [0.5, 1.5] with 0.1 increments), and the mini-
mum threshold for constituents (t ∈ [0.2, 0.7] with
0.01 increments). We use grid search to tune these
parameters for two separate scenarios. When pars-
ing WSJ (in-domain), we tune parameters on WSJ
section 24. For the remaining corpora (out-of-
domain), we use the tuning section from Brown.
Each parser is tuned separately, resulting in 12
different tuning scenarios. In practice, though,
in-domain and out-of-domain tuning regimes tend
to pick similar settings within a parser. Across
parsers, settings are also fairly similar (n is usu-
ally 30 or 40, t is usually between 0.45 and 0.5).
While the smoothing exponent varies from 0.5 to
1.3, setting β = 1 does not significantly hurt ac-
curacy for most parsers.

To study the effects of these parameters, Fig-
ure 1 shows three slices of the tuning surface for
BLLIP parser on WSJ section 24 around the op-
timal settings (n = 30, β = 1.1, t = 0.47). In
each graph, one of the parameters is varied while
the other is held constant. Increasing n-best size
improves accuracy until about n = 30 where there
seems to be sufficient diversity. For BLLIP, the

5Socher et al. (2013) report an F1 of 90.4%, but this is
the result of using an ensemble of two RNNs (p.c.). We use a
single RNN in this work.

Parser WSJ Brown
BLLIP 90.6 85.7
+ Fusion 91.0 86.0
+ Majority voting (β = 0) 89.1 83.8
+ Rank-based weighting 89.3 84.1

Table 2: F1 of a baseline parser, fusion, and base-
lines on development sections of corpora (WSJ
section 24 and Brown tune).

smoothing exponent (β) is best set around 1.0,
with accuracy falling off if the value deviates too
much. Finally, the threshold parameter is empiri-
cally optimized a little below t = 0.5 (the value
suggested by Henderson and Brill (1999)). Since
score values are normalized, this means that con-
stituent need roughly half the “score mass” in or-
der to be included in the chart. Varying the thresh-
old changes the precision/recall balance since a
high threshold adds only the most confident con-
stituents to the chart (Sagae and Lavie, 2006).
Baselines: Table 2 gives the accuracy of fusion
and baselines for BLLIP on the development cor-
pora. Majority voting sets n = 50, β = 0, t =
0.5 giving all parses equal weight and results in
constituent-level majority voting. We explore a
rank-based weighting which ignores parse prob-
abilities and weight parses only using the rank:
Wrank(k) = 1/(2k). These show that accu-
rate parse-level scores are critical for good perfor-
mance.
Final evaluation: Table 3 gives our final re-
sults for all parsers across all domains. Results
in blue are significant at p < 0.01 using a ran-
domized permutation test. Fusion generally im-
proves F1 for in-domain and out-of-domain pars-
ing by a significant margin. For the self-trained
BLLIP parser, in-domain F1 increases by 0.4%
and out-of-domain F1 increases by 0.4% on av-
erage. Berkeley parser obtains the smallest gains
from fusion since Berkeley’s n-best lists are or-
dered by factors other than probabilities. As a re-
sult, the probabilities from Berkeley can mislead
the fusion process.

We also compare against model combination
using our reimplementation of Sagae and Lavie
(2006). For these results, all six parsers were given
equal weight. The threshold was set to 0.42 to
optimize model combination F1 on development
data (similar to Setting 2 for constituency parsing
in Sagae and Lavie (2006)). Model combination



Figure 1: Tuning parameters independently for BLLIP and their impact on F1 for WSJ section 24 (solid
purple line). For each graph, non-tuned parameters were set at the optimal configuration for BLLIP
(n = 30, β = 1.1, t = 0.47). The dashed grey line represents the 1-best baseline at 90.6% F1.

Parser BNC Brown GENIA SB QB WSJ
Stanford 78.4 / 79.6 80.7 / 81.6 73.1 / 73.9 67.0 / 67.9 78.6 / 80.0 85.4 / 86.2
Stanford RNN 82.0 / 82.3 84.0 / 84.3 76.0 / 76.2 70.7 / 71.2 82.9 / 83.6 89.6 / 89.7
Berkeley 82.3 / 82.9 84.6 / 84.6 76.4 / 76.6 74.5 / 75.1 86.5 / 85.9 90.0 / 90.3
Charniak 82.5 / 83.0 83.9 / 84.6 74.8 / 75.7 76.8 / 77.6 85.6 / 86.3 89.7 / 90.1
BLLIP 84.1 / 84.7 85.8 / 86.0 76.7 / 77.1 79.2 / 79.5 88.1 / 88.9 91.5 / 91.7
Self-trained BLLIP 85.2 / 85.8 87.4 / 87.7 77.8 / 78.2 80.9 / 81.7 89.5 / 89.5 92.2 / 92.6
Model combination 86.6 87.7 79.4 80.9 89.3 92.5

Table 3: Evaluation of the constituency fusion method on six parsers across six domains. x/y indicates
the F1 from the baseline parser (x) and the baseline parser with fusion (y) respectively. Blue indicates a
statistically significant difference between fusion and its baseline parser (p < 0.01).

performs better than fusion on BNC and GENIA,
but surprisingly fusion outperforms model com-
bination on three of the six domains (not usually
not by a significant margin). With further tuning
(e.g., specific weights for each constituent-parser
pair), the benefits from model combination should
increase.

Multilingual evaluation: We evaluate fusion with
the Berkeley parser on Arabic (Maamouri et al.,
2004; Green and Manning, 2010), French (Abeillé
et al., 2003), and German (Brants et al., 2002)
from the SPMRL 2014 shared task (Seddah et al.,
2014) but did not observe any improvement. We
suspect this has to do with the same ranking issues
seen in the Berkeley Parser’s English results. On
the other hand, fusion helps the parser of Narayan
and Cohen (2015) on the German NEGRA tree-
bank (Skut et al., 1997) to improve from 80.9% to
82.4%.

Runtime: As discussed in Section 2, fusion’s run-
time overhead is minimal. Reranking parsers (e.g.,
BLLIP and Stanford RNN) already need to per-
form n-best decoding as input for the reranker.
Using a somewhat optimized implementation fu-
sion in C++, the overhead over BLLIP parser is

less than 1%.

Discussion: Why does fusion help? It is possible
that a parser’s n-list and its scores act as a weak
approximation to the full parse forest. As a result,
fusion seems to provide part of the benefits seen in
forest reranking (Huang, 2008).

Results from Fossum and Knight (2009) imply
that fusion and model combination might not be
complementary. Both n-best lists and additional
parsers provide syntactic diversity. While addi-
tional parsers provide greater diversity, n-best lists
from common parsers are varied enough to pro-
vide improvements for parse hybridization.

We analyzed how often fusion produces com-
pletely novel trees. For BLLIP on WSJ section
24, this only happens about 11% of the time.
Fusion picks the 1-best tree 72% of the time.
This means that for the remaining 17%, fusion
picks an existing parse from the rest of the n-
list, acting similar to a reranker. When fusion
creates unique trees, they are significantly better
than the original 1-best trees (for the 11% sub-
set of WSJ 24, F1 scores are 85.5% with fusion
and 84.1% without, p < 0.003). This constrasts
with McClosky et al. (2012) where novel predic-



tions from model combination (stacking) were
worse than baseline performance. The difference
is that novel predictions with fusion better incor-
porate model confidence whereas when stacking,
a novel prediction is less trusted than those pro-
duced by one or both of the base parsers.
Preliminary extensions: Here, we summarize
two extensions to fusion which have yet to show
benefits. The first extension explores applying
fusion to dependency parsing. We explored two
ways to apply fusion when starting from con-
stituency parses: (1) fuse constituents and then
convert them to dependencies and (2) convert to
dependencies then fuse the dependencies as in
Sagae and Lavie (2006). Approach (1) does not
provide any benefit (LAS drops between 0.5% and
2.4%). This may result from fusion’s artifacts in-
cluding unusual unary chains or nodes with a large
number of children — it is possible that adjusting
unary handling and the precision/recall tradeoff
may reduce these issues. Approach (2) provided
only modest benefits compared to those from con-
stituency parsing fusion. The largest LAS increase
for (2) is 0.6% for the Stanford Parser, though for
Berkeley and Self-trained BLLIP, dependency fu-
sion results in small losses (-0.1% LAS). Two pos-
sible reasons are that the dependency baseline is
higher than its constituency counterpart and some
dependency graphs from the n-best list are dupli-
cates which lowers diversity and may need special
handling, but this remains an open question.

While fusion helps on top of a self-trained
parser, we also explored whether a fused parser
can self-train (McClosky et al., 2006). To test this,
we (1) parsed two million sentences with BLLIP
(trained on WSJ), (2) fused those parses, (3) added
the fused parses to the gold training set, and (4)
retrained the parser on the expanded training. The
resulting model did not perform better than a self-
trained parsing model that didn’t use fusion.

4 Conclusions

We presented a simple extension to parse hy-
bridization which adapts model combination tech-
niques to operate over a single parser’s n-best list
instead of across multiple parsers. By weight-
ing each parse by its probability from the n-best
parser, we are able to better capture the confidence
at the constituent level. Our best configuration ob-
tains state-of-the-art accuracy on WSJ with an F1

of 92.6%. This is similar to the accuracy obtained

from actual model combination techniques but at
a fraction of the computational cost. Additionally,
improvements are not limited to a single parser or
domain. Fusion improves parser accuracy for six
n-best parsers both in-domain and out-of-domain.

Future work includes applying fusion to n-best
dependency parsers and additional (parser, lan-
guage) pairs. We also intend to explore how to bet-
ter apply fusion to converted dependencies from
constituency parsers. Lastly, it would be interest-
ing to adapt fusion to other structured prediction
tasks where n-best lists are available.
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