Event Extraction as Dependency Parsing

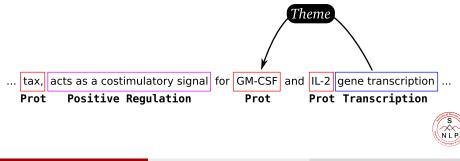
David McClosky

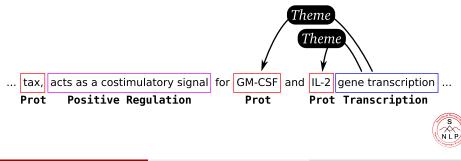
Stanford University

4.21.2011

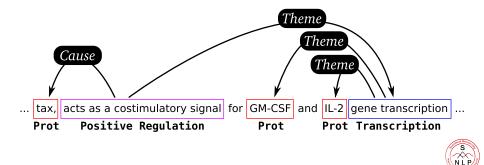
Joint work with Mihai Surdeanu and Chris Manning (to appear in ACL 2011)

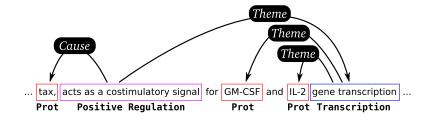
Goal: Determine which biological events occur within text




Goal: Determine which biological events occur within textWhy? Thousands of biomedical articles are published *each month*. Create databases of known interactions, better search

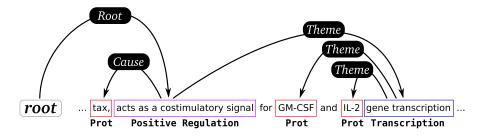
We have found that the HTLV-1 transactivator protein, tax, acts as a costimulatory signal for GM-CSF and IL-2 gene transcription in that it can cooperate with TCR signals to mediate high level gene expression.





Hierarchical Event Extraction from Biomedical Text

- **Goal:** Determine which biological events occur within text
- Why? Thousands of biomedical articles are published *each month*.
 - Create databases of known interactions, better search



This talk in two slides...

Spoiler alert!

A little bit about the BioNLP 2009 shared task

Туре	Name	Arguments
Simple	Gene expression	Theme (Protein)
	Transcription	Theme (Protein)
	Protein catabolism	Theme (Protein)
	Phosphorylation	Theme (Protein)
	Localization	Theme (Protein)
	Binding	Theme (Protein) +

A little bit about the BioNLP 2009 shared task

Туре	Name	Arguments
Simple	Gene expression	Theme (Protein)
	Transcription	Theme (Protein)
	Protein catabolism	Theme (Protein)
	Phosphorylation	Theme (Protein)
	Localization	Theme (Protein)
	Binding	Theme (Protein) +
Complex	Regulation	Theme / Cause (Protein / Event)
	Positive regulation	Theme / Cause (Protein / Event)
	Negative regulation	Theme / Cause (Protein / Event)

Protein entities given for free

- Protein entities given for free
 - ...but event anchors must be detected by the model

- Protein entities given for free
 - ...but event anchors must be detected by the model
- Event anchors and proteins can participate in multiple events

- Protein entities given for free
 - ...but event anchors must be detected by the model
- Event anchors and proteins can participate in multiple events
- Events can span sentences ($\approx 7\%$ do)

- Protein entities given for free
 - ...but event anchors must be detected by the model
- Event anchors and proteins can participate in multiple events
- Events can span sentences ($\approx 7\%$ do)
- Actually the simplest BioNLP 2009 shared task ("Task 1")

- Protein entities given for free
 - ...but event anchors must be detected by the model
- Event anchors and proteins can participate in multiple events
- Events can span sentences ($\approx 7\%$ do)
- Actually the simplest BioNLP 2009 shared task ("Task 1")
 - ...and BioNLP 2011 task includes two new domains

Outline

Previous approaches

- Pipelined systems
- Markov Logic
- 3 Event Parsing

4 Experiments

5 Future work

Best scoring system in BioNLP 2009 shared task

- Best scoring system in BioNLP 2009 shared task
- Pipelined classifiers:
 - Event anchor detection and classification

- Best scoring system in BioNLP 2009 shared task
- Pipelined classifiers:
 - Event anchor detection and classification
 - 2 Event linking

- Best scoring system in BioNLP 2009 shared task
- Pipelined classifiers:
 - Event anchor detection and classification
 - 2 Event linking
 - Heuristic postprocessing rules

- Best scoring system in BioNLP 2009 shared task
- Pipelined classifiers:
 - Event anchor detection and classification
 - 2 Event linking
 - Heuristic postprocessing rules
- 52.0% f-score

Miwa et al. (2010)

- Outperforms best scoring system in BioNLP 2009 shared task
- Pipelined classifiers:
 - Event anchor detection and classification
 - 2 Event linking
 - Learned postprocessing rules
- 53.3% f-score
- More domain specific features, multiple syntactic parsers

[Miwa et al., JBCB 2010]

Markov logic-based system using hard and soft constraints

- Markov logic-based system using hard and soft constraints
- Example formula schema:

 $Token(j, +text) \land SyntacticDep(i, j, dep) \implies EventType(i, +type)$

- Markov logic-based system using hard and soft constraints
- Example formula schema:

 $Token(j, +text) \land SyntacticDep(i, j, dep) \implies EventType(i, +type)$ $SyntacticDep(i, j, +dep) \land Protein(i) \implies EventArg(i, j, +label)$

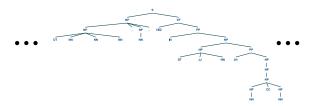
- Markov logic-based system using hard and soft constraints
- Example formula schema:

 $Token(j, +text) \land SyntacticDep(i, j, dep) \implies EventType(i, +type)$ $SyntacticDep(i, j, +dep) \land Protein(i) \implies EventArg(i, j, +label)$

• 50.0% f-score

Outline

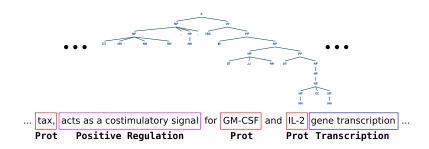
- 1 BioNLP shared task
- 2 Previous approaches
- Event Parsing
 - 4 Experiments
 - 5 Future work
 - Conclusion


Overview of our model

... tax, acts as a costimulatory signal for GM-CSF and IL-2 gene transcription ...

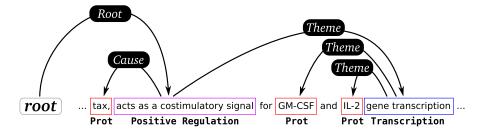
Preprocessing: Segmentation, tokenization

Overview of our model


... tax, acts as a costimulatory signal for GM-CSF and IL-2 gene transcription ...

Preprocessing: Segmentation, tokenization, syntactic parsing

[McClosky and Charniak, ACL 2008]


Overview of our model

Anchor classification: Essentially NER for event anchors

Overview of our model

Event parsing: Parse anchors and proteins using reranking parser

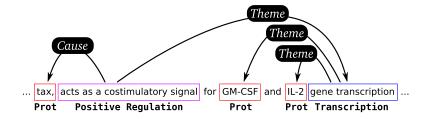
Anchor classification

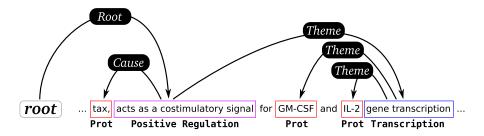
• Anchors can be multiple words (13% have 2+ words)

Anchor classification

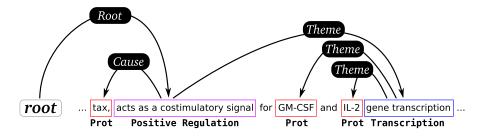
- Anchors can be multiple words (13% have 2+ words)
- Our anchor classifiers only operate on heads of anchors

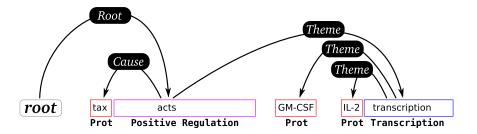
Anchor classification

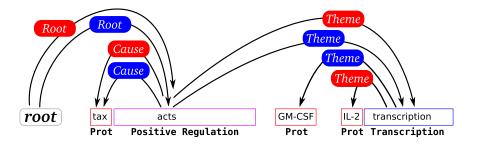

- Anchors can be multiple words (13% have 2+ words)
- Our anchor classifiers only operate on heads of anchors
- Logistic Regression works best for us (≈65% f-score)


Anchor classification

- Anchors can be multiple words (13% have 2+ words)
- Our anchor classifiers only operate on heads of anchors
- Logistic Regression works best for us (≈65% *f*-score)
- More recent work on boosting recall (distributional similarity features)






(Not pictured: Unused entities linked to the root as well.)

DAGnabbit!

...but most duplicates can be merged

Туре	Name	Arguments		
Simple	Gene expression	Theme (Protein)		
	Transcription	Theme (Protein)		
	Protein catabolism	Theme (Protein)		
	Phosphorylation	Theme (Protein)		
	Localization	Theme (Protein)		
	Binding	Theme (Protein) +		
Complex	Regulation	Theme / Cause (Protein / Event)		
	Positive regulation	Theme / Cause (Protein / Event)		
	Negative regulation	Theme / Cause (Protein / Event)		

...but most duplicates can be merged

Туре	Name	Arguments		
Simple	Gene expression	Theme (Protein)		
	Transcription	Theme (Protein)		
	Protein catabolism	Theme (Protein)		
	Phosphorylation	Theme (Protein)		
	Localization	Theme (Protein)		
	Binding	Theme (Protein) +		
Complex	Regulation	Theme / Cause (Protein / Event)		
	Positive regulation	Theme / Cause (Protein / Event)		
	Negative regulation	Theme / Cause (Protein / Event)		

• Binding is the only ambiguous case.

Why a dependency parser?

• Event structures are non-projective (non-planar)

Why a dependency parser?

Event structures are non-projective (non-planar)

Why MSTParser? [McDonald et al., EMNLP 2005]

Handles non-projective trees naturally

Why a dependency parser?

Event structures are non-projective (non-planar)

Why MSTParser? [McDonald et al., EMNLP 2005]

- Handles non-projective trees naturally
- Easy to extend feature extractor

Why a dependency parser?

Event structures are non-projective (non-planar)

Why MSTParser? [McDonald et al., EMNLP 2005]

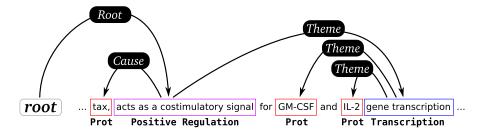
- Handles non-projective trees naturally
- Easy to extend feature extractor
- Support for n-best parsing

- Parse trees represented as a **labeled graph** (G = (V, E))
- Words are nodes $(i, j, \dots \in V)$, dependency relations are edges $(e_{ij} \in E)$

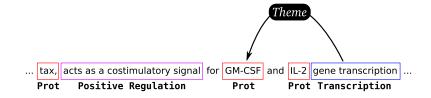
- Parse trees represented as a labeled graph (G = (V, E))
- Words are nodes $(i, j, \dots \in V)$, dependency relations are edges $(e_{ij} \in E)$
- Each edge has a feature vector (f(i,j)) and score: $s(i,j) = \mathbf{w} \cdot f(i,j)$

- Parse trees represented as a labeled graph (G = (V, E))
- Words are nodes $(i, j, \dots \in V)$, dependency relations are edges $(e_{ij} \in E)$
- Each edge has a feature vector (f(i,j)) and score: $s(i,j) = \mathbf{w} \cdot f(i,j)$
- Find a subset of edges π = {e_{ij}} ⊂ E such that
 - Edges form a tree

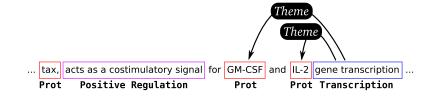
- Parse trees represented as a labeled graph (G = (V, E))
- Words are nodes $(i, j, \dots \in V)$, dependency relations are edges $(e_{ij} \in E)$
- Each edge has a feature vector (f(i,j)) and score: $s(i,j) = \mathbf{w} \cdot f(i,j)$
- Find a subset of edges π = {e_{ij}} ⊂ E such that
 - Edges form a tree
 - Edges have **maximal score**: $\sum_{\pi} s(i,j)$


- Parse trees represented as a labeled graph (G = (V, E))
- Words are nodes $(i, j, \dots \in V)$, dependency relations are edges $(e_{ij} \in E)$
- Each edge has a feature vector (f(i,j)) and score: $s(i,j) = \mathbf{w} \cdot f(i,j)$
- Find a subset of edges π = {e_{ij}} ⊂ E such that
 - Edges form a tree
 - Edges have **maximal score**: $\sum_{\pi} s(i,j)$
- Can be solved in O(n²) time [Chu and Liu, 1965], [Edmonds, 1967], [Tarjan, 1977]

- Parse trees represented as a labeled graph (G = (V, E))
- Words are nodes $(i, j, \dots \in V)$, dependency relations are edges $(e_{ij} \in E)$
- Each edge has a feature vector (f(i,j)) and score: $s(i,j) = \mathbf{w} \cdot f(i,j)$
- Find a subset of edges π = {e_{ij}} ⊂ E such that
 - Edges form a tree
 - Edges have **maximal score**: $\sum_{\pi} s(i,j)$
- Can be solved in O(n²) time
 [Chu and Liu, 1965], [Edmonds, 1967], [Tarjan, 1977]
- Features must be edge-factored



Edge-factored features



Edge-factored features

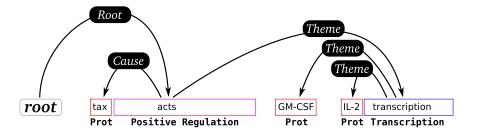
Second-order edge-factored features

Feature spaces

tax,	acts as a costimulatory signal	for	GM-CSF	and	IL-2	gene transcription	
Prot	Positive Regulation		Prot		Prot	Transcription	

"Full"

Feature spaces



"Full"

(includes original syntactic tree)

Feature spaces

"Reduced"

Full sentence space:

• Surface words features (distance, n-grams)

Full sentence space:

- Surface words features (distance, *n*-grams)
- Constituency/dependency path features (length, n-grams, endpoints)

Full sentence space:

- Surface words features (distance, *n*-grams)
- Constituency/dependency path features (length, n-grams, endpoints)
- Semantic graph features (# and identities of children/siblings/parents)

Full sentence space:

- Surface words features (distance, *n*-grams)
- Constituency/dependency path features (length, n-grams, endpoints)
- Semantic graph features (# and identities of children/siblings/parents)

Reduced sentence space:

All the original MSTParser features

Full sentence space:

- Surface words features (distance, *n*-grams)
- Constituency/dependency path features (length, n-grams, endpoints)
- Semantic graph features (# and identities of children/siblings/parents)

Reduced sentence space:

- All the original MSTParser features
- Generalized type features
 - (e.g. Positive Regulation is a Complex Event is an Event)

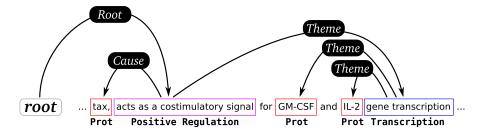
• MSTParser is limited to highly local features (1–2 edges).

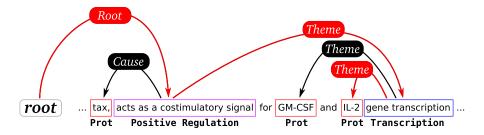
- MSTParser is limited to highly local features (1–2 edges).
- Rerankers work great for syntactic parsing, why not event parsing? [Ratnaparkhi, JML 1997], [Charniak and Johnson, ACL 2005]

- MSTParser is limited to highly local features (1–2 edges).
- Rerankers work great for syntactic parsing, why not event parsing? [Ratnaparkhi, JML 1997], [Charniak and Johnson, ACL 2005]
- Extend parser to k-best parser (k = 50 for us) [Hall, ACL 2007]

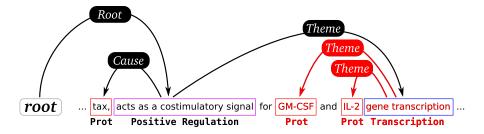
- MSTParser is limited to highly local features (1–2 edges).
- Rerankers work great for syntactic parsing, why not event parsing? [Ratnaparkhi, JML 1997], [Charniak and Johnson, ACL 2005]
- Extend parser to k-best parser (k = 50 for us) [Hall, ACL 2007]
- Given k parses, rescore them and rerank

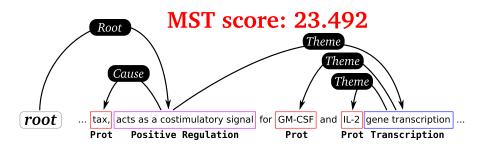
- MSTParser is limited to highly local features (1–2 edges).
- Rerankers work great for syntactic parsing, why not event parsing? [Ratnaparkhi, JML 1997], [Charniak and Johnson, ACL 2005]
- Extend parser to k-best parser (k = 50 for us) [Hall, ACL 2007]
- Given *k* parses, rescore them and rerank
- Can optimize actual BioNLP f-score metric, use any features


- MSTParser is limited to highly local features (1–2 edges).
- Rerankers work great for syntactic parsing, why not event parsing? [Ratnaparkhi, JML 1997], [Charniak and Johnson, ACL 2005]
- Extend parser to k-best parser (k = 50 for us) [Hall, ACL 2007]
- Given *k* parses, rescore them and rerank
- Can optimize actual BioNLP f-score metric, use any features
- Can combine output from multiple parsers [Johnson and Ural, NAACL 2010]


Event parse reranking

- MSTParser is limited to highly local features (1–2 edges).
- Rerankers work great for syntactic parsing, why not event parsing? [Ratnaparkhi, JML 1997], [Charniak and Johnson, ACL 2005]
- Extend parser to k-best parser (k = 50 for us) [Hall, ACL 2007]
- Given *k* parses, rescore them and rerank
- Can optimize actual BioNLP f-score metric, use any features
- Can combine output from multiple parsers [Johnson and Ural, NAACL 2010]
- k-best decoding in $O(kn^2)$, reranking takes O(k) time

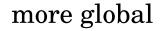


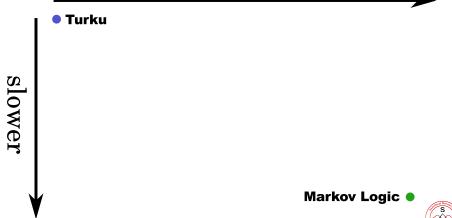

Paths to root

Event frames

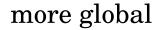
Score from parser

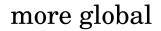
more global

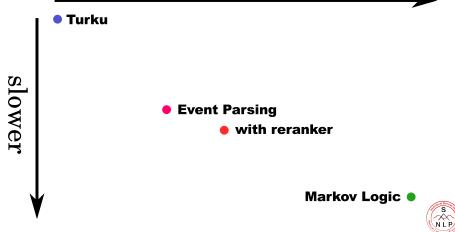




more global







Outline

- BioNLP shared task
- 2 Previous approaches
- 3 Event Parsing

5 Future work

Corpora

• 800 articles for training, 150 for development, 260 for testing

Corpora

- 800 articles for training, 150 for development, 260 for testing
- Training includes 8,597 events, 6,607 anchors, 9,300 proteins

Corpora

- 800 articles for training, 150 for development, 260 for testing
- Training includes 8,597 events, 6,607 anchors, 9,300 proteins

Anchors

• Two scenarios: Gold or predicted

Corpora

- 800 articles for training, 150 for development, 260 for testing
- Training includes 8,597 events, 6,607 anchors, 9,300 proteins

Anchors

- Two scenarios: Gold or predicted
- When predicted, train on the union of predicted and gold anchors

Anchors	Parser	RR	Conv.	Rec	Prec	F_1
Gold	Gold	Gold	\checkmark	81.6	93.4	87.1

Anchors	Parser	RR	Conv.	Rec	Prec	F_1
Gold	\checkmark		\checkmark	68.9	77.1	72.7
Gold	Gold	Gold	\checkmark	81.6	93.4	87.1

Anchors	Parser	RR	Conv.	Rec	Prec	F_1
Gold	\checkmark		\checkmark	68.9	77.1	72.7
Gold	\checkmark	\checkmark	\checkmark	68.5	77.1 78.2 93.4	73.1
Gold	Gold	Gold	\checkmark	81.6	93.4	87.1

Anchors	Parser	RR	Conv.	Rec	Prec	F_1
\checkmark	\checkmark		\checkmark	45.9	61.8	52.7
Gold	\checkmark		\checkmark	68.9	77.1	72.7
Gold	\checkmark	\checkmark	\checkmark	68.5	77.1 78.2 93.4	73.1
Gold	Gold	Gold	\checkmark	81.6	93.4	87.1

Anchors	Parser	RR	Conv.	Rec	Prec	F_1
\checkmark	\checkmark		\checkmark	45.9	61.8	52.7
\checkmark	\checkmark	\checkmark	\checkmark	48.7	61.8 59.3 77.1	53.5
Gold	\checkmark		\checkmark	68.9	77.1	72.7
Gold	\checkmark	\checkmark	\checkmark	68.5	78.2	73.1
Gold	Gold	Gold	\checkmark	81.6	93.4	87.1

		n-best parses considered			
Anchors	Parser(s)	1	2	10	All
Gold	2P	71.8	77.5	84.8	86.2
	1P, 2P, 2N		—	—	86.7
Predicted	2P	52.7	60.7	70.1	72.5
	1P, 2P, 2N	—	_		73.4

		n-best parses considered			
Anchors	Parser(s)	1	2	10	All
Gold	2P	71.8	77.5	84.8	86.2
	1P, 2P, 2N		—	—	86.7
Predicted	2P	52.7	60.7	70.1	72.5
	1P, 2P, 2N	—			73.4

		n-best parses considered			
Anchors	Parser(s)	1	2	10	All
Gold	2P	71.8	77.5	84.8	86.2
	1P, 2P, 2N		—		86.7
Predicted	2P	52.7	60.7	70.1	72.5
	1P, 2P, 2N	—			73.4

		n-best parses considered			
Anchors	Parser(s)	1	2	10	All
Gold	2P	71.8	77.5	84.8	86.2
	1P, 2P, 2N		—		86.7
Predicted	2P	52.7	60.7	70.1	72.5
	1P, 2P, 2N	—	_		73.4

		n-best parses considered			
Anchors	Parser(s)	1	2	10	All
Gold	2P	71.8	77.5	84.8	86.2
	1P, 2P, 2N		—	—	86.7
Predicted	2P	52.7	60.7	70.1	72.5
	1P, 2P, 2N	—	_		73.4

Comparison with State-of-the-Art

	f-score					
System	dev _{GA}	dev	test			
Event Parsing	73.1	53.5	48.6			
[Björne <i>et al.</i> , 2009]	72.1	53.5	52.0			
[Poon and Vanderwende, 2010]	N/A	55.5	50.0			
[Miwa <i>et al.</i> , 2010]	_	56.3	53.3			

(dev_{GA} is the development section with gold anchors)

Outline

BioNLP shared task

2) Previous approaches

3 Event Parsing

Experiments

- Document-level parsing
- DAG parsing

• All existing systems are restricted to events within a sentence

- All existing systems are restricted to events within a sentence
- Recall: \approx 7% of events cross sentences boundaries

- All existing systems are restricted to events within a sentence
- Recall: \approx 7% of events cross sentences boundaries
- We can parse an entire document at once naturally

- All existing systems are restricted to events within a sentence
- Recall: \approx 7% of events cross sentences boundaries
- We can parse an entire document at once naturally
- Adjust features:
 - Need a notion of sentence distance between entities

- All existing systems are restricted to events within a sentence
- Recall: \approx 7% of events cross sentences boundaries
- We can parse an entire document at once naturally
- Adjust features:
 - Need a notion of sentence distance between entities
 - Dependency paths can cross sentences

- All existing systems are restricted to events within a sentence
- Recall: \approx 7% of events cross sentences boundaries
- We can parse an entire document at once naturally
- Adjust features:
 - Need a notion of sentence distance between entities
 - Dependency paths can cross sentences
- Currently performs $\approx 3\%$ worse than sentence-level parsing

• Event parse trees become DAGs in the presence of conjunctions

- Event parse trees become DAGs in the presence of conjunctions
- Rule-based or learned heuristics currently handle this

- Event parse trees become DAGs in the presence of conjunctions
- Rule-based or learned heuristics currently handle this
- Relatively little work on DAG parsing

- ۹ Event parse trees become DAGs in the presence of conjunctions
- Rule-based or learned heuristics currently handle this ٠
- Relatively little work on DAG parsing •
- [Sagae and Tsujii, COLING 2008] shows how to do it in MaltParser ٠

- ۹ Event parse trees become DAGs in the presence of conjunctions
- Rule-based or learned heuristics currently handle this ٠
- Relatively little work on DAG parsing ٠
- [Sagae and Tsujii, COLING 2008] shows how to do it in MaltParser •
 - New action adds an additional parent to nodes

- ٠ Event parse trees become DAGs in the presence of conjunctions
- Rule-based or learned heuristics currently handle this ۲
- Relatively little work on DAG parsing ٠
- [Sagae and Tsujii, COLING 2008] shows how to do it in MaltParser •
 - New action adds an additional parent to nodes
- Maybe TurboParser [Martins and Smith, ACL 2009] can do this by adjusting constraints

New approach to event extraction

- New approach to event extraction
 - Parsing can be used for event extraction

- New approach to event extraction
 - Parsing can be used for event extraction
 - Reranker further improves performance

- New approach to event extraction
 - Parsing can be used for event extraction
 - Reranker further improves performance
- vs. pipelined systems: can handle more global features

It's over!

- New approach to event extraction
 - Parsing can be used for event extraction
 - Reranker further improves performance
- vs. pipelined systems: can handle more global features
- vs. Markov Logic: faster inference, features instead of formulae

It's over!

- New approach to event extraction
 - Parsing can be used for event extraction
 - Reranker further improves performance
- vs. pipelined systems: can handle more global features
- vs. Markov Logic: faster inference, features instead of formulae
- Performance close to state-of-the-art systems

It's over!

Summary

- New approach to event extraction
 - Parsing can be used for event extraction
 - Reranker further improves performance
- vs. pipelined systems: can handle more global features
- vs. Markov Logic: faster inference, features instead of formulae
- Performance close to state-of-the-art systems

Questions?

