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Parsing
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Parsing

“I need a sentence with ambiguity.”
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Parsing

s is a sentence
π is a parse tree

parse(s) = arg max
π

p(π | s)

such that yield(π) = s
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Flow Chart
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Reranking Parsers

Best parses are not always first, but the correct
parse is often in the top 50

Rerankers rescore parses from the n-best
parser using more complex (not necessarily
context-free) features

Oracle rerankers on the Charniak parser’s
50-best list can achieve over 95% f -score
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Flow Chart
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Our reranking parser

Parser and reranker as described in Charniak
and Johnson (ACL 2005) with new features

Lexicalized context-free generative parser,
maximum entropy discriminative reranker

New reranking features improve reranking
parser’s performance by 0.3% on section 23
over ACL 2005
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Unlabelled data
Question: Can we improve the reranking parser
with cheap unlabeled data?
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Unlabelled data
Question: Can we improve the reranking parser
with cheap unlabeled data?

Self-training

Co-training

Clustering n-grams, use clusters as general
class of n-grams

Improve vocabulary, n-gram language model

etc.
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Self-training

Train model from labeled data
train reranking parser on WSJ

Use model to annotate unlabeled data
use model to parse NANC

Combine annotated data with labeled training
data
merge WSJ training data with parsed NANC data

Train a new model from the combined data
train reranking parser on WSJ+NANC data

Optional: repeat with new model on more
unlabeled data
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Flow Chart
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Previous work
Parsing: Charniak (1997), confirmed by
Steedman et al. (2003)

insignificant improvement

Part of speech tagging: Clark et al. (2003)
minor improvement/damage depending on amount of
training data

Parser adaptation: Bacchiani et al. (2006)
helps when parsing WSJ when training on Brown
corpus and self-training on news data
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Experiments (overview)

How should we annotate data? (parser or
reranking parser)

How much unlabelled data should we label?

How should we combine annotated unlabeled
data with true data?
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Annotating unlabeled data

Annotator

Sentences added Parser Reranking parser

0 (baseline) 90.3

50k 90.1 90.7

500k 90.0 90.9

1,000k 90.0 90.8

1,500k 90.0 90.8

2,000k 91.0

Parser (not reranking parser) f -scores
on all sentences in section 22
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Annotating unlabeled data

WSJ Section

Sentences added 1 22 24

0 (baseline) 91.8 92.1 90.5

50k 91.8 92.4 90.8

500k 92.0 92.4 90.9

1,000k 92.1 92.2 91.3

2,000k 92.2 92.0 91.3

Reranking parser f -scores for all sentences
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Weighting WSJ data

Wall Street Journal data is more reliable than
the self-trained data

Multiply each event in Wall Street Journal data
by a constant to give it a higher relative weight

events = c × eventswsj + eventsnanc

Increasing WSJ weight tends to improve
f -scores.

Based on development data, our best model is
WSJ×5+1,750k sentences from NANC
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Evaluation on test section

Model fparser freranker

Charniak and Johnson (2005) – 91.0
Current baseline 89.7 91.3
Self-trained 91.0 92.1

f -scores from all sentences in WSJ section 23

David McClosky - dmcc@cs.brown.edu - NAACL 2006 - 6.5.2006 - 18



The Story So Far...

Retraining parser on its own output doesn’t help

Retraining parser on the reranker’s output helps

Retraining reranker on the reranker’s output
doesn’t help
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Analysis: Global changes

Oracle f -scores increase, self-trained parser
has greater potential

Model 1-best 10-best 50-best

Baseline 89.0 94.0 95.9
WSJ×1 + 250k 89.8 94.6 96.2

WSJ×5 + 1,750k 90.4 94.8 96.4

Average of log2
Pr(1-best)

Pr(50th-best) increases from 12.0

(baseline parser) to 14.1 (self-trained parser)

David McClosky - dmcc@cs.brown.edu - NAACL 2006 - 6.5.2006 - 20



Sentence-level Analysis
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Effect of Sentence Length
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The Goldilocks EffectTM
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. . . and . . .
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Ongoing work

Parser adaptation (McClosky, Charniak, and
Johnson ACL 2006)

Sentence selection

Clustering local trees

Other ways of combining data
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Conclusions
Self-training can improve on state-of-the-art
parsing for Wall Street Journal

Reranking parsers can self-train their first stage
parser

More analysis is needed to understand why
reranking is necessary

Self-trained reranking parser available from:
ftp://ftp.cs.brown.edu/pub/nlparser
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