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Robots will need to understand language
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Robots will need to understand language
[Lucas et al., 1977, Lucas et al., 1980, Lucas et al. 1983]
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Keeping up to date with Twitter
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Reading the news
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Studying the latest medical journals
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Casual reading
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Semantics depend on syntax
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Applications of Parsing

◮ Parsing is often part of larger NLP pipelines.
◮ Some examples:

◮ Machine translation [Charniak et al., 2003]
◮ Bioinformatics [Miyao et al., 2008]
◮ Forensics (author identification) [Luyckx and Daelemans, 2008]
◮ Discourse analysis [Barzilay and Lapata, 2008]
◮ Summarization [Turner and Charniak, 2005]
◮ Language modeling [Roark, 2001], [Charniak, 2001]
◮ Speech repairs [Johnson and Charniak, 2004]
◮ Coreference [Luo and Zitouni, 2005], [Charniak and Elsner, 2009]
◮ etc.
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Data-driven Parsing

◮ Many current approaches to parsing are data-driven.
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Data-driven Parsing

◮ Many current approaches to parsing are data-driven.
◮ Data consists of human-annotated corpora with labeled

examples of correct parse structures (“gold trees”).
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Data-driven Parsing

◮ Parsers are trained on these corpora to produce models.
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Data-driven Parsing

◮ The parsing model is used to parse unlabeled text.
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Data-driven Parsing

◮ Many model parameters may hurt portability/generality
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What’s in a domain?
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Masters of their domain?
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Evaluating parse trees
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Parsing training scenarios
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Thesis statement

Self-training is an effective semi-supervised
learning technique for parsing, capable of
improving both in-domain and cross-domain
parsing scenarios.

21



Parsing training scenarios
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Incorporating unlabeled data

◮ How can we leverage unlabeled data in our models?
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Incorporating unlabeled data: Self-training

1. Train a model from the labeled data.
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Incorporating unlabeled data: Self-training

2. Parse the unlabeled text.
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Incorporating unlabeled data: Self-training

3. Combine gold trees with automatically parsed trees.
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Incorporating unlabeled data: Self-training

4. Train a new model from the combination.

24



A Brief History of Self-training

◮ [Charniak, 1997]

◮ [Steedman et al., 2003]

◮ [Clark and Curran, 2003] (part of speech tagging)
◮ [Roark and Bacchiani, 2003]
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A Brief History of Self-training

◮ [Charniak, 1997]

◮ [Steedman et al., 2003]

◮ [Clark and Curran, 2003] (part of speech tagging)
◮ [Roark and Bacchiani, 2003]

→ no improvements over state-of-the-art from self-training

◮ [McClosky, Charniak, and Johnson, NAACL 2006]

→ reranking parser
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The Parsing Model
[Charniak and Johnson, 2005]

◮ Lexicalized PCFG parser gives most probable parse
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The Parsing Model
[Charniak and Johnson, 2005]

◮ Use n most probable parses instead just top parse

27



The Parsing Model
[Charniak and Johnson, 2005]

◮ Discriminative reranker picks “best” parse from list
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Parsing training scenarios
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Self-training for parsing
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Self-training for parsing is effective
[McClosky, Charniak, and Johnson, NAACL 2006]

Model f -score
Baseline (WSJ) 91.3
Self-trained (WSJ + NANC) 92.1
f -scores on WSJ evaluation section
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Parsing training scenarios
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Parser portability experiments
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Self-trained WSJ model portability

Train Test f -score
WSJ WSJ 91.3
WSJ BROWN 85.2

f -score on WSJ and BROWN evaluation sections
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Self-trained WSJ model portability

Train Test f -score
WSJ WSJ 91.3
WSJ BROWN 85.2
WSJ + NANC BROWN 87.8

f -score on WSJ and BROWN evaluation sections
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Self-trained WSJ model portability

Train Test f -score
WSJ WSJ 91.3
WSJ BROWN 85.2
WSJ + NANC BROWN 87.8
BROWN BROWN 88.4

f -score on WSJ and BROWN evaluation sections
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Parsing training scenarios
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Parser adaptation experiments
More distant domains...
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Varying unlabeled data for self-training
[McClosky and Charniak, ACL 2008]
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Parsing training scenarios
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Automatic Domain Adaptation

◮ What if we don’t know the target domain?
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Automatic Domain Adaptation

◮ What if we don’t know the target domain?
◮ Parsing the web or any other large heterogeneous corpus

◮ Consider a new parsing task:
◮ labeled and unlabeled corpora (source domains)
◮ documents to parse (target text)
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Any Domain Parsing
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Crossdomain Accuracy Prediction
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Crossdomain Accuracy Prediction

◮ Similar to [Ravi et al., 2008]
43



Prediction by regression
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Regression features
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Cosine Similarity
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Cosine Similarity
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Cosine Similarity
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Unknown words
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Regression features
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Model and estimation
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Model and estimation
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Anatomy of a data point
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Training data
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Round-robin evaluation
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Evaluation for GENIA
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Baselines

◮ Standard baselines
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Baselines

◮ Standard baselines
◮ Fixed set: WSJ
◮ Uniform (no self-trained corpora)
◮ Uniform (all corpora)

◮ Oracle baselines
◮ Best single corpus
◮ Best seen

54



Evaluation results
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Moral of the story

◮ What’s the best way to parse new text?
◮ Self-training on similar text improves performance
◮ Any Domain Parsing provides additional benefits by

selecting relevant corpora
◮ Self-training helps in many different parsing scenarios

◮ Allows us to use unlabeled data to improve performance
◮ State-of-the-art performance on WSJ, BROWN, and GENIA

◮ Relevant publications:

◮ [McClosky, Charniak, and Johnson, NAACL 2006]
◮ [McClosky, Charniak, and Johnson, ACL 2006]
◮ [McClosky and Charniak, ACL 2008]
◮ [McClosky, Charniak, and Johnson, COLING 2008]
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May The Force Be With You

Questions?

Thanks to my committee, BLLIP, friends, and family for
their feedback and support!

Dedicated to my grandparents

Brought to you by NSF grants LIS9720368 and IIS0095940 and DARPA GALE contract HR0011-06-2-0001

57



Extra slides
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What is...the matrix?

Test
Train Literature BioMed Phone ETT News
Literature 86.7 73.5 77.6 80.8 79.9
BioMed 65.7 84.6 50.5 67.1 64.6
Phone 75.8 63.6 88.2 76.2 69.8
ETT 76.2 65.7 74.5 82.4 72.6
News 84.1 76.2 76.7 82.2 89.7

(f -scores on all sentences in test sets)
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The Four Hypotheses
[McClosky, Charniak, and Johnson, COLING 2008]

Four hypotheses:

1. Self-training works after a phase transition.

2. Self-trained parser makes fewer search errors.

3. Certain classes of reranker features benefit self-training.

4. Self-training teaches the parser about
bilexical dependencies.
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In-domain evaluation
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In-domain evaluation results

Fixed set
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Analysis
[McClosky, Charniak, and Johnson, NAACL 2006, ACL 2006, COLING 2008]

◮ Self-trained parser is more confident.

63



Analysis
[McClosky, Charniak, and Johnson, NAACL 2006, ACL 2006, COLING 2008]

◮ Self-trained parser is more confident.
◮ Self-trained first stage parser has better potential.

63



Analysis
[McClosky, Charniak, and Johnson, NAACL 2006, ACL 2006, COLING 2008]

◮ Self-trained parser is more confident.
◮ Self-trained first stage parser has better potential.
◮ Factor analysis: predict when self-training might help

◮ Sentence length

63



Analysis
[McClosky, Charniak, and Johnson, NAACL 2006, ACL 2006, COLING 2008]

◮ Self-trained parser is more confident.
◮ Self-trained first stage parser has better potential.
◮ Factor analysis: predict when self-training might help

◮ Sentence length
◮ # of conjunctions

63



Analysis
[McClosky, Charniak, and Johnson, NAACL 2006, ACL 2006, COLING 2008]

◮ Self-trained parser is more confident.
◮ Self-trained first stage parser has better potential.
◮ Factor analysis: predict when self-training might help

◮ Sentence length
◮ # of conjunctions
◮ # of bigrams in NANC not seen in WSJ
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Why does self-training help?
[McClosky, Charniak, and Johnson, NAACL 2006, ACL 2006, COLING 2008]

◮ Hypothesis:
◮ Self-training teaches the parser about

bilexical dependencies.
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The Generative Story
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What does self-training teach the parser?
[McClosky, Charniak, and Johnson, COLING 2008]

P(constit | label , history) = P(tag | label , history)
× P(head | tag, label , history)
× P(exp | head , tag, label , history)
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What we learn from unlabeled data
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What we learn from unlabeled data
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