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Abstract

Unsupervised grammar induction models tend
to employ relatively simple models of syntax
when compared to their supervised counter-
parts. Traditionally, the unsupervised mod-
els have been kept simple due to tractabil-
ity and data sparsity concerns. In this paper,
we introduce basic valence frames and lexi-
cal information into an unsupervised depen-
dency grammar inducer and show how this
additional information can be leveraged via
smoothing. Our model produces state-of-the-
art results on the task of unsupervised gram-
mar induction, improving over the best previ-
ous work by almost 10 percentage points.

1 Introduction

The last decade has seen great strides in statisti-
cal natural language parsing. Supervised and semi-
supervised methods now provide highly accurate
parsers for a number of languages, but require train-
ing from corpora hand-annotated with parse trees.
Unfortunately, manually annotating corpora with
parse trees is expensive and time consuming so for
languages and domains with minimal resources it is
valuable to study methods for parsing without re-
quiring annotated sentences.

In this work, we focus on unsupervised depen-
dency parsing. Our goal is to produce a directed
graph of dependency relations (e.g. Figure 1) where
each edge indicates a head-argument relation. Since
the task is unsupervised, we are not given any ex-
amples of correct dependency graphs and only take
words and their parts of speech as input. Most
of the recent work in this area (Smith, 2006; Co-
hen et al., 2008) has focused on variants of the

The big dog barks

Figure 1: Example dependency parse.

Dependency Model with Valence (DMV) by Klein
and Manning (2004). DMV was the first unsu-
pervised dependency grammar induction system to
achieve accuracy above a right-branching baseline.
However, DMV is not able to capture some of the
more complex aspects of language. Borrowing some
ideas from the supervised parsing literature, we
present two new models: Extended Valence Gram-
mar (EVG) and its lexicalized extension (L-EVG).
The primary difference between EVG and DMV is
that DMV uses valence information to determine the
number of arguments a head takes but not their cat-
egories. In contrast, EVG allows different distri-
butions over arguments for different valence slots.
L-EVG extends EVG by conditioning on lexical in-
formation as well. This allows L-EVG to potentially
capture subcategorizations. The downside of adding
additional conditioning events is that we introduce
data sparsity problems. Incorporating more valence
and lexical information increases the number of pa-
rameters to estimate. A common solution to data
sparsity in supervised parsing is to add smoothing.
We show that smoothing can be employed in an un-
supervised fashion as well, and show that mixing
DMV, EVG, and L-EVG together produces state-of-
the-art results on this task. To our knowledge, this is
the first time that grammars with differing levels of
detail have been successfully combined for unsuper-
vised dependency parsing.

A brief overview of the paper follows. In Section
2, we discuss the relevant background. Section 3
presents how we will extend DMV with additional



features. We describe smoothing in an unsupervised
context in Section 4. In Section 5, we discuss search
issues. We present our experiments in Section 6 and
conclude in Section 7.

2 Background

In this paper, the observed variables will be a corpus
of n sentences of texts = s1 . . . sn, and for each
wordsij an associated part-of-speechτij. We denote
the set of all words asVw and the set of all parts-of-
speech asVτ . The hidden variables are parse trees
t = t1 . . . tn and parameters̄θ which specify a dis-
tribution overt. A dependency treeti is a directed
acyclic graph whose nodes are the words insi. The
graph has a single incoming edge for each word in
each sentence, except one called theroot of ti. An
edge from wordi to word j means that wordj is
anargumentof word i or alternatively, wordi is the
headof word j. Note that each word token may be
the argument of at most one head, but a head may
have several arguments.

If parse treeti can be drawn on a plane above the
sentence with no crossing edges, it is calledprojec-
tive. Otherwise it isnonprojective. As in previous
work, we restrict ourselves to projective dependency
trees. The dependency models in this paper will be
formulated as a particular kind of Probabilistic Con-
text Free Grammar (PCFG), described below.

2.1 Tied Probabilistic Context Free Grammars

In order to perform smoothing, we will find useful a
class of PCFGs in which the probabilities of certain
rules are required to be the same. This will allow
us to make independence assumptions for smooth-
ing purposes without losing information, by giving
analogous rules the same probability.

Let G = (N ,T , S,R, θ) be a Probabilistic Con-
text Free Grammar with nonterminal symbolsN ,
terminal symbolsT , start symbolS ∈ N , set of
productionsR of the formN → β, N ∈ N , β ∈
(N ∪ T )∗. Let RN indicate the subset ofR whose
left-hand sides areN . θ is a vector of length|R|, in-
dexed by productionsN → β ∈ R. θN→β specifies
the probability thatN rewrites toβ. We will let θN

indicate the subvector ofθ corresponding toRN .
A tied PCFG constrains a PCFGG with a tying

relation, which is an equivalence relation over rules

that satisfies the following properties:

1. Tied rules have the same probability.

2. Rules expanding the same nonterminal are
never tied.

3. If N1 → β1 andN2 → β2 are tied then the ty-
ing relation defines a one-to-one mapping be-
tween rules inRN1

andRN2
, and we say that

N1 andN2 are tied nonterminals.

As we see below, we can estimate tied PCFGs using
standard techniques. Clearly, the tying relation also
defines an equivalence class over nonterminals. The
tying relation allows us to formulate the distribu-
tions over trees in terms of rule equivalence classes
and nonterminal equivalence classes. SupposeR̄ is
the set of rule equivalence classes andN̄ is the set
of nonterminal equivalence classes. Since all rules
in an equivalence class̄r have the same probability
(condition 1), and since all the nonterminals in an
equivalence class̄N ∈ N̄ have the same distribu-
tion over rule equivalence classes (condition 1 and
3), we can define the set of rule equivalence classes
R̄N̄ associated with a nonterminal equivalence class
N̄ , and a vector̄θ of probabilities, indexed by rule
equivalence classes̄r ∈ R̄ . θ̄N̄ refers to the sub-
vector ofθ̄ associated with nonterminal equivalence
classN̄ , indexed byr̄ ∈ R̄N̄ . Since rules in the
same equivalence class have the same probability,
we have that for eachr ∈ r̄, θr = θ̄r̄.

Let f(t, r) denote the number of times ruler ap-
pears in treet, and letf(t, r̄) =

∑

r∈r̄ f(t, r). We
see that the complete data likelihood is

P (s, t|θ) =
∏

r̄∈R̄

∏

r∈r̄

θf(t,r)
r =

∏

r̄∈R̄

θ̄
f(t,r̄)
r̄

That is, the likelihood is a product of multinomi-
als, one for each nonterminal equivalence class, and
there are no constraints placed on the parameters of
these multinomials besides being positive and sum-
ming to one. This means that all the standard es-
timation methods (e.g. Expectation Maximization,
Variational Bayes) extend directly to tied PCFGs.

Maximum likelihood estimation provides a point
estimate of̄θ. However, often we want to incorpo-
rate information about̄θ by modeling itsprior distri-
bution. As a prior, for each̄N ∈ N̄ we will specify a



Dirichlet distribution over̄θN̄ with hyperparameters
αN̄ . The Dirichlet has the density function:

P (θ̄N̄ |αN̄ ) =
Γ(

∑

r̄∈R̄
N̄

αr̄)
∏

r̄∈R̄
N̄

Γ(αr̄)

∏

r̄∈R̄
N̄

θ̄αr̄−1
r̄ ,

Thus the prior over̄θ is a product of Dirichlets,which
is conjugateto the PCFG likelihood function (John-
son et al., 2007). That is, the posteriorP (θ̄|s, t, α)
is also a product of Dirichlets, also factoring into a
Dirichlet for each nonterminal̄N , where the param-
etersαr̄ are augmented by the number of times rule
r̄ is observed in treet:

P (θ̄|s, t, α) ∝ P (s, t|θ̄)P (θ̄|α)

∝
∏

r̄∈R̄

θ̄
f(t,r̄)+αr̄−1
r̄

We can see thatαr̄ acts as a pseudocount of the num-
ber of times̄r is observed prior tot.

To make use of this prior, we use the Variational
Bayes (VB) technique for PCFGs with Dirichlet Pri-
ors presented by Kurihara and Sato (2004). VB es-
timates a distribution over̄θ. In contrast, Expec-
tation Maximization estimates merely a point esti-
mate of θ̄. In VB, one estimatesQ(t, θ̄), called
the variational distribution, which approximates the
posterior distributionP (t, θ̄|s, α) by minimizing the
KL divergence ofP from Q. Minimizing the KL
divergence, it turns out, is equivalent to maximiz-
ing a lower boundF of the log marginal likelihood
log P (s|α).

log P (s|α) ≥
∑

t

∫

θ̄

Q(t, θ̄) log
P (s, t, θ̄|α)

Q(t, θ̄)
= F

The negative of the lower bound,−F , is sometimes
called thefree energy.

As is typical in variational approaches, Kuri-
hara and Sato (2004) make certain independence as-
sumptions about the hidden variables in the vari-
ational posterior, which will make estimating it
simpler. It factors Q(t, θ̄) = Q(t)Q(θ̄) =
∏n

i=1 Qi(ti)
∏

N̄∈N̄ Q(θ̄N̄ ). The goal is to recover
Q(θ̄), the estimate of the posterior distribution over
parameters andQ(t), the estimate of the posterior
distribution over trees. Finding a local maximum of
F is done via an alternating maximization ofQ(θ̄)

andQ(t). Kurihara and Sato (2004) show that each
Q(θ̄N̄ ) is a Dirichlet distribution with parameters
α̂r = αr + EQ(t)f(t, r).

2.2 Split-head Bilexical CFGs

In the sections that follow, we frame various de-
pendency models as a particular variety of CFGs
known as split-head bilexical CFGs (Eisner and
Satta, 1999). These allow us to use the fast Eisner
and Satta (1999) parsing algorithm to compute the
expectations required by VB inO(m3) time (Eis-
ner and Blatz, 2007; Johnson, 2007) wherem is the
length of the sentence.1

In the split-head bilexical CFG framework, each
nonterminal in the grammar is annotated with a ter-
minal symbol. For dependency grammars, these
annotations correspond to words and/or parts-of-
speech. Additionally, split-head bilexical CFGs re-
quire that each wordsij in sentencesi is represented
in a split form by two terminals called its left part
sijL and right partsijR. The set of these parts con-
stitutes the terminal symbols of the grammar. This
split-head property relates to a particular type of de-
pendency grammar in which the left and right depen-
dents of a head are generated independently. Note
that like CFGs, split-head bilexical CFGs can be
made probabilistic.

2.3 Dependency Model with Valence

The most successful recent work on dependency
induction has focused on the Dependency Model
with Valence (DMV) by Klein and Manning (2004).
DMV is a generative model in which the head of
the sentence is generated and then each head recur-
sively generates its left and right dependents. The
arguments of headH in direction d are generated
by repeatedly deciding whether to generate another
new argument or to stop and then generating the
argument if required. The probability of deciding
whether to generate another argument is conditioned
onH, d and whether this would be the first argument
(this is the sense in which it models valence). When
DMV generates an argument, the part-of-speech of
that argumentA is generated givenH andd.

1Efficiently parsable versions of split-head bilexical CFGs
for the models described in this paper can be derived using the
fold-unfold grammar transform (Eisner and Blatz, 2007; John-
son, 2007).



Rule Description

S → YH SelectH as root

YH → LH RH Move to split-head representation

LH → HL STOP| dir = L, head = H,val = 0

LH → L1
H CONT | dir = L, head = H, val = 0

L′

H → HL STOP| dir = L, head = H,val = 1

L′

H → L1
H CONT | dir = L, head = H, val = 1

L1
H → YA L′

H Arg A | dir = L, head = H

Figure 2: Rule schema for DMV. For brevity, we omit
the portion of the grammar that handles the right argu-
ments since they are symmetric to the left (all rules are
the same except for the attachment rule where the RHS is
reversed).val ∈ {0, 1} indicates whether we have made
any attachments.

The grammar schema for this model is shown in
Figure 2. The first rule generates the root of the sen-
tence. Note that these rules are for∀H,A ∈ Vτ so
there is an instance of the first schema rule for each
part-of-speech.YH splits words into their left and
right components.LH encodes the stopping deci-
sion given that we have not generated any arguments
so far.L′

H encodes the same decision after generat-
ing one or more arguments.L1

H represents the distri-
bution over left attachments. To extract dependency
relations from these parse trees, we scan for attach-
ment rules (e.g.,L1

H → YA L′
H) and record that

A depends onH. The schema omits the rules for
right arguments since they are symmetric. We show
a parse of “The big dog barks” in Figure 3.2

Much of the extensions to this work have fo-
cused on estimation procedures. Klein and Manning
(2004) use Expectation Maximization to estimate
the model parameters. Smith and Eisner (2005) and
Smith (2006) investigate using Contrastive Estima-
tion to estimate DMV. Contrastive Estimation max-
imizes the conditional probability of the observed
sentences given a neighborhood of similar unseen
sequences. The results of this approach vary widely
based on regularization and neighborhood, but often
outperforms EM.

2Note that our examples use words as leaf nodes but in our
unlexicalized models, the leaf nodes are in fact parts-of-speech.

S

Ybarks

Lbarks

L1

barks

Ydog

Ldog

L1

dog

YT he

LT he

TheL

RT he

TheR

L′

dog

L1

dog

Ybig

Lbig

bigL

Rbig

bigR

L′

dog

dogL

Rdog

dogR

L′

barks

barksL

Rbarks

barksR

Figure 3: DMV split-head bilexical CFG parse of “The
big dog barks.”

Smith (2006) also investigates two techniques for
maximizing likelihood while incorporating the lo-
cality bias encoded in the harmonic initializer for
DMV. One technique, skewed deterministic anneal-
ing, ameliorates the local maximum problem by flat-
tening the likelihood and adding a bias towards the
Klein and Manning initializer, which is decreased
during learning. The second technique is structural
annealing (Smith and Eisner, 2006; Smith, 2006)
which penalizes long dependencies initially, grad-
ually weakening the penalty during estimation. If
hand-annotated dependencies on a held-out set are
available for parameter selection, this performs far
better than EM; however, performing parameter se-
lection on a held-out set without the use of gold de-
pendencies does not perform as well.

Cohen et al. (2008) investigate using Bayesian
Priors with DMV. The two priors they use are the
Dirichlet (which we use here) and the Logistic Nor-
mal prior, which allows the model to capture correla-
tions between different distributions. They initialize
using the harmonic initializer of Klein and Manning
(2004). They find that the Logistic Normal distri-
bution performs much better than the Dirichlet with
this initialization scheme.

Cohen and Smith (2009), investigate (concur-



Rule Description

S → YH SelectH as root

YH → LH RH Move to split-head representation

LH → HL STOP| dir = L, head = H,val = 0

LH → L′

H CONT | dir = L, head = H, val = 0

L′

H → L1
H STOP| dir = L, head = H,val = 1

L′

H → L2
H CONT | dir = L, head = H, val = 1

L2
H → YA L′

H Arg A | dir = L, head = H,val = 1

L1
H → YA HL Arg A | dir = L, head = H,val = 0

Figure 4: Extended Valence Grammar schema. As be-
fore, we omit rules involving the right parts of words. In
this case,val ∈ {0, 1} indicates whether we are generat-
ing the nearest argument (0) or not (1).

rently with our work) an extension of this, the
Shared Logistic Normal prior, which allows differ-
ent PCFG rule distributions to share components.
They use this machinery to investigate smoothing
the attachment distributions for (nouns/verbs), and
for learning using multiple languages.

3 Enriched Contexts

DMV models the distribution over arguments iden-
tically without regard to their order. Instead, we
propose to distinguish the distribution over the argu-
ment nearest the head from the distribution of sub-
sequent arguments.3

Consider the following changes to the DMV
grammar (results shown in Figure 4). First, we will
introduce the ruleL2

H → YA L′
H to denote the deci-

sion of what argument to generate for positions not
nearest to the head. Next, instead of havingL′

H ex-
pand toHL or L1

H , we will expand it toL1
H (attach

to nearest argument and stop) orL2
H (attach to non-

nearest argument and continue). We call this theEx-
tended Valence Grammar(EVG).

As a concrete example, consider the phrase “the
big hungry dog” (Figure 5). We would expect that
distribution over the nearest left argument for “dog”
to be different than farther left arguments. The fig-

3McClosky (2008) explores this idea further in an un-
smoothed grammar.
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L′

dog
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Figure 5: An example of moving from DMV to EVG
for a fragment of “The big dog.” Boxed nodes indicate
changes. The key difference is that EVG distinguishes
between the distributions over the argument nearest the
head (big) from arguments farther away (The).

ure shows that EVG allows these two distributions to
be different (nonterminalsL2

dog andL1
dog) whereas

DMV forces them to be equivalent (both useL1
dog as

the nonterminal).

3.1 Lexicalization

All of the probabilistic models discussed thus far
have incorporated only part-of-speech information
(see Footnote 2). In supervised parsing of both de-
pendencies and constituency, lexical information is
critical (Collins, 1999). We incorporate lexical in-
formation into EVG (henceforth L-EVG) by extend-
ing the distributions over argument parts-of-speech
A to condition on the head wordh in addition to the
head part-of-speechH, directiond and argument po-
sitionv. The argument worda distribution is merely
conditioned on part-of-speechA; we leave refining
this model to future work.

In order to incorporate lexicalization, we extend
the EVG CFG to allow the nonterminals to be anno-
tated with both the word and part-of-speech of the
head. We first remove the old rulesYH → LH RH

for eachH ∈ Vτ . Then we mark each nonter-
minal which is annotated with a part-of-speech as
also annotated with its head, with a single excep-
tion: YH . We add a new nonterminalYH,h for each
H ∈ Vτ , h ∈ Vw, and the rulesYH → YH,h and
YH,h → LH,h RH,h. The ruleYH → YH,h cor-
responds to selecting the word, given its part-of-
speech.



4 Smoothing

In supervised estimation one common smoothing
technique islinear interpolation, (Jelinek, 1997).
This section explains how linear interpolation can
be represented using a PCFG with tied rule proba-
bilities, and how one might estimate smoothing pa-
rameters in an unsupervised framework.

In many probabilistic models it is common to esti-
mate the distribution of some eventx conditioned on
some set of context informationP (x|N(1) . . . N(k))
by smoothing it with less complicated condi-
tional distributions. Using linear interpolation
we modelP (x|N(1) . . . N(k)) as a weighted aver-
age of two distributionsλ1P1(x|N(1), . . . , N(k)) +
λ2P2(x|N(1), . . . , N(k−1)), where the distribution
P2 makes an independence assumption by dropping
the conditioning eventN(k).

In a PCFG a nonterminalN can encode a collec-
tion of conditioning eventsN(1) . . . N(k), andθN de-
termines a distribution conditioned onN(1) . . . N(k)

over events represented by the rulesr ∈ RN . For
example, in EVG the nonterminalL1

NN encodes
three separate pieces of conditioning information:
the directiond = left , the head part-of-speech
H = NN , and the argument positionv = 0;
θL1

NN
→YJJ NNL

represents the probability of gener-
ating JJ as the first left argument ofNN . Sup-
pose in EVG we are interested in smoothingP (A |
d,H, v) with a component that excludes the head
conditioning event. Using linear interpolation, this
would be:

P (A | d,H, v) = λ1P1(A | d,H, v)+λ2P2(A | d, v)

We will estimate PCFG rules with linearly interpo-
lated probabilities by creating a tied PCFG which
is extended by adding rules that select between the
main distributionP1 and the backoff distributionP2,
and also rules that correspond to draws from those
distributions. We will make use of tied rule proba-
bilities to make the independence assumption in the
backoff distribution.

We still use the original grammar to parse the sen-
tence. However, we estimate the parameters in the
extended grammar and then translate them back into
the original grammar for parsing.

More formally, supposeB ⊆ N is a set of non-
terminals (called the backoff set) with conditioning

eventsN(1) . . . N(k−1) in common (differing in a
conditioning eventN(k)), and with rule sets of the
same cardinality. IfG is our model’s PCFG, we can
define a new tied PCFGG′ = (N ′,T , S,R′, φ),
where N ′ = N ∪

{

N bℓ | N ∈ B, ℓ ∈ {1, 2}
}

,
meaning for each nonterminalN in the backoff
set we add two nonterminalsN b1 , N b2 represent-
ing each distributionP1 and P2. The new rule
set R′ = (∪N∈N ′R′

N ) where for all N ∈ B
rule setR′

N =
{

N → N bℓ | ℓ ∈ {1, 2}
}

, mean-
ing atN in G′ we decide which distributionP1, P2

to use; and forN ∈ B and ℓ ∈ {1, 2} ,

R′

Nbℓ
=

{

N bℓ → β | N → β ∈ RN

}

indicating a
draw from distributionPℓ. For nonterminalsN 6∈ B,
R′

N = RN . Finally, for eachN,M ∈ B we
specify a tying relation between the rules inR′

Nb2

andR′

Mb2
, grouping together analogous rules. This

has the effect of making an independence assump-
tion aboutP2, namely that it ignores the condition-
ing eventN(k), drawing from a common distribution
each time a nonterminalN b2 is rewritten.

For example, in EVG to smoothP (A = DT |
d = left ,H = NN , v = 0) with P2(A = DT |
d = left , v = 0) we define the backoff set to
be

{

L1
H | H ∈ Vτ

}

. In the extended grammar we
define the tying relation to form rule equivalence
classes by the argument they generate, i.e. for each
argumentA ∈ Vτ , we have a rule equivalence class
{

L1b2
H → YA HL | H ∈ Vτ

}

.

We can see that in grammarG′ eachN ∈ B even-
tually ends up rewriting to one ofN ’s expansionsβ
in G. There are two indirect paths, one throughN b1

and one throughN b2 . Thus this defines the proba-
bility of N → β in G, θN→β, as the probability of
rewriting N asβ in G′ via N b1 andN b2 . That is:

θN→β = φN→Nb1φNb1→β + φN→Nb2φNb2→β

The example in Figure 6 shows the probability that
L1

dog rewrites toYbig dogL in grammarG.
Typically when smoothing we need to incorporate

the prior knowledge that conditioning events that
have been seen fewer times should be more strongly
smoothed. We accomplish this by setting the Dirich-
let hyperparameters for eachN → N b1 , N → N b2

decision to(K, 2K), whereK = |RNb1 | is the num-
ber of rewrite rules forA. This ensures that the
model will only start to ignore the backoff distribu-
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Figure 6: Using linear interpolation to smoothL1

dog →
Ybig dogL: The first component represents the distri-
bution fully conditioned on headdog, while the second
component represents the distribution ignoring the head
conditioning event. This later is accomplished by tying
the ruleL1b2

dog → Ybig dogL to, for instance,L1b2
cat →

Ybig catL, L1b2
fish → Ybig fishL etc.

tion after having seen a sufficiently large number of
training examples.4

4.1 Smoothed Dependency Models

Our first experiments examine smoothing the dis-
tributions over an argument in the DMV and EVG
models. In DMV we smooth the probability of argu-
mentA given head part-of-speechH and directiond
with a distribution that ignoresH. In EVG, which
conditions onH, d and argument positionv we back
off two ways. The first is to ignorev and use back-
off conditioning eventH, d. This yields a backoff
distribution with the same conditioning information
as the argument distribution from DMV. We call this
EVG smoothed-skip-val.

The second possibility is to have the backoff
distribution ignore the head part-of-speechH and
use backoff conditioning eventv, d. This assumes
that arguments share a common distribution across
heads. We call this EVG smoothed-skip-head. As
we see below, backing off by ignoring the part-of-
speech of the headH worked better than ignoring
the argument positionv.

For L-EVG we smooth the argument part-of-
speech distribution (conditioned on the head word)
with the unlexicalized EVG smoothed-skip-head
model.

5 Initialization and Search issues

Klein and Manning (2004) strongly emphasize the
importance of smart initialization in getting good
performance from DMV. The likelihood function is
full of local maxima and different initial parameter
values yield vastly different quality solutions. They
offer what they call a “harmonic initializer” which

4We set the other Dirichlet hyperparameters to 1.

initializes the attachment probabilities to favor ar-
guments that appear more closely in the data. This
starts EM in a state preferring shorter attachments.

Since our goal is to expand the model to incor-
porate lexical information, we want an initializa-
tion scheme which does not depend on the details
of DMV. The method we use is to createM sets of
B random initial settings and to run VB some small
number of iterations (40 in all our experiments) for
each initial setting. For each of theM sets, the
model with the best free energy of theB runs is
then run out until convergence (as measured by like-
lihood of a held-out data set); the other models are
pruned away. In this paper we useB = 20 and
M = 50.

For the bth setting, we draw a random sample
from the prior θ̄(b). We set the initialQ(t) =
P (t|s, θ̄(b)) which can be calculated using the
Expectation-Maximization E-Step.Q(θ̄) is then ini-
tialized using the standard VB M-step.

For the Lexicalized-EVG, we modify this proce-
dure slightly, by first runningMB smoothed EVG
models for 40 iterations each and selecting the best
model in each cohort as before; each L-EVG dis-
tribution is initialized from its corresponding EVG
distribution. The newP (A|h,H, d, v) distributions
are set initially to their correspondingP (A|H, d, v)
values.

6 Results

We trained on the standard Penn Treebank WSJ cor-
pus (Marcus et al., 1993). Following Klein and Man-
ning (2002), sentences longer than 10 words after
removing punctuation are ignored. We refer to this
variant as WSJ10. Following Cohen et al. (2008),
we train on sections 2-21, used 22 as a held-out de-
velopment corpus, and present results evaluated on
section 23. The models were all trained using Varia-
tional Bayes, and initialized as described in Section
5. To evaluate, we follow Cohen et al. (2008) in us-
ing the mean of the variational posterior Dirichlets
as a point estimatēθ′. For the unsmoothed models
we decode by selecting the Viterbi parse givenθ̄′, or
argmaxtP (t|s, θ̄′).

For the smoothed models we find the Viterbi parse
of the unsmoothed CFG, but use the smoothed prob-
abilities. We evaluate against the gold standard



Model Variant Dir. Acc.

DMV harmonic init 46.9*

DMV random init 55.7 (8.0)

DMV log normal-families 59.4*

DMV shared log normal-families 62.4†

DMV smoothed 61.2 (1.2)

EVG random init 53.3 (7.1)

EVG smoothed-skip-val 62.1 (1.9)

EVG smoothed-skip-head 65.0 (5.7)

L-EVG smoothed 68.8 (4.5)

Table 1: Directed accuracy (DA) for WSJ10, section 23.
*,† indicate results reported by Cohen et al. (2008), Co-
hen and Smith (2009) respectively. Standard deviations
over 10 runs are given in parentheses

dependencies for section 23, which were extracted
from the phrase structure trees using the standard
rules by Yamada and Matsumoto (2003). We mea-
sure the percent accuracy of the directed dependency
edges. For the lexicalized model, we replaced all
words that were seen fewer than 100 times with
“UNK.” We ran each of our systems 10 times, and
report the average directed accuracy achieved. The
results are shown in Table 1. We compare to work
by Cohen et al. (2008) and Cohen and Smith (2009).

Looking at Table 1, we can first of all see the
benefit of randomized initialization over the har-
monic initializer for DMV. We can also see a large
gain by adding smoothing to DMV, topping even
the logistic normal prior. The unsmoothed EVG ac-
tually performs worse than unsmoothed DMV, but
both smoothed versions improve even on smoothed
DMV. Adding lexical information (L-EVG) yields a
moderate further improvement.

As the greatest improvement comes from moving
to model EVG smoothed-skip-head, we show in Ta-
ble 2 the most probable arguments for eachval, dir,
using the mean of the appropriate variational Dirich-
let. Ford = right, v = 1, P (A|v, d) largely seems
to acts as a way of grouping together various verb
types, while ford = left, v = 0 the model finds
that nouns tend to act as the closest left argument.

Dir,Val Arg Prob Dir,Val Arg Prob

left, 0 NN 0.65 right, 0 NN 0.26

NNP 0.18 RB 0.23

DT 0.12 NNS 0.12

IN 0.11

left, 1 CC 0.35 right, 1 IN 0.78

RB 0.27

IN 0.18

Table 2: Most likely arguments given valence and direc-
tion, according to smoothing distributionP (arg|dir, val)
in EVG smoothed-skip-head model with lowest free en-
ergy.

7 Conclusion

We present a smoothing technique for unsupervised
PCFG estimation which allows us to explore more
sophisticated dependency grammars. Our method
combines linear interpolation with a Bayesian prior
that ensures the backoff distribution receives proba-
bility mass. Estimating the smoothed model requires
running the standard Variational Bayes on an ex-
tended PCFG. We used this technique to estimate a
series of dependency grammars which extend DMV
with additional valence and lexical information. We
found that both were helpful in learning English de-
pendency grammars. Our L-EVG model gives the
best reported accuracy to date on the WSJ10 corpus.

Future work includes using lexical information
more deeply in the model by conditioning argument
words and valence on the lexical head. We suspect
that successfully doing so will require using much
larger datasets. We would also like to explore us-
ing our smoothing technique in other models such
as HMMs. For instance, we could do unsupervised
HMM part-of-speech induction by smooth a tritag
model with a bitag model. Finally, we would like to
learn the parts-of-speech in our dependency model
from text and not rely on the gold-standard tags.
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