

The Role of Context Types and Dimensionality in Learning Word Embeddings

Oren Melamud, David McClosky, Siddharth Patwardhan, Mohit Bansal

NAACL, 2016

What's a good word embedding for my task?

What's a good word embedding for my task?

Useful in supervised tasks:

- As pre-training initialization
- With limited supervised data

What's a good word embedding for my task?

Useful in supervised tasks:

- As pre-training initialization
- With limited supervised data

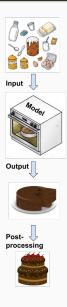
Applied to various tasks:

- Dependency Parsing
- Named Entity Recognition
- Co-reference Resolution
- Sentiment Analysis
- More...

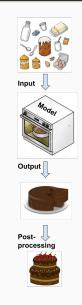
Easy to obtain

- Off-the-shelf
- Do-it-yourself toolkits

- 1. Input
 - Context type
 (BOW-N, syntactic, ...)
 - Learning corpus



- 1. Input
 - Context type
 (BOW-N, syntactic, ...)
 - Learning corpus
- 2. Computational model
 - Model type (word2vec, GloVe, ...)
 - Hyperparameters



- 1. Input
 - Context type
 (BOW-N, syntactic, ...)
 - Learning corpus
- 2. Computational model
 - Model type (word2vec, GloVe, ...)
 - Hyperparameters
- 3. Output
 - Dimensionality (is higher always better?)

- 1. Input
 - Context type
 (BOW-N, syntactic, ...)
 - Learning corpus
- 2. Computational model
 - Model type (word2vec, GloVe, ...)
 - Hyperparameters
- 3. Output
 - Dimensionality (is higher always better?)
- 4. Post-processing
 - Ensembles, retrofitting, ...

Our Focus

Choices we explore:

- 1. Input
 - Context type (BOW-N, syntactic, substitute)
 - Wikipedia + Gigaword + UMBC (web)
- 2. Computational model
 - word2vec
- 3. Output
 - Dimensionality (is higher always better?)
- 4. Post-processing
 - Embeddings combinations (concat, SVD, CCA)

Evaluated extensively on intrinsic and extrinsic tasks

Research questions:

· Do intrinsic benchmarks predict extrinsic performance?

Research questions:

- · Do intrinsic benchmarks predict extrinsic performance?
- Tune context type and dimensionality per extrinsic task?

Research questions:

- · Do intrinsic benchmarks predict extrinsic performance?
- Tune context type and dimensionality per extrinsic task?
- Can we benefit from combining different context types?

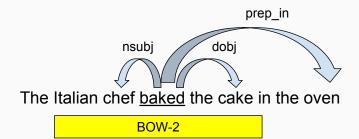
A new word2vec context type (substitute-based)

• Based on *n*-gram language modeling

- \cdot Context types and dimensionality
- Combining context types
- Conclusions

Context Types and Dimensionality

Common Context Types



BOW-2 Contexts	
t	С
baked	Italian
baked	chef
baked	the
baked	cake

Dependency Contexts	
t	С
baked	nsubj:chef
baked	dobj:cake
baked	prep_in:oven

BOW-2 Contexts	
t	С
baked	Italian
baked	chef
baked	the
baked	cake

Dependency Contexts	
t	С
baked	nsubj:chef
baked	dobj:cake
baked	prep_in:oven

$$\sum_{(t,c)\in PAIRS} \left(\log \sigma(\mathsf{v}'_c \cdot \mathsf{v}_t) + \sum_{neg\in NEGS_{(t,c)}} \log \sigma(-\mathsf{v}'_{neg} \cdot \mathsf{v}_t) \right)$$

Potential substitutes encode the context (Yuret, 2012)

The Italian chef baked the cake in the oven

Potential substitutes encode the context (Yuret, 2012)

The Italian chef _____ the cake in the oven

0.50 put0.25 baked0.15 cooked0.10 forgot

Potential substitutes encode the context (Yuret, 2012)

The Italian chef baked the cake in the oven

0.50 put0.25 baked0.15 cooked0.10 forgot

Substitute Contexts		
t	S	W _{t,s}
baked	put	0.50
baked	baked	0.25
baked	cooked	0.15
baked	forgot	0.10

Substitute Contexts		
t	S	W _{t,s}
baked	put	0.50
baked	baked	0.25
baked	cooked	0.15
baked	forgot	0.10

$$\sum_{(t,s)\in PAIRS} \mathbf{w}_{t,s} \cdot \left(\log \sigma(\mathbf{v}'_{s} \cdot \mathbf{v}_{t}) + \sum_{neg \in NEGS_{(t,s)}}\log \sigma(-\mathbf{v}'_{neg} \cdot \mathbf{v}_{t})\right)$$

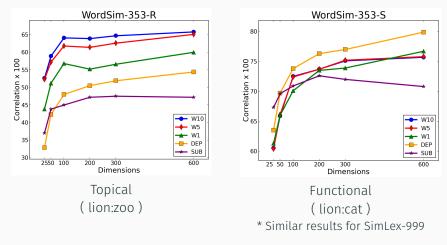
'Flavors' of Similarity

Top-5 closest words to 'playing'

W-10	DEP	SUB
played	play	singing
play	played	rehearsing
plays	understudying	performing
professionally	caddying	composing
player	plays	running

Small context windows also yield 'functional' similarity

Intrinsic Evaluations - Word Similarity



- Context type matters
- Higher dimensionality is generally better

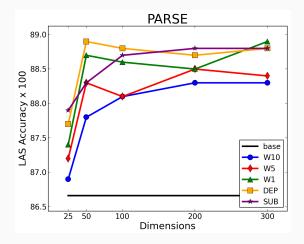
Can we find similar patterns in extrinsic tasks?

Extrinsic Evaluations

System	Benchmark
Stanford NN Dependency Parser	PTB
Chen & Manning (2014)	
Named Entity Recognition	CoNLL-2003
Turian et al. (2010)	shared task
Co-reference Resolution	CoNLL-2012
Durrett & Klein (2013)	shared task
Full features + embeddings	
Sentiment Analysis	Sentence-level
Average of embeddings	Sentiment Treebank
with logistic regression	Socher et al. (2013)

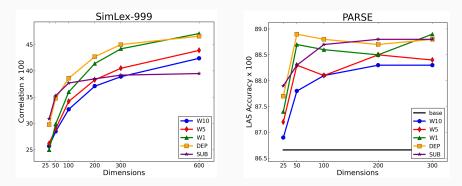
*Only dev-set experiments

Extrinsic Evaluations - Parsing



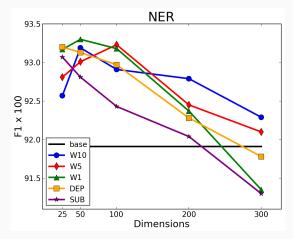
- Preference for 'functional' embeddings
- Best performance at d = 50 (due to limited supervision?)

Extrinsic Evaluations - Parsing



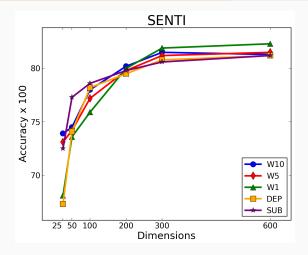
- Similar context type preferences
- But different dimensionality preferences

Extrinsic Evaluations - NER



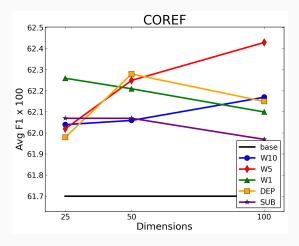
- Best performance at d = 50
- No clear context type preference

Extrinsic Evaluations - Sentiment Analysis



- No context type preference
- Higher dimensionality is better

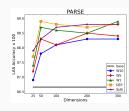
Extrinsic Evaluations - Coreference Resolution

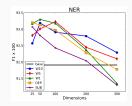


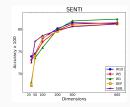
· Small performance diffs (competitive non-embedding features)

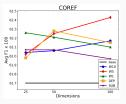
Extrinsic Evaluations - Summary

• Correlation with intrinsic results



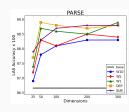


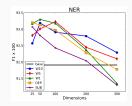


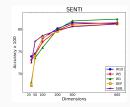


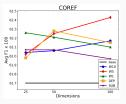
Extrinsic Evaluations - Summary

- Correlation with intrinsic results
- Dimensionality preferences



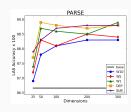


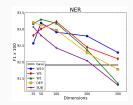


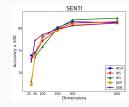


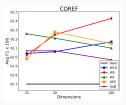
Extrinsic Evaluations - Summary

- Correlation with intrinsic results
- Dimensionality preferences
- Context type preferences









Context Combinations

Let the classifier choose the valuable information:

	boy	girl	dog
dim1			
dim2			

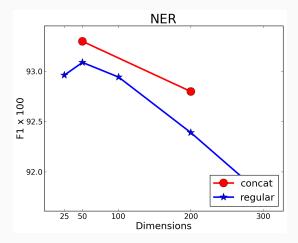
boy

dim1 dim2 girl

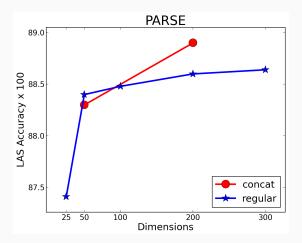
dog

		boy	girl	dog
	dim1			
	dim2			
	dim3			
	dim4			

Concatenation

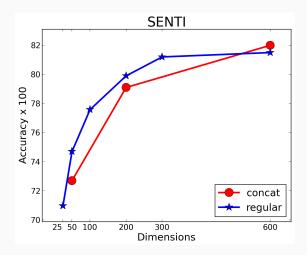


Concatenation



Concat helps when 'regular' increase in dimensionality is 'exhausted'

Concatenation



Concat helps when 'regular' increase in dimensionality is 'exhausted'

'Topical'+'Functional' concats worked best

- W10 + SUB
- W10 + W1
- W10 + DEP

- · Compression via SVD or CCA degrades performance
- Better let the task-specific classifier 'choose' the relevant information

Conclusions

• Do intrinsic benchmarks predict extrinsic performance?

Do intrinsic benchmarks predict extrinsic performance? NO

- Do intrinsic benchmarks predict extrinsic performance? NO
- Tune context type and dimensionality per extrinsic task?

- Do intrinsic benchmarks predict extrinsic performance? NO
- Tune context type and dimensionality per extrinsic task? YES

- Do intrinsic benchmarks predict extrinsic performance? NO
- Tune context type and dimensionality per extrinsic task? YES
- Can we benefit from combining different context types?

- Do intrinsic benchmarks predict extrinsic performance? NO
- Tune context type and dimensionality per extrinsic task? **YES**
- Can we benefit from combining different context types? MAYBE

- Do intrinsic benchmarks predict extrinsic performance? NO
- Tune context type and dimensionality per extrinsic task? YES
- Can we benefit from combining different context types? MAYBE

Thank you and happy cooking!

