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What’s a good word embedding for my task?

Useful in supervised tasks:
• As pre-training initialization
• With limited supervised data

Applied to various tasks:

• Dependency Parsing
• Named Entity Recognition
• Co-reference Resolution
• Sentiment Analysis
• More...

so many choices...
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Plethora of Word Embeddings

Easy to obtain
• Off-the-shelf
• Do-it-yourself toolkits

so many choices...
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Plethora of Word Embeddings

Lots of choices to make

1. Input
• Context type
(BOW-N, syntactic, ...)

• Learning corpus

2. Computational model
• Model type
(word2vec, GloVe, ...)

• Hyperparameters

3. Output
• Dimensionality
(is higher always better?)

4. Post-processing
• Ensembles, retrofitting, …
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Our Focus

Choices we explore:
1. Input

• Context type
(BOW-N, syntactic, substitute)

• Wikipedia + Gigaword + UMBC (web)

2. Computational model
• word2vec

3. Output
• Dimensionality
(is higher always better?)

4. Post-processing
• Embeddings combinations
(concat, SVD, CCA)

Evaluated extensively on
intrinsic and extrinsic tasks 5



Our Focus

Research questions:

• Do intrinsic benchmarks predict extrinsic performance?

• Tune context type and dimensionality per extrinsic task?

• Can we benefit from combining different context types?
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Additional Contribution

A new word2vec context type (substitute-based)

• Based on n-gram language modeling
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Outline

• Context types and dimensionality

• Combining context types

• Conclusions
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Context Types and Dimensionality



Common Context Types

The Italian chef baked the cake in the oven

nsubj dobj

prep_in

BOW-2

BOW-2 Contexts
t c
baked Italian
baked chef
baked the
baked cake

Dependency Contexts
t c
baked nsubj:chef
baked dobj:cake
baked prep_in:oven
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Learning word2vec Skip-gram Embeddings

BOW-2 Contexts
t c
baked Italian
baked chef
baked the
baked cake

Dependency Contexts
t c
baked nsubj:chef
baked dobj:cake
baked prep_in:oven

∑
(t,c)∈PAIRS

(
logσ(v′c · vt) +

∑
neg∈NEGS(t,c) logσ(−v

′
neg · vt)

)
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Substitute-based Contexts

Potential substitutes encode the context (Yuret, 2012)

The Italian chef baked the cake in the oven

Substitute Contexts
t s wt,s
baked put 0.50
baked baked 0.25
baked cooked 0.15
baked forgot 0.10
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word2vec with Substitute-based Contexts

Substitute Contexts
t s wt,s
baked put 0.50
baked baked 0.25
baked cooked 0.15
baked forgot 0.10

∑
(t,s)∈PAIRS wt,s ·

(
logσ(v′s · vt) +

∑
neg∈NEGS(t,s) logσ(−v

′
neg · vt)

)
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‘Flavors’ of Similarity

Top-5 closest words to ‘playing’

W-10 DEP SUB
played play singing
play played rehearsing
plays understudying performing
professionally caddying composing
player plays running

Topical Functional

Small context windows also yield ‘functional’ similarity
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Intrinsic Evaluations - Word Similarity

Topical
( lion:zoo )

Functional
( lion:cat )

* Similar results for SimLex-999

• Context type matters
• Higher dimensionality is generally better
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Extrinsic Evaluations

Can we find similar patterns in extrinsic tasks?

16



Extrinsic Evaluations

System Benchmark
Stanford NN Dependency Parser PTB
Chen & Manning (2014)
Named Entity Recognition CoNLL-2003
Turian et al. (2010) shared task
Co-reference Resolution CoNLL-2012
Durrett & Klein (2013) shared task
Full features + embeddings
Sentiment Analysis Sentence-level
Average of embeddings Sentiment Treebank
with logistic regression Socher et al. (2013)

*Only dev-set experiments
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Extrinsic Evaluations - Parsing

• Preference for ‘functional’ embeddings
• Best performance at d = 50 (due to limited supervision?)
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Extrinsic Evaluations - Parsing

• Similar context type preferences
• But different dimensionality preferences
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Extrinsic Evaluations - NER

• Best performance at d = 50
• No clear context type preference
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Extrinsic Evaluations - Sentiment Analysis

• No context type preference
• Higher dimensionality is better
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Extrinsic Evaluations - Coreference Resolution

• Small performance diffs (competitive non-embedding features)
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Extrinsic Evaluations - Summary

• Correlation with
intrinsic results

• Dimensionality
preferences

• Context type
preferences
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Context Combinations



Embeddings Concatenation

Let the classifier choose the valuable information:

boy girl dog

dim1

dim2

boy girl dog

dim1

dim2

dim3

dim4

boy girl dog

dim1

dim2
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Concatenation

26



Concatenation

Concat helps when ‘regular’ increase in dimensionality is ‘exhausted’
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Concatenation

‘Topical’+‘Functional’ concats worked best

• W10 + SUB
• W10 + W1
• W10 + DEP
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Compressed Combinations

• Compression via SVD or CCA degrades performance

• Better let the task-specific classifier ‘choose’
the relevant information

30



Conclusions



Summary

• Do intrinsic benchmarks predict extrinsic performance?

NO

• Tune context type and dimensionality per extrinsic task?

YES

• Can we benefit from combining different context types?

MAYBE

Thank you
and

happy cooking!
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