Model Combination for Event Extraction in BioNLP 2011

Sebastian Riedel, ${ }^{a}$ David McClosky, ${ }^{b}$ Mihai Surdeanu, ${ }^{b}$ Andrew McCallum, ${ }^{a}$ and Christopher D. Manning ${ }^{b}$
${ }^{a}$ University of Massachusetts at Amherst and ${ }^{b}$ Stanford University

BioNLP 2011 - June 24th, 2011

Previous work / Motivation

- BioNLP 2009: model combination led to 4\% F1 improvement over best individual system (Kim et al., 2009)

Previous work / Motivation

- BioNLP 2009: model combination led to 4\% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)

Previous work / Motivation

- BioNLP 2009: model combination led to 4\% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)

Previous work / Motivation

- BioNLP 2009: model combination led to 4\% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)

Previous work / Motivation

- BioNLP 2009: model combination led to 4\% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.

Previous work / Motivation

- BioNLP 2009: model combination led to 4\% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.
- Most of these use stacking-so do we

Previous work / Motivation

- BioNLP 2009: model combination led to 4\% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.
- Most of these use stacking-so do we
- Stacked model's output as features in stacking model

Stacking Model

Maximize $s(\mathbf{e}, \mathbf{a}, \mathbf{b})=\sum_{i} s_{i}^{\mathrm{T}}\left(e_{i}\right)+\sum_{i, j} s_{i, j}^{\mathrm{A}}\left(a_{i, j}\right)+\sum_{p, q} s_{p, q}^{\mathrm{B}}\left(b_{p, q}\right)$
under
global constrains

$$
\begin{aligned}
& s(\text { Binding })=-0.1 \\
& s(\text { Regulation })=3.2 \\
& s(\text { Phosphor. })=0.5
\end{aligned}
$$

phosphorylation of TRAF2 inhibits binding to the CD40 domain

Scores

$$
s(\text { Regulation })=3.2
$$

$$
\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)^{\top}\left(\begin{array}{c}
-2.1 \\
\vdots \\
1.3
\end{array}\right) \begin{aligned}
& e=\operatorname{Reg} \\
& \vdots \\
& e=\operatorname{Reg} \text { and } w=\text { "inhibit" }
\end{aligned}
$$

Stacked Features

$$
s(\text { Regulation })=3.2
$$

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)^{\top}\left(\begin{array}{c}
-2.1 \\
1.2 \\
\vdots \\
1.3
\end{array}\right) \begin{aligned}
& e=\operatorname{Reg} \\
& e=\operatorname{Reg} \text { and } y=\operatorname{Reg} \\
& \vdots \\
& e=\operatorname{Reg} \text { and } w=\text { "inhibit" }
\end{aligned}
$$

Stacked model

- Stanford Event Parsing system
- Recall: Four different decoders: (1st, 2nd-order features) \times (projective, non-projective)
- Only used the parser for stacking (1-best outputs)
- Different segmentation/tokenization
- Different trigger detection

Performance of individual components

(Genia development section, Task 1)

Performance of individual components

System	\boldsymbol{F}_{1}
UMass	$\mathbf{5 4 . 8}$
Stanford (1N)	49.9
Stanford (1P)	49.0
Stanford (2N)	46.5
Stanford (2P)	49.5

(Genia development section, Task 1)

Performance of individual components

System	\boldsymbol{F}_{1}	with reranker
UMass	$\mathbf{5 4 . 8}$	-
Stanford (1N)	49.9	50.2
Stanford (1P)	49.0	49.4
Stanford (2N)	46.5	47.9
Stanford (2P)	49.5	50.5

(Genia development section, Task 1)

Model combination strategies

System	\boldsymbol{F}_{1}
UMass	54.8
Stanford (2P, reranked)	50.5

(Genia development section, Task 1)

Model combination strategies

System	\boldsymbol{F}_{1}
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7

(Genia development section, Task 1)

Model combination strategies

System	\boldsymbol{F}_{1}
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass $\leftarrow 2 \mathrm{~N}$	54.9
UMass $\leftarrow 1 \mathrm{~N}$	55.6
UMass $\leftarrow 1 \mathrm{P}$	55.7
UMass $\leftarrow 2 \mathrm{P}$	55.7

(Genia development section, Task 1)

Model combination strategies

System	\boldsymbol{F}_{1}
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass $\leftarrow 2 \mathrm{~N}$	54.9
UMass $\leftarrow 1 \mathrm{~N}$	55.6
UMass $\leftarrow 1 \mathrm{P}$	55.7
UMass $\leftarrow 2 \mathrm{P}$	55.7
UMass \leftarrow all	55.9

(Genia development section, Task 1)

Model combination strategies

System	\boldsymbol{F}_{1}
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass $\leftarrow 2 N$	54.9
UMass $\leftarrow 1 \mathrm{~N}$	55.6
UMass $\leftarrow 1 \mathrm{P}$	55.7
UMass $\leftarrow 2 \mathrm{P}$	55.7
UMass \leftarrow all (FAUST)	55.9

(Genia development section, Task 1)

Ablation analysis for stacking

System	\boldsymbol{F}_{1}
UMass	54.8
Stanford (2P, reranked)	50.5
UMass \leftarrow all	$\mathbf{5 5 . 9}$

(Genia development section, Task 1)

Ablation analysis for stacking

System	\boldsymbol{F}_{1}
UMass	54.8
Stanford (2P, reranked)	50.5
UMass \leftarrow all	55.9
UMass \leftarrow all (triggers)	54.9
UMass \leftarrow all (arguments)	55.1

(Genia development section, Task 1)

Conclusions

- Stacking: easy, effective method of model combination

Conclusions

- Stacking: easy, effective method of model combination
- ...even if base models differ significantly in performance

Conclusions

- Stacking: easy, effective method of model combination
- ...even if base models differ significantly in performance
- Variability in models critical for success

Conclusions

- Stacking: easy, effective method of model combination
- ...even if base models differ significantly in performance
- Variability in models critical for success
- Tree structure best provided by projective decoder

Conclusions

- Stacking: easy, effective method of model combination
- ...even if base models differ significantly in performance
- Variability in models critical for success
- Tree structure best provided by projective decoder
- Incorporated in UMass model via 2P stacking

Conclusions

- Stacking: easy, effective method of model combination
- ...even if base models differ significantly in performance
- Variability in models critical for success
- Tree structure best provided by projective decoder
- Incorporated in UMass model via 2P stacking
- Future work: Incorporate projectivity constraint directly

Questions?

Backup slides

Stacked Features

$$
s(\text { Regulation })=3.2
$$

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)^{\top}\left(\begin{array}{c}
-2.1 \\
1.2 \\
\vdots \\
1.3
\end{array}\right) \begin{aligned}
& e=\operatorname{Reg} \\
& e=\operatorname{Reg} \text { and } y=\operatorname{Reg} \\
& \vdots \\
& e=\operatorname{Reg} \text { and } w=\text { "inhibit" }
\end{aligned}
$$

Conjoined Features

$$
s(\text { Regulation })=3.2
$$

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right)^{\top}\left(\begin{array}{c}
-2.1 \\
1.2 \\
\vdots \\
1.3 \\
3.2
\end{array}\right) \begin{aligned}
& e=\operatorname{Reg} \\
& e=\operatorname{Reg} \text { and } y=\operatorname{Reg} \\
& \vdots \\
& e=\operatorname{Reg} \text { and } w=\text { "inhibit" } \\
& e=\operatorname{Reg} \text { and } w=\text { "inhibit" and } y=\operatorname{Reg}
\end{aligned}
$$

Results on Genia

System	Simple	Binding	Regulation	Total
UMass	74.7	47.7	42.8	54.8
Stanford 1N	71.4	38.6	32.8	47.8
Stanford 1P	70.8	35.9	31.1	46.5
Stanford 2N	69.1	35.0	27.8	44.3
Stanford 2P	72.0	36.2	32.2	47.4
UMass \leftarrow All	76.9	43.5	44.0	55.9
UMass $\leftarrow 1 N$	76.4	45.1	43.8	55.6
UMass \leftarrow 1P	75.8	43.1	44.6	55.7
UMass $\leftarrow 2 N$	74.9	42.8	43.8	54.9
UMass $\leftarrow 2 P$	75.7	46.0	44.1	55.7
UMass \leftarrow All (triggers)	76.4	41.2	43.1	54.9
UMass \leftarrow All (arguments)	76.1	41.7	43.6	55.1

Results on Infectious Diseases

System	Rec	Prec	F_{1}
UMass	46.2	51.1	48.5
Stanford 1N	43.1	49.1	45.9
Stanford 1P	40.8	46.7	43.5
Stanford 2N	41.6	53.9	46.9
Stanford 2P	42.8	48.1	45.3
UMass \leftarrow All	47.6	54.3	50.7
UMass $\leftarrow 1 N$	45.8	51.6	48.5
UMass $\leftarrow 1 P$	47.6	52.8	50.0
UMass $\leftarrow 2 N$	45.4	52.4	48.6
UMass $\leftarrow 2 P$	49.1	52.6	50.7
UMass $\leftarrow 2 P$ (conjoined)	48.0	53.2	50.4

Results on test

	UMass			UMass \leftarrow All		
	Rec	Prec	F_{1}	Rec	Prec	F_{1}
GE (Task 1)	48.5	64.1	55.2	49.4	64.8	56.0
GE (Task 2)	43.9	60.9	51.0	46.7	63.8	53.9
EPI (Full task)	28.1	41.6	33.5	28.9	44.5	35.0
EPI (Core task)	57.0	73.3	64.2	59.9	80.3	68.6
ID (Full task)	46.9	62.0	53.4	48.0	66.0	55.6
ID (Core task)	49.5	62.1	55.1	50.6	66.1	57.3

