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Previous work / Motivation

I BioNLP 2009: model combination led to 4% F1
improvement over best individual system (Kim et al., 2009)

I Netflix challenge: winning entry relies on model
combination (Bennett et al., 2007)

I CoNLL 2007: winning entry relies on model
combination (Hall et al., 2007)

I CoNLL 2003: winning entry relies on model
combination (Florian et al., 2003)

I etc. etc. etc.
I Most of these use stacking—so do we
I Stacked model’s output as features in stacking model
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Stacking Model
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Scores
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Stacked model

I Stanford Event Parsing system

I Recall: Four different decoders:
(1st, 2nd-order features) × (projective, non-projective)

I Only used the parser for stacking (1-best outputs)

I Different segmentation/tokenization

I Different trigger detection
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Performance of individual components

System F1
UMass 54.8

Stanford (1N) 49.9
Stanford (1P) 49.0
Stanford (2N) 46.5
Stanford (2P) 49.5

(Genia development section, Task 1)
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Performance of individual components

System F1 with reranker
UMass 54.8 —
Stanford (1N) 49.9 50.2
Stanford (1P) 49.0 49.4
Stanford (2N) 46.5 47.9
Stanford (2P) 49.5 50.5

(Genia development section, Task 1)
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Model combination strategies

System F1
UMass 54.8
Stanford (2P, reranked) 50.5

Stanford (all, reranked) 50.7
UMass←2N 54.9
UMass←1N 55.6
UMass←1P 55.7
UMass←2P 55.7
UMass←all

(FAUST)

55.9

(Genia development section, Task 1)
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Ablation analysis for stacking

System F1
UMass 54.8
Stanford (2P, reranked) 50.5
UMass←all 55.9

UMass←all (triggers) 54.9
UMass←all (arguments) 55.1

(Genia development section, Task 1)
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Ablation analysis for stacking

System F1
UMass 54.8
Stanford (2P, reranked) 50.5
UMass←all 55.9
UMass←all (triggers) 54.9
UMass←all (arguments) 55.1

(Genia development section, Task 1)
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Conclusions

I Stacking: easy, effective method of model combination

I ...even if base models differ significantly in performance

I Variability in models critical for success

I Tree structure best provided by projective decoder

I Incorporated in UMass model via 2P stacking

I Future work: Incorporate projectivity constraint directly

Questions?
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Backup slides
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Conjoined Features
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Results on Genia

System Simple Binding Regulation Total
UMass 74.7 47.7 42.8 54.8
Stanford 1N 71.4 38.6 32.8 47.8
Stanford 1P 70.8 35.9 31.1 46.5
Stanford 2N 69.1 35.0 27.8 44.3
Stanford 2P 72.0 36.2 32.2 47.4
UMass←All 76.9 43.5 44.0 55.9
UMass←1N 76.4 45.1 43.8 55.6
UMass←1P 75.8 43.1 44.6 55.7
UMass←2N 74.9 42.8 43.8 54.9
UMass←2P 75.7 46.0 44.1 55.7
UMass←All (triggers) 76.4 41.2 43.1 54.9
UMass←All (arguments) 76.1 41.7 43.6 55.1
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Results on Infectious Diseases

System Rec Prec F1
UMass 46.2 51.1 48.5
Stanford 1N 43.1 49.1 45.9
Stanford 1P 40.8 46.7 43.5
Stanford 2N 41.6 53.9 46.9
Stanford 2P 42.8 48.1 45.3
UMass←All 47.6 54.3 50.7
UMass←1N 45.8 51.6 48.5
UMass←1P 47.6 52.8 50.0
UMass←2N 45.4 52.4 48.6
UMass←2P 49.1 52.6 50.7
UMass←2P (conjoined) 48.0 53.2 50.4
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Results on test

UMass UMass←All
Rec Prec F1 Rec Prec F1

GE (Task 1) 48.5 64.1 55.2 49.4 64.8 56.0
GE (Task 2) 43.9 60.9 51.0 46.7 63.8 53.9
EPI (Full task) 28.1 41.6 33.5 28.9 44.5 35.0
EPI (Core task) 57.0 73.3 64.2 59.9 80.3 68.6
ID (Full task) 46.9 62.0 53.4 48.0 66.0 55.6
ID (Core task) 49.5 62.1 55.1 50.6 66.1 57.3
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