Model Combination for Event Extraction in BioNLP 2011

Sebastian Riedel,^a David McClosky,^b Mihai Surdeanu,^b Andrew McCallum,^a and Christopher D. Manning^b

^aUniversity of Massachusetts at Amherst and ^bStanford University

BioNLP 2011 — June 24th, 2011

 BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.
- Most of these use stacking—so do we

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.
- Most of these use stacking—so do we
- Stacked model's output as features in stacking model

Stacking Model

Scores

$$S(Regulation) = 3.2$$

$$\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} -2.1 \\ \vdots \\ 1.3 \end{pmatrix} e = \mathsf{Reg} \\ \vdots \\ e = \mathsf{Reg and } \mathsf{w} = "inhibit"$$

Stacked Features

$$S(Regulation) = 3.2$$

$$\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} -2.1 \\ 1.2 \\ \vdots \\ 1.3 \end{pmatrix} e = \operatorname{Reg}_{\mathsf{e}} = \operatorname{Reg$$

Stacked model

- Stanford Event Parsing system
- Recall: Four different decoders: (1st, 2nd-order features) × (projective, non-projective)
- Only used the parser for stacking (1-best outputs)
- Different segmentation/tokenization
- Different trigger detection

Performance of individual components

Performance of individual components

System	F ₁
UMass	54.8
Stanford (1N)	49.9
Stanford (1P)	49.0
Stanford (2N)	46.5
Stanford (2P)	49.5

Performance of individual components

System	F ₁	with reranker
UMass	54.8	
Stanford (1N)	49.9	50.2
Stanford (1P)	49.0	49.4
Stanford (2N)	46.5	47.9
Stanford (2P)	49.5	50.5

F ₁
54.8
50.5

System	F ₁
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7

System	F ₁
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass←2N	54.9
UMass←1N	55.6
UMass←1P	55.7
UMass←2P	55.7

System	F ₁
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass←2N	54.9
UMass←1N	55.6
UMass←1P	55.7
UMass←2P	55.7
UMass←all	55.9

System	F ₁
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass←2N	54.9
UMass←1N	55.6
UMass←1P	55.7
UMass←2P	55.7
UMass←all (FAUST)	55.9

Ablation analysis for stacking

System	F ₁
UMass	54.8
Stanford (2P, reranked)	50.5
UMass←all	55.9

Ablation analysis for stacking

System	F ₁
UMass	54.8
Stanford (2P, reranked)	50.5
UMass←all	55.9
UMass←all (triggers)	54.9
UMass←all (arguments)	55.1

Stacking: easy, effective method of model combination

Stacking: easy, effective method of model combination

...even if base models differ significantly in performance

Stacking: easy, effective method of model combination

...even if base models differ significantly in performance

Variability in models critical for success

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance
- Variability in models critical for success
- Tree structure best provided by projective decoder

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance
- Variability in models critical for success
- Tree structure best provided by projective decoder
 - Incorporated in UMass model via 2P stacking

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance
- Variability in models critical for success
- Tree structure best provided by projective decoder
 - Incorporated in UMass model via 2P stacking
- Future work: Incorporate projectivity constraint directly

Questions?

Backup slides

Stacked Features

$$S(Regulation) = 3.2$$

$$\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} -2.1 \\ 1.2 \\ \vdots \\ 1.3 \end{pmatrix} e = \operatorname{Reg}_{\mathsf{e}} e = \operatorname{Reg}_{\mathsf$$

Conjoined Features

$$S(Regulation) = 3.2$$

$$\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} -2.1 \\ 1.2 \\ \vdots \\ 1.3 \\ 3.2 \end{pmatrix}^{\mathsf{T}} e = \operatorname{Reg} \text{ and } \mathsf{y} = \operatorname{Reg} \\ e = \operatorname{Reg} \text{ and } \mathsf{y} = \operatorname{Reg} \\ \vdots \\ e = \operatorname{Reg} \text{ and } \mathsf{w} = \text{``inhibit''} \\ e = \operatorname{Reg} \text{ and } \mathsf{w} = \text{``inhibit''} \text{ and } \mathsf{y} = \operatorname{Reg}$$

Results on Genia

System	Simple	Binding	Regulation	Total
UMass	74.7	47.7	42.8	54.8
Stanford 1N	71.4	38.6	32.8	47.8
Stanford 1P	70.8	35.9	31.1	46.5
Stanford 2N	69.1	35.0	27.8	44.3
Stanford 2P	72.0	36.2	32.2	47.4
UMass←All	76.9	43.5	44.0	55.9
UMass←1N	76.4	45.1	43.8	55.6
UMass←1P	75.8	43.1	44.6	55.7
UMass←2N	74.9	42.8	43.8	54.9
UMass←2P	75.7	46.0	44.1	55.7
UMass←All (triggers)	76.4	41.2	43.1	54.9
UMass←All (arguments)	76.1	41.7	43.6	55.1

Results on Infectious Diseases

System	Rec	Prec	F_1
UMass	46.2	51.1	48.5
Stanford 1N	43.1	49.1	45.9
Stanford 1P	40.8	46.7	43.5
Stanford 2N	41.6	53.9	46.9
Stanford 2P	42.8	48.1	45.3
UMass←All	47.6	54.3	50.7
UMass←1N	45.8	51.6	48.5
UMass←1P	47.6	52.8	50.0
UMass←2N	45.4	52.4	48.6
UMass←2P	49.1	52.6	50.7
UMass←2P (conjoined)	48.0	53.2	50.4

Results on test

	UMass		UMass←All			
	Rec	Prec	F_1	Rec	Prec	F_1
GE (Task 1)	48.5	64.1	55.2	49.4	64.8	56.0
GE (Task 2)	43.9	60.9	51.0	46.7	63.8	53.9
EPI (Full task)	28.1	41.6	33.5	28.9	44.5	35.0
EPI (Core task)	57.0	73.3	64.2	59.9	80.3	68.6
ID (Full task)	46.9	62.0	53.4	48.0	66.0	55.6
ID (Core task)	49.5	62.1	55.1	50.6	66.1	57.3