Stanford’s Distantly-Supervised Slot-Filling System

Mihai Surdeanu, Sonal Gupta, John Bauer, David McClosky,
Angel X. Chang, Valentin 1. Spitkovsky, Christopher D. Manning
Computer Science Department
Stanford University, Stanford, CA 94305

{mihais, sonalg, horatio,mcclosky, angelx,vals, manning}@stanford. edu

Abstract

This paper describes the design and imple-
mentation of the slot filling system prepared
by Stanford’s natural language processing
group for the 2011 Knowledge Base Popula-
tion (KBP) track at the Text Analysis Con-
ference (TAC). Our system relies on a sim-
ple distant supervision approach using mainly
resources furnished by the track’s organiz-
ers: we used slot examples from the provided
knowledge base, which we mapped to docu-
ments from several corpora: those distributed
by the organizers, Wikipedia, and web snip-
pets. This system is a descendant of Stan-
ford’s system from last year, with several im-
provements: an inference process that allows
for multi-label predictions and uses world-
knowledge to validate outputs; model com-
bination; and a tighter integration of entity
coreference and web snippets in the training
process. Our submissions scored 16 F; points
using web snippets and 13.5 F; without web
snippets (both scores are higher than the me-
dian score of 12.7 F1). We also describe our
temporal slot filling system, which achieved
37.0 F; on the diagnostics temporal task on
the developmental queries.

1 Introduction

This paper describes the slot filling system prepared
by Stanford’s natural language processing (NLP)
group for the Knowledge Base Population (KBP)
track of the 2011 Text Analysis Conference (TAC).
This system is derived from Stanford’s distantly-
supervised system submitted last year, with sev-
eral important changes. First, we re-implemented

the inference component. The current model al-
lows multiple labels to be assigned to the same
slot value. For example, “California” could be
extracted as both per:stateorprovince.of_birth
and per:stateorprovince_of_residence for a
given entity. Previously, each slot candidate was
assigned exactly one label during inference. Fur-
thermore, the inference module now includes a filter
that discards slots that do not support several world-
knowledge constraints, e.g., that a company cannot
be dissolved before it is founded, etc. Second, we
implemented a system combination model, which
votes between ten different systems trained on dif-
ferent fragments of the knowledge base. Third, we
incorporated web snippets and coreference chains
(for entity matching) into training. Previously, this
information was used only in inference. Lastly, we
implemented several extensions to handle the tem-
poral slot filling task. We developed a system that
identifies temporal expressions in text (e.g., “first
Friday of this month”) and normalizes them to the
required format. The system then finds temporal
constraints for the slot names and values. We found
that using simple heuristics and dates of the retrieved
documents gives a reasonably high F; score. We
hope that our current temporal system serves as a
“baseline” for future temporal systems.

Using this system we participated in the main and
temporal slot filling tasks. In the main task we sub-
mitted two runs: one where web snippets were used
in both training and evaluation; and one where no
web information was used. These runs scored 16
and 13.5 F; points, respectively. (Both scores are
higher than the median score of all submissions,

[Wikipedia infoboxes

-

[map infobox fields to KBP slots

[query: entity name]

-

find relevant sentences:

query index with entity name + slot value

find relevant sentences:
query index with entity name

-

map

.

.

KBP slots to
fine-grained

extract +/- relation candidates

extract relation candidates]

NE labels

-

Q_

(

train classifier

(N

[classify candidates]

(a) Training

.

[inference]

[find supporting documents]

giie

[model combination: 10 X]

(b) Evaluation

Figure 1: Architecture of the slot filling system. Bolded blocks are either new or significantly changed since last year.

12.7 F;.) In the temporal task, we submitted our re-
sults for two sub-tasks: regular and diagnostics. In
the diagnostics temporal task, the system is given the
slot names, values and the documents. As we do not
know the performance of the system on test queries
at the time of writing this paper, we report results on
the developmental queries.! We achieved 37.0 F; on
the diagnostics task and 1.7 F; on the regular task.
The system performs much worse in the regular task
because it infers temporal values for slot names and
values extracted by the main slot filling system, and
hence is restricted by its performance.

2 Architecture of the Slot Filling System

Figure 1 summarizes our system’s architecture. For
clarity, we present two distinct execution flows: one
for training the slot classifier, and one for evaluat-
ing the entire system. We describe next all the sys-
tem components but we focus mostly on the modules

"Note that we do not use any information about the develop-
mental queries during training of the system.

that are either new or were significantly changed this
year. For details on the other components, we re-
fer the reader to our paper from the 2010 TAC-KBP
evaluation (Surdeanu et al., 2010).

2.1 Training

The training process starts by mapping Wikipedia
infobox fields to KBP slot types. For example,
the infobox field University:established maps
to the KBP slot type org:founded. Next, we re-
trieve sentences that contain the previously gener-
ated slot instances by querying all our document
collections with a set of queries, where each query
contains an entity name and one slot value, e.g.,
“Barack Obama” AND “United States” for the slot
per:employee_of. From the documents retrieved,
we keep only sentences that contain both the entity
name and the slot value. This process differs from
last year’s system in two ways. First, we retrieve
more sentences per entity: for each entity, we re-
trieve up to 200 sentences per entity from non-web
collections and up to 500 sentences per entity from

1 | Slots defined in groups per:city ofbirth,
per:country_of birth must exist and be compatible in a gazetteer of world locations.

per:stateorprovinceof birth and

2 | Slots defined in groups per:city of_death,
per:country_of_death must exist and be compatible in a gazetteer of world locations.

per:stateorprovince_of_death and

3| Slots of org:city-of_headquarters,

org:stateorprovince_of_headquarters

and

org:country_of_headquarters must also exist and be compatible in a gazetteer...

4 | per:date_of birth should be before per:date_of_death, if both are defined.

|91

org: founded should be before org:dissolved, if both are defined.

6 | The set of extracted slot values for org:subsidiaries must be distinct from the set of slot

values for org:parents.

Table 1: World-knowledge constraints used during inference.

the collection containing web snippets. This year we
could do this without significant overhead because
we preprocessed (our preprocessing includes named
entity recognition, parsing, and coreference resolu-
tion) all our collections offline. Second, we used a
different set of document collections, consisting of:

1. The official document corpus provided by the
task organizers.

2. Snippets of Wikipedia articles from the 2009
TAC-KBP Evaluation Reference Knowledge
Base, preprocessed similarly to last year’s sys-
tem.

3. A complete Wikipedia snapshot from June
2010.

4. A collection of entity-specific web snippets, ex-
tracted as follows: for each entity, we con-
structed a set of queries consisting of the entity
name plus one of the trigger phrases from our
list of slot-specific triggers.”> For each query,
we retrieved the top ten snippets from Google.

For the extraction of slot candidates, we followed
Mintz et al. (2009), i.e., we assumed that all sen-
tences containing a reference to the entity of interest
and a known slot value are positive examples for the
corresponding slot type. We consider as valid en-
tity references any mentions in a coreference clus-
ter where at least one element matches the entity
name. For coreference resolution we used the sys-
tem of Lee et al. (2011). We considered as nega-
tive slot examples all named entity mentions that do

http://www.surdeanu.name/mihai/kbp2010/
trigger_words.txt

not match a known slot value. Additionally, these
mentions must appear in the same sentence with the
entity whose slots are currently modeled and have
a type known to match a KBP slot. We trained the
slot classifier using a battery of one-vs-rest logistic
regression models, one for each slot type. To control
for the excessive number of negative examples, we
subsampled them with a probability of 0.01 (Riedel
et al., 2010). We used the same features as last year.

2.2 Evaluation

The sentence retrieval process used during evalu-
ation is similar to the one used when training the
model, with two exceptions. First, we retrieve more
sentences per entity: up to 500 from the Wikipedia
and KBP corpora; and up to 1,000 from the collec-
tion of web snippets. Second, the queries used dur-
ing evaluation contain just the entity name. In con-
trast to last year, we did not include trigger words
in the evaluation queries, since in early experiments
this led to a higher recall of the retrieval module
(most likely because our list is far from complete).

The inference component was re-architected this
year. The new algorithm works as follows:

1. For each tuple (entity name, slot value) we sum
the classification probabilities for all instances
of this tuple in the data and all valid slot types
(i.e., per: = slots for persons and org: « slots for
organizations). Note that the resulting scores
for a given slot type are no longer probabilities.

2. We discard all predictions with a score be-
low a threshold 7;, which is tuned using a set
of development queries. This naturally mod-

Multi-label World Knowledge Web Model
Inference in Inference Snippets Combination

Experiment 1
Experiment 2 vV
Experiment 3 vV vV
Experiment 4 vV vV V
Experiment 5 vV vV vV Vv
Experiment 6 Vv Vv Vv

Table 2: Configuration of experiments. Experiment 5 corresponds to our submission that used web snippets. Experi-

ment 6 is our submission without web information.

els multi-label predictions —i.e., the same (en-
tity name, slot value) tuple may have multi-
ple valid labels— and 1ist slots —i.e., for a
given (entity name, slot type) the system may
output multiple slot values. As an example
of multi-label prediction, for a given entity,
the slot value “California” may be classified
as both per:stateorprovince_of birth and
per:stateorprovince_of_residence. This
inference model is similar to (Hoffmann et al.,
2011), but our training is local (i.e., one da-
tum per slot mention), whereas Hoffmann et
al. (2011) proposed a joint training process.

3. Lastly, for each entity in the test set, we keep
the set of predictions with the highest overall
score that satisfy a series of world-knowledge
constraints. The complete list of constraints is
listed in Table 1.

For the slots produced by the inference process,
we identify a supporting document by querying the
official index for the entity and its slot value. If a
document exists in the official index with both terms
in the same sentence, that document is returned as
the supporting document. If multiple documents
meet this criteria, the one with the terms closest to-
gether is returned, with ties broken by the informa-
tion retrieval (IR) score. (And if no document has
the two terms in the same sentence, then simply the
document with the highest IR score is chosen.)

The evaluation execution flow concludes with
model combination. We observed early in the devel-
opment of the system that training on more than 10%
of the provided knowledge base did not improve per-
formance. To still take advantage of all the available
training data, we chose to train ten different models

(each using a disjoint ten percent of the knowledge
base) and combine their outputs. We implemented a
simple combination strategy based on voting, where
an extracted slot value is included in the final output
if it has been proposed by more than 7. base models.

3 Architecture of the Temporal Slot Filling
System

The temporal system extracts 4-tuples of dates, [T1
T2 T3 T4], for each non-NIL slot value, which is ei-
ther given (as in the case of diagnostics task) or ex-
tracted by the main slotfilling system. We extracted
temporal expressions from sentences and normal-
ized them to the YYYYMMDD format. When the
year or month was missing from a date ¢, we con-
verted it to a range, t-start and t-end. For example,
201110XX converted to 20111001 and 20111031.
When a date is fully specified, ¢t-start and t-end
have the same value. We then assigned T3 as t-start
and T2 as t-end. For sentences from which we did
not extract any temporal expression, we used the
date of their documents, when available. We sub-
mitted another system in which we tried to learn
n-grams associated with starts and ends of events.
For example, 2-grams like “joined on” and “left on”
generally mark the starts and ends of events, respec-
tively. To learn these n-grams, we used Freebase to
get temporal constraints on relations and found sen-
tences in the corresponding Wikipedia articles that
contained those temporal expressions. Whenever a
temporal value in Freebase matched a temporal ex-
pression from a sentence in Wikipedia, we consid-
ered 2-grams and 3-grams around a window of 5
words on each side of the temporal expression. We
labeled the n-grams depending on whether the tem-

poral value in the Freebase occurred as start or end.
We then weighted the n-grams using a tf-idf-like
score, using document frequencies from Google’s n-
gram corpus (LDC catalog number LDC2006T13).
When classifying a temporal expression as start or
end during the testing time, we computed Jaccard’s
coefficient between the class n-grams and the n-
grams around the temporal expression, and thresh-
olded the values to assign a particular label. We set
the values of T1 and T2 if the label was start and
T3 and T4 if the label was end.

4 Experiments

We report first experiments that highlight the con-
tributions of the novel components of our system.
For these experiments we used the 100 queries from
the 2010 KBP evaluation. We randomly selected 20
questions to tune the two system parameters (7; and
7.) and used the remaining 80 for testing. We de-
vised six different experiments, summarized in Ta-
ble 2. We report the results of this analysis in Ta-
ble 3. Note that for this analysis we ignored the ex-
tracted supporting document (i.e., the scorer param-
eter anydoc is set to true) for two reasons. First, we
wanted to focus on the core components of the sys-
tem (classification, inference, model combination)
instead of the extraction of supporting documents.
Second, since the gold answers are based on the sub-
mitted runs, they are incomplete with respect to the
supporting documents.

The analysis in Table 3 indicates that multi-label
inference (Experiment 2) improves the baseline (Ex-
periment 1) by over 1 F; point. Note that the base-
line model selects exactly one label for each slot
candidate (similar to our last year’s approach). As
expected, the improvement is caused by a significant
boost in recall (2.5 absolute percentage points). The
world-knowledge constraints (Experiment 3) con-
tribute only 0.3 F; points. This modest contribu-
tion is explained by the fact that these constraints
often take incorrect decisions due to incorrect pre-
dictions for the slot values involved. For example,
constraint 1 in Table 1 may lead to the removal of up
to three slot candidates, even when only one of them
is incorrect. On the other hand, the web-snippet col-
lection (Experiment 4) contributes a significant 3.2
F; points. This is caused by the fact that the web

P R F
Experiment 1 | 20.5 13.1 15.6
Experiment 2 | 18.7 15.6 16.7
Experiment 3 | 19.1 159 17.0
Experiment 4 | 27.1 16.4 20.2
Experiment 5 | 26.3 19.2 22.2
Experiment 6 | 21.6 174 19.3

Table 3: Development evaluation on 80 queries from the
2010 test set. The other 20 queries were used for pa-
rameter tuning. These scores were generated using the
official KBP scorer but with the anydoc parameter set
to true. For all experiments that do not involve model
combination (1 through 4) the scores are averages over
the ten different models trained on distinct partitions of
the knowledge base. For the experiments that use model
combination (5 and 6) we scored the combined output of
the ten base models.

snippets bring to the table more recent data that is
concentrated around the relations of interest (due to
the queries that include slot-specific trigger words).
As the results indicate, this complements well the
static document collections. Lastly, model combina-
tion is also successful, leading to an increase of 2 F;
points when the web snippets are used (Experiment
5) and 2.3 points without web snippets (Experiment
6). This is yet another proof that model combina-
tion yields a beneficial regularization effect that is
not covered by base models. All in all, the improve-
ments in this year’s system led to an increase of 6.6
F; points (a 42% relative improvement), compared
to last year’s system.

Table 4 lists our official results in this year’s eval-
uation. We submitted two runs: one which used
web snippets during training and testing (equivalent
to Experiment 5 in Table 2) and one which did not
access the web at any time (equivalent to Experi-
ment 6). Both these runs are above the median sub-
mission reported by the evaluation’s organizers. We
find these results encouraging, especially consider-
ing the simplicity of our approach. One troubling
observation from these results is that they are sig-
nificantly lower than our development experiments
(e.g., the submission that used web snippets scored
4.2 F; points lower than Experiment 5). Of course,
these numbers are not directly comparable because
they use different evaluation queries, but they are

P R F
LDC 86.2 72.6 78.8
Top-1 team 350 25.5 295
Top-2 team 49.2 12.6 20.0
Stanford with web 17.1 15.0 16.0
Stanford without web | 14.1 13.0 13.5
Median team 10.3 16.5 12.7

Table 4: Official results on the 2011 test queries.

P R F;
All-null Baseline 37.0 129 19.2
Document Date 66.3 232 343
Our system 71.3 249 37.0

Our system + Start-End | 59.5 20.8 30.8

Table 5: Diagnostic temporal results on 2011 queries. We
list a baseline score, which assigns NIL to all temporal
slots, and two variants of our heuristics. The scores were
not available at submission time.

close: the median submissions had almost identi-
cal scores in 2010 and 2011. Considering this, the
comparison of Tables 3 and 4 suggests that our com-
ponent that finds supporting documents — the only
difference between the two experiments — requires
some further attention.

Table 5 shows precision, recall and F; scores for
the diagnostic temporal task. We can see that docu-
ment date alone is very useful in predicting the tem-
poral values. Our system uses both document dates
and temporal information in sentences. Using the
Start-End system decreased the scores, highlighting
the need for more sophisticated approaches.

5 Conclusions and Future Work

This paper describes Stanford’s submission to the
TAC-KBP 2011 slot filling evaluation. This system
extends our distantly-supervised approach from last
year with a better inference model, model combina-
tion, and access to more data sources. Our results
are above the median score (12.7 F1): 16 F; points
for the run that accessed the web and 13.5 F; for
the run without web access. An ablative analysis in-
dicates that the improvements to this year’s system
are responsible for a 42% performance gain. Our
temporal slot filling system indicates that using doc-
ument dates and simple heuristics give reasonably

high F; scores.

At least one crucial element is missing from our
system: Riedel et al. (2010) showed that the assump-
tion that sentences that contain an entity name and
known slot values are positive examples for the rel-
evant slot type is often wrong, especially in non-
Wikipedia collections. Several recent models ad-
dress this problem (Riedel et al., 2010; Hoffmann
et al., 2011). We will implement a similar approach
in future work. We will also improve our temporal
system by using more sophisticated approaches.

References

R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, D.S.
Weld. 2011. Knowledge-Based Weak Supervision for
Information Extraction of Overlapping Relations. In
ACL.

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Sur-
deanu, D. Jurafsky. 2011. Stanford’s Multi-Pass
Sieve Coreference Resolution System at the CoNLL-
2011 Shared Task. In Proceedings of the CoNLL-2011
Shared Task.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Dis-
tant supervision for relation extraction without labeled
data In ACL-IJCNLP.

S. Riedel, L. Yao, and A. McCallum. 2010. Modeling
relations and their mentions without labeled text. In
ECML/PKDD.

M. Surdeanu, D. McClosky, J. Tibshirani, J. Bauer, A.X.
Chang, V.I. Spitkovsky, and C.D. Manning. 2010. A
Simple Distant Supervision Approach for the TAC-
KBP Slot Filling Task. In TAC-KBP.

