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Abstract KBs, which typically contain loosely coupled clusters of do-
main knowledge. PBR employs graph-based techniques to
Query answering over commonsense knowledge  automatically partition a logical theory into a network of sub-
bases typically employs a first-order logic theo- theories minimally connected by links of shared vocabulary.
rem prover. While FOL theorem proving is in- Theorem proving is performed locally in each subtheory, and
tractable in general, provers can often be hand-  relevant results are propagated between partitions to achieve
tuned to answer queries with reasonable perfor-  globally sound and complete collaborative reasoning.

mance in practice. Appealing to previous theoret- Previous work on PBR has presented a theoretical frame-
ical work on partition-based reasoningwe pro- work and made claims about the potential for improving the
pose resolution-based theorem proving strategies  efficiency of reasoning in practice. In this paper we validate
that exploit the structure of a KB to improve the these claims empirically, and introduce novel FOL resolution
efficiency of reasoning. We analyze and exper-  sirategies that exploit PBR techniques to improve the effi-
imentally evaluate these strategies with a testbed  ¢jency of reasoning.

based on the SNARK theorem prover. Exploiting We begin by explaining how a generic theorem prover may
graph-based partitioning algorithms, we show how o easily augmented with PBR, and describe an experimen-
to compute artition-derived orderindor ordered tal testbed that we developed on top of the SNARK theo-
resolution, with good experimental results, offer- rem prover[18]. Using this testbed, we compare the perfor-
ing an automatic alternative to hand-crafted order-  ance of the PBR message-passing algorithm (MP) to that
ings. We further propose a new resolution strat- ¢ o0 lar resolution restriction strategitd. MP far out-
egy,MFS resolutionthat combines partition-based performs unrestricted resolution, fares comparably to ordered

message passing with focused sublanguage resolu-  reqq|ytion with a default ordering, and sometimes beats set-
tion. Our experiments show a significant reduction of-support (SOS) resolution.
!n the num_ber of resolution steps V\{hen this strategy Next, we show how to use automatic partition{dg to in-
is used. Finally, W?.augdme.m gartglon—base(é MES- duce goartition-derived orderingPDO) for use with ordered
ts)age pakl)s_s_lng,tr[:])artlth?r; tﬁrlve to; ering, ?n LV'.FS resolution. Ordering can be a highly efficient resolution strat-
tigncorcvrlmri]lg%hesgcvc\?mbin:tisoen-so;:%%%rwae?ong;a egy, but success has previously depended on hand-crafted or-
S o derings tailored to a specific KB, often through trial and er-
incomplete, they often produce dramatic improve- ;"\ PP O is competitive with hand-crafted orderings and
ments In practice. This work presents promising far outperforms SNARK'’s default ordering. This important
practical tephnlqyes_ for query answering with large result will enable future theorem provers to incorporate effi-
and potentially distributed commonsense KBs. cient automatic ordering.

We also present a novel resolution strategy, MFS resolu-
: tion, and show it to be sound and complete. MFS combines
1 Introduction MP with afocused supportestriction employed within parti-
Theorem proving in first-order logic (FOL) is intractable in tions. Focused support is a novel resolution restriction that is
general. Nevertheless, theorem provers are commonly usadmplete for consequence finding in a specified sublanguage.
for query answering over very large knowledge bases (KBs)n experiments, MFS significantly reduces the number of res-
containing thousands of axioms, such as Cycorp’s Cyc andlution steps required to answer queries.

the High Performance Knowledge Base (HPKREJ]. To Finally, we examine combinations of each of these strate-
make headway in very large KBs, theorem provers usuallyies (MP, PDO, and MFS) with SOS. While these combina-
require KB-specific tuning and customization. tions are, in general, incomplete, they perform well in exper-

Partition-based reasoning (PBR) meth¢2s13 promise imental testing. PDO+SOS was found to outperform every
to speed up reasoning in large commonsense KBs withouither strategy and combination examined, and its theoretical
manual tuning, by exploiting the structure implicit in such incompleteness was never encountered in practice.



This paper introduces novel, easily implemented techinto two or more parts). This vertex cul/, is then sent re-
nigues for improving the efficiency of FOL theorem proving cursively with each of the separated parts, and subsequent it-
with large structured KBs such as commonsense KBs. It igrations are required to find a vertex cut that sepaiétés a
the first to report experimental results for PBR, and the firsbalancedfashion (here, we may use algorithms suchis
to examine combinations of MP with other restriction strate-10]).
gies in a theoretical or experimental setting. ) ) )

2.2 Reasoning with message passing (MP)

2 Background: partition-based reasoning Fig!JLe 1 0|i~°'|0|<’=1yséI F,'{?zri/v?rd-a/lessage-Passing '(MP)H aEBR al-
. orithm proposed i . Ittakes as Il’lpUt a part|t|0ne t eory
The PBR framework has two components: graph-based algo%, an associated partition gragh = (V, E, 1), and a query

rithm_s for autpmatic partitionipg of'a theory, qnd message?ormula@ in £(A), and returns YES if the query was en-
passing algorithms for reasoning with the partitioned theorytailed by A. MP first directs all edges in the partition graph

For further details sek?; 13; 1. G toward the goal partitiond,,. SinceG is a tree, this means

2.1 Automaticallv partitioning a theor each partition (e>§cept the goal) will 'h'ave exactly one “out-
y. P " g y. bound link” (leading to the next partition on the path to the

We say that{A; }i<, is apartitioning of a logical theoryA 4,31y and an “outbound link vocabulany,.;. MP then per-

if A=UJ; A;. Each individualA; is a set of axioms called a f5:ms consequence finding independently in each partition,

partition, L(A;) is its signature (the set of non-logical Sym- 4 hropagates each derived formula over the outbound link

bols), andC(A_i) is its language (the set of form_ulae built with toward the goal iff the formula’s signature matches,,.

L(A;)). Partitions may share symbols and axioms.

To partition a theory automatically, we first construct a Y Y

symbols graptfrom the axioms, in which each vertex rep- ?jz-CED:EaEnES;\:LA;Dm'\Q ;él\(:lrz(/lé}fnig,g)”  granh

resents a symbol in the theory, and two Verthes are J-Omed bydestcrzi%yilng the connections between 'the Eartitf@@’sa query in

an edge iff the two symbols appear together in an axiom. WEL(A ) (k < )

then use one of severtiee decompositiomlgorithms[16; ROV =T ) )

1] to generate a tree in which each node corresponds to|a 1- Definei < ; iff iis on the path betweepandk in .

- - " 2. Concurrently,
tightly connected cluster of symbols, and defines a partition (a) Perform consequence finding for each of the partifions

A; consisting of the axioms in the original theory that contain A i <n.

only those symbols. ) ) (b) For every(i,j) € E such that < j, for every conse}
The result is gartition graphG = (V, E, 1) in which ver- quencep of A; found (org in A;), if ¢ € £(1(i, 7)),

tices correspond to partitions, edges correspond to commu- then addp to the set of clauses of;.

nication links between partitions, and links are labeled with (c) If Qis proveR in Ay, return YES.

their communication vocabularythe set of symbols shared | —fF————— - .

by the two partitionsi(i, j) = L(A;) N L(A;)). Efficient We initially add—( to .A;, and derive inconsistency.

partition-based reasoning depends on finding a tree decom- ] ) ]

position that keeps the communication languages small. Figure 1: A forward message-passing algorithm.

Partitioning Algorithms

A tree decompositioris a tree of partitions (sets of symbols)
that satisfies the following property: if a symbol appears in
two different partitions, then it appears in all the partitions
and edges on the path between the two partitions. With

of a tree decomposition is the size (number of symbols) of it
largest partition. Aroptimaltree decomposition is one which

This algorithm was shown sound and complete when the
partition graph corresponds to a tree decomposition, and the
reasoning procedure employed in each patrtition is sound and
complete forL-consequence generatiowherel is the out-
5bound link vocabularyL,,;. A reasoning procedur is
complete forL-consequence generation if every formula in
& logically entailed by theor{" is also entailed by the set of
consequences ih that is generated by from 7T'. Ordered
resolution is an example of a reasoning procedure that satis-
fies this conditior6].

graph. This tree’s width is theeewidthof the original graph.
We have performed experiments with two graph partition-
ing algorithms which we describe in the following. The first
algorithm is due td16] and is based on an ordering heuris- .
tic namedmin fill. In this heuristic we iterate over the nodes 3 EXperimental setup
in the symbols graph. At each step, we select a node in th€o evaluate the performance of various PBR strategies, we
graph, add all missing edges between the node’s neighbors built an experimental platform around SNARK, a resolution-
the graph, and remove that node from the graph. The node lsased FOL theorem prover developed by Mark Stickel at the
selected such that the number of added edges is minimal. SRI Al Center [18]). Adding PBR capabilities to SNARK
The second algorithm is due {d] and is based on a was straightforward. Three extensions were required:
divide-and-conquer approach which is guaranteed to approx- e Associate with each clause a set of one or more parti-
imate the optimum decomposition by a factor of at most tions.
O(log OPT), whereOPT is the treewidth of the symbols e Restrict resolution to occur only within partitions.
graph. lIteratively, the algorithm finds a vertex cut in the e Ensure appropriate propagation of new clauses to neigh-
graph (a set of vertices whose removal separates the graph boring partitions.



These modifications should be easy to implement in anyesolution stepss the best measure of the quantity of work
resolution-based theorem prover. required for each trial.

3.1 Implementing PBR in SNARK 4 Baseline evaluation of MP

In SNARK, arow is a data structure that stores a clause alon@\s a starting point for evaluating the effectiveness of MP, we
with metadata such as the inference method used to derivsbmpare it with two established resolution restriction strate-
it. We extend this data structure to include a (non-empty) segjies: set-of-supporfSOS) resolution andrderedresolution.
of partition IDs indicating the partitions in which the clause SOS resolution places the negated query into a designated
resides. A separate data structure holds a description of thget of support” and allows only resolutions involving at least
partition graph: the partitions, the links that connect themone clause from the set of support, to which newly derived
and the vocabulary for each partition and link. clauses are added. In ordered resolution, a global ordering
Resolution is restricted to occur only within partitions: two among predicates is given (by the user), and clauses are re-
rows may be resolved only if the intersection of their partitionsolved upon only on their highest literals (in the predicate
sets is non-empty. The resolvent inherits this intersection asrdering).
its own partition set, so that it appears in the same partitions To assess the effectiveness of a resolution strategy, we ex-
as its parents. (This restriction may be superimposed on toamine how much work is required to answer a query using
of other resolution restrictions, such as set-of-support.) the strategy, relative to usimp strategy (that is, allowing any
Finally, to implement message passing between partitiongossible resolution). As described in Section 3.2, we use the
we examine the vocabulary of every new resolvent. If itnumber of resolution steps as a measure of the work done in
matches the outbound link languagg,; of any partition in  answering a query. The absolute number of resolution steps
its partition set, the partition set is expanded to include thes typically in the thousands, but since this number may vary
adjacent partition reached by that link. widely from one query to the next, we must normalize in or-
To generate the initial partitioning, we first load the axiomsder to make meaningful comparisons across queries. Thus,
of a KB into SNARK and convert the formulas to clausal for each query and strategy, we report the number of reso-
form. This set of clauses is passed to an external partitionlution steps required to answer the query as a percent of the
ing tool, which generates the partition graph and defines theumber of resolution steps required using no strategy.
vocabulary for each partition and link, according to the par- Results for a representative selection of queries are shown
ticular partitioning strategy selected (see Section 2.1). Thén the first three histograms of Figure 2. Relative to using no
partition graph is essentially static, and can be generated justrategy, MP reduces the numbers of steps required to answer
once for each KB, so that the cost of partitioning is amortizedmost queries by one-third to two-thirds.
over many queries. However, the links between partitions are However, MP is significantly outperformed by SOS on
reoriented by MP on a per-query basis, to ensure that all conmany queries (though not all). Why? This “vanilla” version

munication links lead toward the goal partition. of MP operates only at the global level: it restricts resolution
betweerpartitions, but allows unrestricted resolutiaithin
3.2 Sample KBs, evaluation metrics partitions, equivalent to using no strategy at the local level.

. - In the following sections, we show how to complement MP
The greatest p.roblem we encountered was in optammg Iarg\‘i?/ith smart local strategies for enhanced performance.

KBs of FOL suitable for use as test data. Test suites for theo-" . 215 tor ordered resolution used a default (arbitrary)
rem provers are biased toward small theories of prOpos't'onadrdering so the unimpressive results are no surprise. In Sec-

ﬁgécagﬁh)ﬁynvggfstg? ?(gll? gzc?r];tsitszglbligsccr?ga;wg%ss,'lrga;c jon 5, we introduce a mechanism for automatically inducing
y fficient orderings from a partition structure.

domain and employ only a small number of symbols, mak-
ing them unsuitable for partitioning. The best application of . . .

pagrtitioning will be to cgmmonsegse KBs contgipning Iarge5 Partition-derived ordering

numbers of both axioms and symbols. However, the few suclA major obstacle to the effective use of ordered resolution
KBs available tend to employ proprietary extensions to FOL js determining a predicate ordering that will minimize infer-
making their direct comparison in a common testbed probence. SNARK provides a default ordering, but as we saw in
lematic. In the end, we used a subset of the Cyc KB containSection 4, the performance of ordered resolution with the de-
ing 730 axioms concerning spatial relationships, along with gault ordering, though better than using no strategy, is undis-
set of queries supplied by an outside source. We are continginguished compared to MP and SOS. Efficient ordered res-
ing our efforts to remedy the paucity of experimental data byolution is generally achieved by arduous hand-crafting of a
adding other large KBs such as SUMO. predicate ordering by a theorem-proving expert.

We collected a diversity of statistics on each partitioning In this section, we propose to use automatic partitioning,
and each query trial, including runtimes and elapsed timesand in particular PBR tree-decomposition algorithms, to au-
But we are most interested in metrics that allow us to comparéomatically induce a predicate ordering. This is an impor-
one trial with another by the size of the search space exploredant contribution as it paves the way to improving theorem-
Processor runtime is an imperfect proxy, as it depends greatlgroving software for ordered resolution, providing more ef-
on details of implementation that are not our primary concernfective ordered resolution for the non-expert, and relieving
Thus, in the remainder of this paper, we focusnomber of  the expert from arduous hand-coding of predicate ordering.



Figure 3 describes the P20 algorithm for inducing a sym-according to< 4. Notice that if ordered resolution witk 4
bol ordering from a computed partitioning. It takes as inputresolved two clauses upan, thenp; is the highest symbol in
a partition graphG = (V, E, 1) of partitioned theoryd =  both clauses.
(U, Ai, and a query) in L(A), and output©rd(A), a sym- We show that ordered resolution is equivalent to MP by
bol ordering on4. We call this ordering partition-derived  showing that every resolution done by ordered resolution can
ordering When combined with ordered resolution, we call be done by MP and vice versa.
the strategy PDO. Recall that ordered resolution uses an or- Let C;, C5 be two clauses resolved grin the ordered res-
dering on predicate symbols, so PDO in fact uegl(.A) olution using the ordek 4. Letiq,i2 be such thatC; in
restricted to predicate symbols and ignores the ordering impartitioni; andC5 in partitioni,. Assume that MP cannot
posed on constant and function symbols. resolve the two clauses. That means that they are in different
The underlying intuition is as follows: in MP, we perform partitions and that at least one of the clauses,Sayshould
resolution and message passing starting with the partitionlse sent to another partitiod;, with j < 5, in order for the
farthest away from the goal partition. All predicates are re-two clauses to be resolved (s the <-largest partition such
solvedexceptthose in the outbound link language, which arethatj < i; andj < i5).
resolved in the next partition downstream, unless they con- SinceC, was not sent to partitio, its vocabulary is not
tinue to appear in subsequent outbound link languages. lim the label of one of the edges on the path betwigeandp
this way, the ordering of partitions along paths toward thein G (by the definition of MP, we would have sent that clause
goal determines an ordering among predicates resolved. if it was expressed by the labels on each of the edges on that

path).
PROCEDURE P2Qg, Q) Let ¢ be a symbol that appears th bL_Jt is not on one
G = (V,E,l) is a partition graph of partitioned theogyt = of the edges in the path between partitigpsand j. p is
Ui—, . A, and aquen in £(Az) (k < n). the < 4-largest symbol for boti’; and C,, meaning thap

appears on the path betweéni, (thus it also appears on

1. Definej < iiff j is on the path betweernandy in . the path betweety, j, which is a subset of the path between

2. LetLous; = L(I(, 7)) for j such that(é, j) € Eandj < ¢

(there is at most one sughif there is none, then lef,..;, = i1,12) and thatg <, p (because; does not appear on that
0). Lout, is the output language of partitiod;. ' path (thus, it is nop) andp is the< 4-largest inCs).

3. LetLin, = U, L((h,1)) for h such that(h,) € E and Sinceq is not in L(j) (otherwise it would be on the path
i < h (there may be none or multiple subls). L, isthe|  betweeniy, j) and the path betweefji, includesp, it must
input language of partitiopd; . be thatP(p) < j, andP(p) < j < P(q) implies thaip < 4 .

4. Initialize Ord(A) = empty list. This contradicts the previous observation that 4 p. Thus,

5. Traverse the tree from furthest leaves to root followingn

a decreasing order, for eveiy: 1. q appears on the path betwegn; andCy; must be sent to

partition j. The same holds fof’;. Thus, MP will resolve

Ord(A)a;pend(OTd (A), Lo \ Loners LA\ Loue.). the two clauses. o _ _
6. Ord(A) = append(Ord(A), L(Ar),). ) The other direction (every resolution in MP is a resolution
in ordered resolution) is simpler, and its proof can be seen
from Theorem 5.2 below. O

Figure 3: An algorithm to compute a predicate ordering.

It is interesting to observe that we can likewise generate a
partitioning of a theory from an ordering of symbols, should

Theorem 5.1. Let. A = U{Ai}i<, be a partitioning of sym- 0 10 given by an expert. We describe the algorithm as fol-
bols of A such that all function and constant symbols appear s LetS be a stack containing the predicate symbols in

in all partitions, letG be a tree decomposition corres_pondipg logical theoryA in the designated ordeprd(S). Let Z be

to A, and IetQ be a query. Then,.ordered resoluﬂon W'.th an empty stack. Pop a symbe|,from stackS. Create a set
order Ord(A) |s_e_qU|vaIent to MP with ordered r_esolutlon N of symbols that includes, and all the symbols that appear
;a_ach of the p?g:t'on.?r’gu;hjhat the order used in each partiy iy’ in some axiom ind and are also still 5. If this set of
ion is compatible wittOrd(A). symbols is contained by another set that is on stackhen
Proof. For everyp € L(A)’ let P(p) be the<-smallest par- eli-minate it. Othel’\Nise, pUSh it onto stagk Continue until
tition, 7, such that € L(i). For everyp € L(A) thereis 2 1S gmplmty. Then, SGF =V, {E)fto be an empty gfraph, alnd
exactly one such partition because otherwise there are at led vri;'c\i’g ?{ E’&B Saestsaon :é wggrs(irgﬁtb F;rsgtsgft gyr?])t/)rglzoi r?

two that are not connected via another node, contradicting th th which it sh he | ber of bol h
fact that(? is a tree decomposition (it guarantees that if a sym-7. With which it shares the largest number of symbols. When

bol appears in two partitions then it appears on the edges og is empty, create a partitionl; for every set of symbols
the pg?h between thpose partitions). PP g ; € V such that4; includes all the axioms froml that are

Define <, an order between symbols, by <o ¢ iff p N L(Z;). Call the resulting set of partitio8(Ord(S5)), and
precedes; in Ord(A) (equivalently,P(p) < P(q)). Define  the grapiG(Ord(S)).
< 4 to be a total order that agrees withy. < 4 is clearly a  Theorem 5.2. Assume thaDrd is an order on the nonlogical
partial order, as it obeys reflexivity, transitivity and is strict symbols of theorny, and thatQ is a query such that(Q)
(thus asymmetric). We show thaty is an order as required. are the final symbols in ordeprd. Then, ordered resolution
Let{p; }i<m be an enumeration of the predicate symbolglof with order Ord is equivalent to MP with partition® (Ord)



and graphG(Ord), using ordered resolution in each of the  When focused support is used as a local strategy in PBR,

partitions such that the order used in each partition is com-clausal theoryZ is an individual partition4; from a parti-

patible withOrd. tioned theory, and. is the output communication language
of that partitionA;.

Proof Sketch.To see that MP does not perform more resolu-Theorem 6.2. Focused support is sound and completefier
tions than ordered resolution of with order<4, we only  consequence finding.

need to notice that every partition corresponds bueketin
the ordered resolution algorithm. If MP resolv€s, C5 on
predicateP, thenC4, Cy were together in some partitiof
and they got resolved on their highest predicate. TaysCo
will also get resolved by ordered resolution.dfwith order ~ Theorem 6.3 (17]). If P is an ordering of the predicate let-

Thatis, focused support is sound and complete for generat-
ing consequences in the restricted vocabulark.ofhe proof
relies on the following theorem.

<A. O  ters in a finite, unsatisfiable sét of clauses and if\/ is a
model, then there is a semanfizdeduction of } fromU.
Proposition 5.3. PDO is sound and complete. Roughly, P-deduction resolves claugés Cs on predicate

R only if C; satisfiesM, C; does not satisfy/, andR is the

In our experimental evaluation, illustrated in Figure Z’E;\rgest among the predicatesah, in some preset order.

PDO made a strong showing. The performance of PDO wa

roughly comparable with that of SOS for most queries; for a
few queries, PDO was up to two orders of magnitude mord r00f. Let.Abe a clausal theory and takee L(L) a clause

efficient than SOS. Unsurprisingly, PDO invariably outper-SUch thatd [= D. We show that focused support eventually
formed ordered resolution with SNARK’s default ordering. 9€nerates) as a result ofd. Assume thatd is consistent.
PDO also outperformed vanilla MP, which by itself does not | NUS; there is a model/ that satisfiesA. Let S be as in the
focus reasoning at the local level. When MP is augmented€finition of the focused support strategy far

with focused support (the MFS combination), PDO’s com- 1heorem 6.3 says that there isParesolution of{} from
parative advantage largely disappears. In Section 7, we wik! for the model) and for every ordering” of the predicate

see that the performance of PDO can be enhanced even fgiymPols. Since everything resolves with is already i,
ther by combining it with other strategies. we can remove-D from the resolution graph of this proof

and yield D from the P-deduction of A. This shows that
. . there is aP-deduction ofD from A.
6 A new restriction strategy: MFS resolution To show that there is a focused support deductiorDof

MP operates at the global level to focus reasoning by restricifo™ A We still need to show that restricting resolution to
ccur only on nonk literals does not prevent proving.

ing between-partition resolution and passing relevant result%hoosep to be an order such that the symbols noEioome

toward the goal partition. However, MP has no impact Onbefore those il.. Sentences that are notfh so they have

local reasoning, that is, reasoning within partitions. In fact, :
this is one of the strengths of MP: individual partitions may no symbols fromL. When we resolve sentences frcﬂ‘rwnh .
pose not inS, then clearly the focused support condition

employ heterogeneous reasoning methods, including speci .
purpose reasoners optimized for particular domains. (As de—°|ds‘ We move all the clauses Sfthat are completely in

scribed in Section 2.2, the global soundness and completeneg L) (i.e., have no symbols that are outsitipinto a distin-

of MP follow from the soundness and completeness of th gltf\hci‘dtr?:g.hgoév'swgigl\g ?hraetsgl\éentgvtgns'?l’?ézgcsSn]:rbsgl]s
reasoners used in each partition.) MP can thus be used to Ve sy y

chestrate collaborative reasoning between disparate syste %ke dprecgdehnci‘g O\IIferhthe onels frﬁrLso the lfoclz_usecli s;Jpport

provided that they share a common vocabulary. Neverthecondition is held. If the resolvent has only literals fram

less, the absence of a local strategy limits gains in efficienc _her_l we put itinS. Otherwise, we put it irf. . .

In this section we exploit PBR to propose a new restriction Finally, assume tha j= D. Then,SU{_ﬂD} Is consistent.

strategyMFS resolutionthat combines global MP with a lo- OWeVer,5US [= D (as shown above with the-deduction), -

cal strategy for focused sublanguage resolution. s05USU{=D} is not consistent. However, for sentences in
S, S resolution with our semantic support condition is equiv-

With vanilla MP, all possible resolutions are performed . : : :
e - ' lent to using ordered resolution with the order only specify-
within a partition, but resolvents can be propagated to Otheﬁg that literals inL are resolved after literals not ih. Since

partitions only if they are in the outbound link language. Wethis is known to be complete fdi-consequence finding.9:

propose a local resolution stratefycused suppoythat takes ; — !
inspiration from strategies described by Sladld, SOL re- 8], we know that it must be thef = D, and the proof is

striction[9], and SFK-resolutiohd]. done. -
Definition 6.1 (Focused Support Restriction).Let7 be a MFS resolution is the combination of MP with the focused
clausal theory and lef be a designated subsetbfT). Ini-  support restriction within partitions. As discussed in Section

tialize S to be the set of clauses ih that non-exhaustively 2.2, MP is sound and complete provided that each partition
include symbols fronk. Two clauses may be resolved only if uses a reasoning procedure that is sound and complete for
one of them is it and the resolved predicate is notin The  L-consequence finding. Since focused support is such a pro-
resolvent is added t§. cedure, MFS resolution is also sound and complete:



Corollary 6.4 (Soundness and Completeness of MFS).
MP with the focused support restrictigMFS resolution)is

sound and complete. Oql Eq2 Og3 Og4 M5 g6 g7 ‘

The relative performance of MFS, as depicted in Figure 2,
is encouraging. For most queries, the performance of MFS| 100% -
is comparable to that of SOS; and for a minority of queries
MFS is one or even two orders of magnitude more efficient. 80%

We also examined the performance of MFS combined with
PDO (MSF+PDO), which exhibited performance slightly su-
perior to that of MFS alone. Nevertheless, unlike MFS, 40% |
MFS+PDO is incomplete. Section 7 discusses the incom-
plete strategy MFS+SOS, which exhibited even better perfor-|  20% -
mance.

Theorem 6.5 (Incompleteness of MFS+PDO)PDO with 0% -
the focused support restrictigMFS+PDO)is incomplete.

The incompleteness of MFS+PDO can be seen by noticing
that focused support applies a restriction that is more stric
than that of SOS or semantic resolution. When we add PD
to this restriction, we eliminate resolutions with any clause
that does not share any predicates with the clauses of the su
port. Interestingly, MFS+PDO is very close to being com-

plete, in the following sense. A close examination of they, 1o ationship between MP and ordered resolution presented

fh Theorem 5.2. When the predicate ordering corresponds to
"MP, then PDO+SOS restricts resolution to only those clauses
that include predicates that appear in the support. Despite
its incompleteness, PDO+SOS performed extremely well in
experimental evaluation. Incompleteness was never encoun-
tered in practice, and the PDO+SOS combination answered
7 Combinations of strategies ﬁ\gtaiz)ynqol:‘esrt};a:?egeig;r steps than any other strategy or combi
Preceding sections examined three reasoning strategies thatThe combination of MFS with SOS (MFS+SOS) is incom-
are shown to be complete: MP, PDO, and MFS. In thisplete as well, since MFS is a restricted form of MP, and
section we examine combinations of these strategies witMP+SOS is incomplete. This incompleteness was revealed
SOS. Though none of these combinations is complete, theyn experimental testing, when the MFS+SOS combination
have some interesting theoretical properties, and in practictailed to answer a few queries. However, when it did not fail,
showed the best performance of all strategies evaluated. R®FS+SOS was highly efficient, answering most queries in as
sults of experimental evaluation are summarized in Figure 4few steps as PDO+SOS.

To combine MP with SOS, we maintain a global set of sup-
port, which initially contains only the negated query, and weg Summary and related work
allow resolution between two clauses only if they are in the
same partition and at least one of them is in the support. Be#/e propose, analyze, and experimentally evaluate a variety
cause messages are sent only toward the goal partition in MBf resolution-based strategies that improve the efficiency of
never away, resolution will occur only in the goal partition resolution-based FOL theorem provers. We also propose an
unless we place the negated query in every partition whosalgorithm for automatically inducing predicate ordering for
language includes it. In either case, SOS resolution will ocordered resolution. Experimental results confirm significant
cur in partitions in which the negated query appears. improvements in performance using our techniques. This

Clearly, the MP+SOS combination is not complete. It can-work makes promising practical contributions to the theorem
not use information that may be crucial to proving the queryproving community, presented in a manner designed to facil-
but resides in partitions that do not participate in the compuitate replication. (Software and data will be made available
tation. However, the algorithm determines the clauses thaat http://www.ksl.stanford.edu/projects/Partitionipgur re-
are most relevant to proving the query, in a simple and dysults are particularly significant for query answering with
namic way. This sort of inference is used extensively withcommonsense KBs, whose size, inherent structure, and some-
large KBs, where the selection of the parts of the KB neededimes distributed nature make them amenable to our structure-
to answer the query is done by hand. Our automatic selectiobased efficiency improvements.
mechanism is enough for many applications, and our experi- There is a diversity of related work. Our algorithm to in-
ments bear this out. duce a predicate ordering is the first to use graphical struc-

The argument given for the incompleteness of MP+SOSure, and in particular treewidth approximation algorithms,
also shows that PDO+SOS is incomplete. This follows fromwith FOL resolution. Current automated approaches to or-

Resolution steps (vs. set-of-support)
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igure 4: Performance comparison of three combinations of
feasoning strategies. In contrast to Figure 2, the vertical axis
iB_normaIized relative to SOS.

order restriction to clauses that do not contain predicates fro
L and still maintain completeness fbrconsequence finding.
Thus, a simple modification of MFS+PDO, allowing clauses
in the focused support of a partition to resolve on any hon-
literal (without considerations of ordering) is complete.



dering predicates use properties of those predicates, such as
their arity (e.g., the Knuth-Bendix methdd 1] when ap-
plied to a uniform weight function, as if2d)), or gen-
erate a random default ordering (e.g., lexical, aq1f]).
Our work is most significantly distinguished from work on
CSPs (e.gl7]) and propositional logical reasoning (e.l5;
19]) in that we partition (and subsequently order) a graph thatél
includes all the nonlogical symbols in the theory, whereas
propositional methods order nodes in a graph that correspor{d]
to propositional symbols and ordering is often dynamic.

Our focused suppontestriction (on which MFS is based) 8]
resembles SFK resolutidi8] and SOL resolutiod9] in its
computation of resolvents in a target language. However, in
contrast to SFK resolution, our target language is not closed
under subsumption. Further, [8] there is no clear way to
determine a predicate ordering. MFS resolution combines fo-
cused support with predicate ordering imposed by MP, genf1Q]
erating a significant improvement in performance.

Finally, there has been little experimental work studying
the behavior of theorem proving strategies on large KBs, and
none on commonsense KBs. Prior to this pafefl showed 11]
that the success rate of leading theorem provers, such As
SPASS, Otter, Setheo, Protein and 3TAP, in formal verifica-
tion problems with hundreds of axioms depends strongly on
how good they are at finding the few relevant axioms that arél2]
really needed in the proofs. Our work presents a principled
method to successfully elicit such a set of relevant axioms,
the PDO+SOS strategy being most notably successful. [13]

In the future, we plan to continue our experimental eval-
uation with additional KBs. We also hope to demonstrate[14]
the use of MP for collaborative theorem proving among dis-
tributed KBs and diverse (perhaps special-purpose) reason-
ers. Finally, PBR naturally enables parallelization of FOL[15]
theorem proving. The benefits of partition-driven parallelism
can be evaluated with little further implementation effort. We
plan to pursue this in the near future.

(5]
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