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Abstract

Query answering over commonsense knowledge
bases typically employs a first-order logic theo-
rem prover. While FOL theorem proving is in-
tractable in general, provers can often be hand-
tuned to answer queries with reasonable perfor-
mance in practice. Appealing to previous theoret-
ical work on partition-based reasoning, we pro-
pose resolution-based theorem proving strategies
that exploit the structure of a KB to improve the
efficiency of reasoning. We analyze and exper-
imentally evaluate these strategies with a testbed
based on the SNARK theorem prover. Exploiting
graph-based partitioning algorithms, we show how
to compute apartition-derived orderingfor ordered
resolution, with good experimental results, offer-
ing an automatic alternative to hand-crafted order-
ings. We further propose a new resolution strat-
egy,MFS resolution, that combines partition-based
message passing with focused sublanguage resolu-
tion. Our experiments show a significant reduction
in the number of resolution steps when this strategy
is used. Finally, we augment partition-based mes-
sage passing, partition-derived ordering, and MFS
by combining them with the set-of-support restric-
tion. While these combinations are shown to be
incomplete, they often produce dramatic improve-
ments in practice. This work presents promising
practical techniques for query answering with large
and potentially distributed commonsense KBs.

1 Introduction
Theorem proving in first-order logic (FOL) is intractable in
general. Nevertheless, theorem provers are commonly used
for query answering over very large knowledge bases (KBs)
containing thousands of axioms, such as Cycorp’s Cyc and
the High Performance Knowledge Base (HPKB)[4]. To
make headway in very large KBs, theorem provers usually
require KB-specific tuning and customization.

Partition-based reasoning (PBR) methods[2; 13] promise
to speed up reasoning in large commonsense KBs without
manual tuning, by exploiting the structure implicit in such

KBs, which typically contain loosely coupled clusters of do-
main knowledge. PBR employs graph-based techniques to
automatically partition a logical theory into a network of sub-
theories minimally connected by links of shared vocabulary.
Theorem proving is performed locally in each subtheory, and
relevant results are propagated between partitions to achieve
globally sound and complete collaborative reasoning.

Previous work on PBR has presented a theoretical frame-
work and made claims about the potential for improving the
efficiency of reasoning in practice. In this paper we validate
these claims empirically, and introduce novel FOL resolution
strategies that exploit PBR techniques to improve the effi-
ciency of reasoning.

We begin by explaining how a generic theorem prover may
be easily augmented with PBR, and describe an experimen-
tal testbed that we developed on top of the SNARK theo-
rem prover[18]. Using this testbed, we compare the perfor-
mance of the PBR message-passing algorithm (MP) to that
of popular resolution restriction strategies[3]. MP far out-
performs unrestricted resolution, fares comparably to ordered
resolution with a default ordering, and sometimes beats set-
of-support (SOS) resolution.

Next, we show how to use automatic partitioning[1] to in-
duce apartition-derived ordering(PDO) for use with ordered
resolution. Ordering can be a highly efficient resolution strat-
egy, but success has previously depended on hand-crafted or-
derings tailored to a specific KB, often through trial and er-
ror. Our PDO is competitive with hand-crafted orderings and
far outperforms SNARK’s default ordering. This important
result will enable future theorem provers to incorporate effi-
cient automatic ordering.

We also present a novel resolution strategy, MFS resolu-
tion, and show it to be sound and complete. MFS combines
MP with afocused supportrestriction employed within parti-
tions. Focused support is a novel resolution restriction that is
complete for consequence finding in a specified sublanguage.
In experiments, MFS significantly reduces the number of res-
olution steps required to answer queries.

Finally, we examine combinations of each of these strate-
gies (MP, PDO, and MFS) with SOS. While these combina-
tions are, in general, incomplete, they perform well in exper-
imental testing. PDO+SOS was found to outperform every
other strategy and combination examined, and its theoretical
incompleteness was never encountered in practice.



This paper introduces novel, easily implemented tech-
niques for improving the efficiency of FOL theorem proving
with large structured KBs such as commonsense KBs. It is
the first to report experimental results for PBR, and the first
to examine combinations of MP with other restriction strate-
gies in a theoretical or experimental setting.

2 Background: partition-based reasoning
The PBR framework has two components: graph-based algo-
rithms for automatic partitioning of a theory, and message-
passing algorithms for reasoning with the partitioned theory.
For further details see[2; 13; 1].

2.1 Automatically partitioning a theory
We say that{Ai}i≤n is a partitioning of a logical theoryA
if A =

⋃
i Ai. Each individualAi is a set of axioms called a

partition, L(Ai) is its signature (the set of non-logical sym-
bols), andL(Ai) is its language (the set of formulae built with
L(Ai)). Partitions may share symbols and axioms.

To partition a theory automatically, we first construct a
symbols graphfrom the axioms, in which each vertex rep-
resents a symbol in the theory, and two vertices are joined by
an edge iff the two symbols appear together in an axiom. We
then use one of severaltree decompositionalgorithms[16;
1] to generate a tree in which each node corresponds to a
tightly connected cluster of symbols, and defines a partition
Ai consisting of the axioms in the original theory that contain
only those symbols.

The result is apartition graphG = (V,E, l) in which ver-
tices correspond to partitions, edges correspond to commu-
nication links between partitions, and links are labeled with
their communication vocabulary: the set of symbols shared
by the two partitions (l(i, j) = L(Ai) ∩ L(Aj)). Efficient
partition-based reasoning depends on finding a tree decom-
position that keeps the communication languages small.

Partitioning Algorithms
A tree decompositionis a tree of partitions (sets of symbols)
that satisfies the following property: if a symbol appears in
two different partitions, then it appears in all the partitions
and edges on the path between the two partitions. Thewidth
of a tree decomposition is the size (number of symbols) of its
largest partition. Anoptimaltree decomposition is one which
has the lowest width among all tree decompositions for the
graph. This tree’s width is thetreewidthof the original graph.

We have performed experiments with two graph partition-
ing algorithms which we describe in the following. The first
algorithm is due to[16] and is based on an ordering heuris-
tic namedmin fill. In this heuristic we iterate over the nodes
in the symbols graph. At each step, we select a node in the
graph, add all missing edges between the node’s neighbors in
the graph, and remove that node from the graph. The node is
selected such that the number of added edges is minimal.

The second algorithm is due to[1] and is based on a
divide-and-conquer approach which is guaranteed to approx-
imate the optimum decomposition by a factor of at most
O(log OPT ), whereOPT is the treewidth of the symbols
graph. Iteratively, the algorithm finds a vertex cut in the
graph (a set of vertices whose removal separates the graph

into two or more parts). This vertex cut,W , is then sent re-
cursively with each of the separated parts, and subsequent it-
erations are required to find a vertex cut that separatesW in a
balancedfashion (here, we may use algorithms such as[12;
10]).

2.2 Reasoning with message passing (MP)
Figure 1 displays Forward-Message-Passing (MP), a PBR al-
gorithm proposed in[2]. It takes as input a partitioned theory
A, an associated partition graphG = (V,E, l), and a query
formula Q in L(Ak), and returns YES if the query was en-
tailed byA. MP first directs all edges in the partition graph
G toward the goal partitionAk. SinceG is a tree, this means
each partition (except the goal) will have exactly one “out-
bound link” (leading to the next partition on the path to the
goal) and an “outbound link vocabulary”Lout. MP then per-
forms consequence finding independently in each partition,
and propagates each derived formula over the outbound link
toward the goal iff the formula’s signature matchesLout.

PROCEDURE FORWARD-M-P (MP)({Ai}i≤n, G, Q)

{Ai}i≤n a partitioning of the theoryA, G = (V, E, l) a graph
describing the connections between the partitions,Q a query in
L(Ak) (k ≤ n).

1. Definei ≺ j iff i is on the path betweenj andk in G.
2. Concurrently,

(a) Perform consequence finding for each of the partitions
Ai, i ≤ n.

(b) For every(i, j) ∈ E such thati ≺ j, for every conse-
quenceϕ of Aj found (orϕ in Aj), if ϕ ∈ L(l(i, j)),
then addϕ to the set of clauses ofAi.

(c) If Q is provena in Ak, return YES.

aWe initially add¬Q toAk and derive inconsistency.

Figure 1: A forward message-passing algorithm.

This algorithm was shown sound and complete when the
partition graph corresponds to a tree decomposition, and the
reasoning procedure employed in each partition is sound and
complete forL-consequence generation, whereL is the out-
bound link vocabularyLout. A reasoning procedureR is
complete forL-consequence generation if every formula in
L logically entailed by theoryT is also entailed by the set of
consequences inL that is generated byR from T . Ordered
resolution is an example of a reasoning procedure that satis-
fies this condition[6].

3 Experimental setup
To evaluate the performance of various PBR strategies, we
built an experimental platform around SNARK, a resolution-
based FOL theorem prover developed by Mark Stickel at the
SRI AI Center ([18]). Adding PBR capabilities to SNARK
was straightforward. Three extensions were required:
• Associate with each clause a set of one or more parti-

tions.
• Restrict resolution to occur only within partitions.
• Ensure appropriate propagation of new clauses to neigh-

boring partitions.



These modifications should be easy to implement in any
resolution-based theorem prover.

3.1 Implementing PBR in SNARK

In SNARK, arow is a data structure that stores a clause along
with metadata such as the inference method used to derive
it. We extend this data structure to include a (non-empty) set
of partition IDs indicating the partitions in which the clause
resides. A separate data structure holds a description of the
partition graph: the partitions, the links that connect them,
and the vocabulary for each partition and link.

Resolution is restricted to occur only within partitions: two
rows may be resolved only if the intersection of their partition
sets is non-empty. The resolvent inherits this intersection as
its own partition set, so that it appears in the same partitions
as its parents. (This restriction may be superimposed on top
of other resolution restrictions, such as set-of-support.)

Finally, to implement message passing between partitions,
we examine the vocabulary of every new resolvent. If it
matches the outbound link languageLout of any partition in
its partition set, the partition set is expanded to include the
adjacent partition reached by that link.

To generate the initial partitioning, we first load the axioms
of a KB into SNARK and convert the formulas to clausal
form. This set of clauses is passed to an external partition-
ing tool, which generates the partition graph and defines the
vocabulary for each partition and link, according to the par-
ticular partitioning strategy selected (see Section 2.1). The
partition graph is essentially static, and can be generated just
once for each KB, so that the cost of partitioning is amortized
over many queries. However, the links between partitions are
reoriented by MP on a per-query basis, to ensure that all com-
munication links lead toward the goal partition.

3.2 Sample KBs, evaluation metrics

The greatest problem we encountered was in obtaining large
KBs of FOL suitable for use as test data. Test suites for theo-
rem provers are biased toward small theories of propositional
logic (PL), while the minority of test problems containing sig-
nificant numbers of FOL axioms usually describe an abstract
domain and employ only a small number of symbols, mak-
ing them unsuitable for partitioning. The best application of
partitioning will be to commonsense KBs containing large
numbers of both axioms and symbols. However, the few such
KBs available tend to employ proprietary extensions to FOL,
making their direct comparison in a common testbed prob-
lematic. In the end, we used a subset of the Cyc KB contain-
ing 730 axioms concerning spatial relationships, along with a
set of queries supplied by an outside source. We are continu-
ing our efforts to remedy the paucity of experimental data by
adding other large KBs such as SUMO.

We collected a diversity of statistics on each partitioning
and each query trial, including runtimes and elapsed times.
But we are most interested in metrics that allow us to compare
one trial with another by the size of the search space explored.
Processor runtime is an imperfect proxy, as it depends greatly
on details of implementation that are not our primary concern.
Thus, in the remainder of this paper, we focus onnumber of

resolution stepsas the best measure of the quantity of work
required for each trial.

4 Baseline evaluation of MP
As a starting point for evaluating the effectiveness of MP, we
compare it with two established resolution restriction strate-
gies:set-of-support(SOS) resolution andorderedresolution.
SOS resolution places the negated query into a designated
“set of support” and allows only resolutions involving at least
one clause from the set of support, to which newly derived
clauses are added. In ordered resolution, a global ordering
among predicates is given (by the user), and clauses are re-
solved upon only on their highest literals (in the predicate
ordering).

To assess the effectiveness of a resolution strategy, we ex-
amine how much work is required to answer a query using
the strategy, relative to usingnostrategy (that is, allowing any
possible resolution). As described in Section 3.2, we use the
number of resolution steps as a measure of the work done in
answering a query. The absolute number of resolution steps
is typically in the thousands, but since this number may vary
widely from one query to the next, we must normalize in or-
der to make meaningful comparisons across queries. Thus,
for each query and strategy, we report the number of reso-
lution steps required to answer the query as a percent of the
number of resolution steps required using no strategy.

Results for a representative selection of queries are shown
in the first three histograms of Figure 2. Relative to using no
strategy, MP reduces the numbers of steps required to answer
most queries by one-third to two-thirds.

However, MP is significantly outperformed by SOS on
many queries (though not all). Why? This “vanilla” version
of MP operates only at the global level: it restricts resolution
betweenpartitions, but allows unrestricted resolutionwithin
partitions, equivalent to using no strategy at the local level.
In the following sections, we show how to complement MP
with smart local strategies for enhanced performance.

The trials for ordered resolution used a default (arbitrary)
ordering, so the unimpressive results are no surprise. In Sec-
tion 5, we introduce a mechanism for automatically inducing
efficient orderings from a partition structure.

5 Partition-derived ordering
A major obstacle to the effective use of ordered resolution
is determining a predicate ordering that will minimize infer-
ence. SNARK provides a default ordering, but as we saw in
Section 4, the performance of ordered resolution with the de-
fault ordering, though better than using no strategy, is undis-
tinguished compared to MP and SOS. Efficient ordered res-
olution is generally achieved by arduous hand-crafting of a
predicate ordering by a theorem-proving expert.

In this section, we propose to use automatic partitioning,
and in particular PBR tree-decomposition algorithms, to au-
tomatically induce a predicate ordering. This is an impor-
tant contribution as it paves the way to improving theorem-
proving software for ordered resolution, providing more ef-
fective ordered resolution for the non-expert, and relieving
the expert from arduous hand-coding of predicate ordering.



Figure 3 describes the P2O algorithm for inducing a sym-
bol ordering from a computed partitioning. It takes as input
a partition graphG = (V,E, l) of partitioned theoryA =⋃

iAi, and a queryQ in L(Ak), and outputsOrd(A), a sym-
bol ordering onA. We call this ordering apartition-derived
ordering. When combined with ordered resolution, we call
the strategy PDO. Recall that ordered resolution uses an or-
dering on predicate symbols, so PDO in fact usesOrd(A)
restricted to predicate symbols and ignores the ordering im-
posed on constant and function symbols.

The underlying intuition is as follows: in MP, we perform
resolution and message passing starting with the partitions
farthest away from the goal partition. All predicates are re-
solvedexceptthose in the outbound link language, which are
resolved in the next partition downstream, unless they con-
tinue to appear in subsequent outbound link languages. In
this way, the ordering of partitions along paths toward the
goal determines an ordering among predicates resolved.

PROCEDURE P2O(G, Q)

G = (V, E, l) is a partition graph of partitioned theoryA =S
i=1,...,n Ai, and a queryQ in L(Ak) (k ≤ n).

1. Definej ≺ i iff j is on the path betweeni andk in G.
2. LetLouti = L(l(i, j)) for j such that(i, j) ∈ E andj ≺ i

(there is at most one suchj; if there is none, then letLouti =
∅). Louti is the output language of partitionAi.

3. LetLini =
S

h L(l(h, i)) for h such that(h, i) ∈ E and
i ≺ h (there may be none or multiple suchh’s). Lini is the
input language of partitionAi.

4. InitializeOrd(A) = empty list.
5. Traverse the tree from furthest leaves to root following≺, in

a decreasing order, for everyi ≤ n.
Ord(A) =

append(Ord(A),Lini \ Louti ,L(Ai) \ Louti).
6. Ord(A) = append(Ord(A),L(Ak),).

Figure 3: An algorithm to compute a predicate ordering.

Theorem 5.1. LetA =
⋃
{Ai}i≤n be a partitioning of sym-

bols ofA such that all function and constant symbols appear
in all partitions, letG be a tree decomposition corresponding
to A, and letQ be a query. Then, ordered resolution with
orderOrd(A) is equivalent to MP with ordered resolution in
each of the partitions, such that the order used in each parti-
tion is compatible withOrd(A).

Proof. For everyp ∈ L(A), let P (p) be the≺-smallest par-
tition, i, such thatp ∈ L̃(i). For everyp ∈ L(A) there is
exactly one such partition because otherwise there are at least
two that are not connected via another node, contradicting the
fact thatG is a tree decomposition (it guarantees that if a sym-
bol appears in two partitions then it appears on the edges on
the path between those partitions).

Define <0, an order between symbols, byp <0 q iff p
precedesq in Ord(A) (equivalently,P (p) ≺ P (q)). Define
<A to be a total order that agrees with<0. <A is clearly a
partial order, as it obeys reflexivity, transitivity and is strict
(thus asymmetric). We show that<A is an order as required.
Let{pi}i≤m be an enumeration of the predicate symbols ofA

according to<A. Notice that if ordered resolution with<A
resolved two clauses uponpi, thenpi is the highest symbol in
both clauses.

We show that ordered resolution is equivalent to MP by
showing that every resolution done by ordered resolution can
be done by MP and vice versa.

Let C1, C2 be two clauses resolved onp in the ordered res-
olution using the order<A. Let i1, i2 be such thatC1 in
partition i1 andC2 in partition i2. Assume that MP cannot
resolve the two clauses. That means that they are in different
partitions and that at least one of the clauses, sayC2, should
be sent to another partition,Aj , with j ≺ i2, in order for the
two clauses to be resolved (j is the≺-largest partition such
thatj ≺ i1 andj ≺ i2).

SinceC2 was not sent to partitionj, its vocabulary is not
in the label of one of the edges on the path betweeni2 andp
in G (by the definition of MP, we would have sent that clause
if it was expressed by the labels on each of the edges on that
path).

Let q be a symbol that appears inC2 but is not on one
of the edges in the path between partitionsi2 and j. p is
the <A-largest symbol for bothC1 andC2, meaning thatp
appears on the path betweeni1, i2 (thus it also appears on
the path betweeni2, j, which is a subset of the path between
i1, i2) and thatq <A p (becauseq does not appear on that
path (thus, it is notp) andp is the<A-largest inC2).

Sinceq is not in L̃(j) (otherwise it would be on the path
betweeni2, j) and the path betweenj, i2 includesp, it must
be thatP (p) � j, andP (p) � j ≺ P (q) implies thatp <A q.
This contradicts the previous observation thatq <A p. Thus,
q appears on the path betweeni2, j andC2 must be sent to
partition j. The same holds forC1. Thus, MP will resolve
the two clauses.

The other direction (every resolution in MP is a resolution
in ordered resolution) is simpler, and its proof can be seen
from Theorem 5.2 below.

It is interesting to observe that we can likewise generate a
partitioning of a theory from an ordering of symbols, should
one be given by an expert. We describe the algorithm as fol-
lows. LetS be a stack containing the predicate symbols in
logical theoryA in the designated orderOrd(S). Let Z be
an empty stack. Pop a symbol,s, from stackS. Create a set
of symbols that includess, and all the symbols that appear
with s in some axiom inA and are also still inS. If this set of
symbols is contained by another set that is on stackZ, then
eliminate it. Otherwise, push it onto stackZ. Continue until
S is empty. Then, setG = (V,E) to be an empty graph, and
iteratively pop sets of symbols fromZ. For a set of symbols
Zi, add it toV as a neighbor (inG) to a set of symbols in
V with which it shares the largest number of symbols. When
Z is empty, create a partitionAi for every set of symbols
Zi ∈ V such thatAi includes all the axioms fromA that are
in L(Zi). Call the resulting set of partitionsP(Ord(S)), and
the graphG(Ord(S)).
Theorem 5.2. Assume thatOrd is an order on the nonlogical
symbols of theoryA, and thatQ is a query such thatL(Q)
are the final symbols in orderOrd. Then, ordered resolution
with orderOrd is equivalent to MP with partitionsP(Ord)



and graphG(Ord), using ordered resolution in each of the
partitions such that the order used in each partition is com-
patible withOrd.

Proof Sketch.To see that MP does not perform more resolu-
tions than ordered resolution ofA with order≤A, we only
need to notice that every partition corresponds to abucketin
the ordered resolution algorithm. If MP resolvesC1, C2 on
predicateP , thenC1, C2 were together in some partitionj,
and they got resolved on their highest predicate. Thus,C1, C2

will also get resolved by ordered resolution ofA with order
≤A.

Proposition 5.3. PDO is sound and complete.

In our experimental evaluation, illustrated in Figure 2,
PDO made a strong showing. The performance of PDO was
roughly comparable with that of SOS for most queries; for a
few queries, PDO was up to two orders of magnitude more
efficient than SOS. Unsurprisingly, PDO invariably outper-
formed ordered resolution with SNARK’s default ordering.
PDO also outperformed vanilla MP, which by itself does not
focus reasoning at the local level. When MP is augmented
with focused support (the MFS combination), PDO’s com-
parative advantage largely disappears. In Section 7, we will
see that the performance of PDO can be enhanced even fur-
ther by combining it with other strategies.

6 A new restriction strategy: MFS resolution

MP operates at the global level to focus reasoning by restrict-
ing between-partition resolution and passing relevant results
toward the goal partition. However, MP has no impact on
local reasoning, that is, reasoning within partitions. In fact,
this is one of the strengths of MP: individual partitions may
employ heterogeneous reasoning methods, including special-
purpose reasoners optimized for particular domains. (As de-
scribed in Section 2.2, the global soundness and completeness
of MP follow from the soundness and completeness of the
reasoners used in each partition.) MP can thus be used to or-
chestrate collaborative reasoning between disparate systems,
provided that they share a common vocabulary. Neverthe-
less, the absence of a local strategy limits gains in efficiency.
In this section we exploit PBR to propose a new restriction
strategy,MFS resolution, that combines global MP with a lo-
cal strategy for focused sublanguage resolution.

With vanilla MP, all possible resolutions are performed
within a partition, but resolvents can be propagated to other
partitions only if they are in the outbound link language. We
propose a local resolution strategy,focused support, that takes
inspiration from strategies described by Slagle[17], SOL re-
striction[9], and SFK-resolution[8].

Definition 6.1 (Focused Support Restriction).Let T be a
clausal theory and letL be a designated subset ofL(T ). Ini-
tialize S to be the set of clauses inT that non-exhaustively
include symbols fromL. Two clauses may be resolved only if
one of them is inS and the resolved predicate is not inL. The
resolvent is added toS.

When focused support is used as a local strategy in PBR,
clausal theoryT is an individual partitionAi from a parti-
tioned theory, andL is the output communication language
of that partitionAi.

Theorem 6.2. Focused support is sound and complete forL-
consequence finding.

That is, focused support is sound and complete for generat-
ing consequences in the restricted vocabulary ofL. The proof
relies on the following theorem.

Theorem 6.3 ([17]). If P is an ordering of the predicate let-
ters in a finite, unsatisfiable setU of clauses and ifM is a
model, then there is a semanticP -deduction of{} fromU .

Roughly, P-deduction resolves clausesC1, C2 on predicate
R only if C1 satisfiesM , C2 does not satisfyM , andR is the
largest among the predicates inC2, in some preset order.

Proof. LetA be a clausal theory and takeD ∈ L(L) a clause
such thatA |= D. We show that focused support eventually
generatesD as a result ofA. Assume thatA is consistent.
Thus, there is a modelM that satisfiesA. Let S be as in the
definition of the focused support strategy forL.

Theorem 6.3 says that there is aP -resolution of{} from
A for the modelM and for every orderingP of the predicate
symbols. Since everythingD resolves with is already inS,
we can remove¬D from the resolution graph of this proof
and yieldD from the P -deduction ofA. This shows that
there is aP -deduction ofD fromA.

To show that there is a focused support deduction ofD
from A we still need to show that restricting resolution to
occur only on non-L literals does not prevent provingD.
ChooseP to be an order such that the symbols not inL come
before those inL. Sentences that are not inS, so they have
no symbols fromL. When we resolve sentences fromS with
those not inS, then clearly the focused support condition
holds. We move all the clauses ofS that are completely in
L(L) (i.e., have no symbols that are outsideL) into a distin-
guished set,̄S. Now, when we resolve two sentences fromS,
both of them have symbols that are not inL. Those symbols
take precedence over the ones fromL, so the focused support
condition is held. If the resolvent has only literals fromL,
then we put it inS̄. Otherwise, we put it inS.

Finally, assume that̄S 6|= D. Then,S̄∪{¬D} is consistent.
However,S̄∪S |= D (as shown above with theP -deduction),
soS̄ ∪S ∪{¬D} is not consistent. However, for sentences in
S, S̄ resolution with our semantic support condition is equiv-
alent to using ordered resolution with the order only specify-
ing that literals inL are resolved after literals not inL. Since
this is known to be complete forL-consequence finding[19;
8], we know that it must be that̄S |= D, and the proof is
done.

MFS resolution is the combination of MP with the focused
support restriction within partitions. As discussed in Section
2.2, MP is sound and complete provided that each partition
uses a reasoning procedure that is sound and complete for
L-consequence finding. Since focused support is such a pro-
cedure, MFS resolution is also sound and complete:



Corollary 6.4 (Soundness and Completeness of MFS).
MP with the focused support restriction(MFS resolution)is
sound and complete.

The relative performance of MFS, as depicted in Figure 2,
is encouraging. For most queries, the performance of MFS
is comparable to that of SOS; and for a minority of queries
MFS is one or even two orders of magnitude more efficient.

We also examined the performance of MFS combined with
PDO (MSF+PDO), which exhibited performance slightly su-
perior to that of MFS alone. Nevertheless, unlike MFS,
MFS+PDO is incomplete. Section 7 discusses the incom-
plete strategy MFS+SOS, which exhibited even better perfor-
mance.

Theorem 6.5 (Incompleteness of MFS+PDO).PDO with
the focused support restriction(MFS+PDO)is incomplete.

The incompleteness of MFS+PDO can be seen by noticing
that focused support applies a restriction that is more strict
than that of SOS or semantic resolution. When we add PDO
to this restriction, we eliminate resolutions with any clause
that does not share any predicates with the clauses of the sup-
port. Interestingly, MFS+PDO is very close to being com-
plete, in the following sense. A close examination of the
proof of Theorem 6.2 reveals that we can apply a predicate
order restriction to clauses that do not contain predicates from
L and still maintain completeness forL-consequence finding.
Thus, a simple modification of MFS+PDO, allowing clauses
in the focused support of a partition to resolve on any non-L
literal (without considerations of ordering) is complete.

7 Combinations of strategies
Preceding sections examined three reasoning strategies that
are shown to be complete: MP, PDO, and MFS. In this
section we examine combinations of these strategies with
SOS. Though none of these combinations is complete, they
have some interesting theoretical properties, and in practice
showed the best performance of all strategies evaluated. Re-
sults of experimental evaluation are summarized in Figure 4.

To combine MP with SOS, we maintain a global set of sup-
port, which initially contains only the negated query, and we
allow resolution between two clauses only if they are in the
same partition and at least one of them is in the support. Be-
cause messages are sent only toward the goal partition in MP,
never away, resolution will occur only in the goal partition
unless we place the negated query in every partition whose
language includes it. In either case, SOS resolution will oc-
cur in partitions in which the negated query appears.

Clearly, the MP+SOS combination is not complete. It can-
not use information that may be crucial to proving the query
but resides in partitions that do not participate in the compu-
tation. However, the algorithm determines the clauses that
are most relevant to proving the query, in a simple and dy-
namic way. This sort of inference is used extensively with
large KBs, where the selection of the parts of the KB needed
to answer the query is done by hand. Our automatic selection
mechanism is enough for many applications, and our experi-
ments bear this out.

The argument given for the incompleteness of MP+SOS
also shows that PDO+SOS is incomplete. This follows from
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Figure 4: Performance comparison of three combinations of
reasoning strategies. In contrast to Figure 2, the vertical axis
is normalized relative to SOS.

the relationship between MP and ordered resolution presented
in Theorem 5.2. When the predicate ordering corresponds to
MP, then PDO+SOS restricts resolution to only those clauses
that include predicates that appear in the support. Despite
its incompleteness, PDO+SOS performed extremely well in
experimental evaluation. Incompleteness was never encoun-
tered in practice, and the PDO+SOS combination answered
every query in fewer steps than any other strategy or combi-
nation of strategies.

The combination of MFS with SOS (MFS+SOS) is incom-
plete as well, since MFS is a restricted form of MP, and
MP+SOS is incomplete. This incompleteness was revealed
in experimental testing, when the MFS+SOS combination
failed to answer a few queries. However, when it did not fail,
MFS+SOS was highly efficient, answering most queries in as
few steps as PDO+SOS.

8 Summary and related work
We propose, analyze, and experimentally evaluate a variety
of resolution-based strategies that improve the efficiency of
resolution-based FOL theorem provers. We also propose an
algorithm for automatically inducing predicate ordering for
ordered resolution. Experimental results confirm significant
improvements in performance using our techniques. This
work makes promising practical contributions to the theorem
proving community, presented in a manner designed to facil-
itate replication. (Software and data will be made available
at http://www.ksl.stanford.edu/projects/Partitioning.) Our re-
sults are particularly significant for query answering with
commonsense KBs, whose size, inherent structure, and some-
times distributed nature make them amenable to our structure-
based efficiency improvements.

There is a diversity of related work. Our algorithm to in-
duce a predicate ordering is the first to use graphical struc-
ture, and in particular treewidth approximation algorithms,
with FOL resolution. Current automated approaches to or-



dering predicates use properties of those predicates, such as
their arity (e.g., the Knuth-Bendix method[11] when ap-
plied to a uniform weight function, as in[20]), or gen-
erate a random default ordering (e.g., lexical, as in[18]).
Our work is most significantly distinguished from work on
CSPs (e.g.,[7]) and propositional logical reasoning (e.g.,[5;
15]) in that we partition (and subsequently order) a graph that
includes all the nonlogical symbols in the theory, whereas
propositional methods order nodes in a graph that correspond
to propositional symbols and ordering is often dynamic.

Our focused supportrestriction (on which MFS is based)
resembles SFK resolution[8] and SOL resolution[9] in its
computation of resolvents in a target language. However, in
contrast to SFK resolution, our target language is not closed
under subsumption. Further, in[8] there is no clear way to
determine a predicate ordering. MFS resolution combines fo-
cused support with predicate ordering imposed by MP, gen-
erating a significant improvement in performance.

Finally, there has been little experimental work studying
the behavior of theorem proving strategies on large KBs, and
none on commonsense KBs. Prior to this paper,[14] showed
that the success rate of leading theorem provers, such as
SPASS, Otter, Setheo, Protein and 3TAP, in formal verifica-
tion problems with hundreds of axioms depends strongly on
how good they are at finding the few relevant axioms that are
really needed in the proofs. Our work presents a principled
method to successfully elicit such a set of relevant axioms,
the PDO+SOS strategy being most notably successful.

In the future, we plan to continue our experimental eval-
uation with additional KBs. We also hope to demonstrate
the use of MP for collaborative theorem proving among dis-
tributed KBs and diverse (perhaps special-purpose) reason-
ers. Finally, PBR naturally enables parallelization of FOL
theorem proving. The benefits of partition-driven parallelism
can be evaluated with little further implementation effort. We
plan to pursue this in the near future.
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Figure 2: Performance comparison of reasoning strategies: set-of-support (SOS), ordered resolution, vanilla MP, partition-
derived ordering (PDO), MP with focused support (MFS), and several combinations of strategies. For a representative selection
of queries, we show the number of resolution steps required to answer the query using each strategy, expressed as a percent of
the number of steps required using no strategy. Columns exceeding 100% represent timeouts.


