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Abstract

Most current statistical natural language process-
ing models use only local features so as to permit
dynamic programming in inference, but this makes
them unable to fully account for the long distance
structure that is prevalent in language use. We
show how to solve this dilemma witBibbs sam-
pling, a simple Monte Carlo method used to per-
form approximate inference in factored probabilis-
tic models. By using simulated annealing in place
of Viterbi decoding in sequence models such as
HMMs, CMMs, and CRFs, itis possible to incorpo-
rate non-local structure while preserving tractable
inference. We use this technique to augment an
existing CRF-based information extraction system
with long-distance dependency models, enforcing
label consistency and extraction template consis-
tency constraints. This technique results in an error
reduction of up to 9% over state-of-the-art systems
on two established information extraction tasks.

I ntroduction

n-

of it in natural language processihgHere, we use
it to add non-local dependencies to sequence models
for information extraction.

Statistical hidden state sequence models, such
as Hidden Markov Models (HMMs) (Leek, 1997;
Freitag and McCallum, 1999), Conditional Markov
Models (CMMs) (Borthwick, 1999), and Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001)
are a prominent recent approach to information ex-
traction tasks. These models all encode the Markov
property: decisions about the state at a particular po-
sition in the sequence can depend only on a small lo-
cal window. Itis this property which allows tractable
computation: the Viterbi, Forward Backward, and
Cligue Calibration algorithms all become intractable
without it.

However, information extraction tasks can benefit
from modeling non-local structure. As an example,
several authors (see Section 8) mention the value of
enforcing label consistency in named entity recogni-
tion (NER) tasks. In the example given in Figure 1,

guage processing represent only local structure. A€ second occurrence of the tokéanjug is mis-

though this constraint is critical in enabling tractab
model inference, it is a key limitation in many tasks,
since natural language contains a great deal of no
local structure. A general method for solving this?
problem is to relax the requirement of exact infer
ence, substituting approximate inference algorithms
instead, thereby permitting tractable inference 9Nt
models with non-local structure.

One such algo

|dabeled by our CRF-based statistical NER system,

because by looking only at local evidence it is un-
flear whether it is a person or organization. The first
ccurrence offanjugprovides ample evidence that

it is an organization, however, and by enforcing la-

mlgel consistency the system should be able to get it

We show how to incorporate constraints of
this form into a CRF model by using Gibbs sam-

fithm is Gibbs samplinga simple Monte Carlo algo- pling instead of the Viterbi algorithm as our infer-

rithm that is appropriate for inference in any factore

gnce procedure, and demonstrate that this technique

probabilistic model, including sequence models an}ﬁlelds significant improvements on two established
probabilistic context free grammars (Geman and G&E t@SKS.

man, 1984)' Althoth Gibbs sampling is Widely 1prior uses in NLP of which we are aware include: Kim et

used elsewhere, there has been extremely little usie(1995), Della Pietra et al. (1997) and Abney (1997).
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Figure 1: An example of the label consistency problem exeérfrom a document in the CoNLL 2003 English dataset.

2 Gibbs Sampling for Inferencein guence obtained by changing the state at any one
Sequence M odels positioni, and the distribution over these possible
transitions is just
In hidden state sequence models such as HMMs,
CMMs, and CRFs, it is standard to use the Viterbi Po(sV1s"Y) = Pu(s"Is' ™, 0). 1)
et gt i states xce. e e,
ransition probability of the Markov chain is the con-

input and the model (see, e.g., Rabiner (1989)). Aﬁjitional distribution of the label at the position given

though this is the only tractable method for exac e rest of the sequence. This quantity is easy 1o

computation, there are other methods for compu . . .
compute in any Markov sequence model, including

ing an r_;lpproxmate soll_Jtlon. Monte Carlo method MMs, CMMs, and CRFs. One easy way to walk
are a simple and effective class of methods for ap;

. . . . "the Markov chain is to loop through the positians
proximate inference based on sampling. Imagin

: . fom 1 to N, and for each one, to resample the hid-
we have a hidden state sequence model which de- o o .
. o en state at that position from the distribution given
fines a probability distribution over state sequences . .

o . . . in Equation 1. By outputting complete sequences
conditioned on any given input. With such Bat regular intervals (such as after resamplingall
model M we should be able to compute the con- 9 pling

. . positions), we can sample sequences from the con-
Sltlon?lsoprobaé)llitygi\ﬁ/{gfl(;)or(:]feacr:gszt;’:lvts dsﬁ%tetn;:: ditional distribution defined by the model.
= s oo ey ON -

This is still a gravely inefficient process, how-
quenceo = {0g, ..., 0n}. One can then sample se- 9 y P ’

guences from the conditional distribution defined beyer. Random sampling may be a good way to es-

the model. These samples are likely to be in hig imate the shape of a probability dlstnbunon,. bL.Jt I
. . . . ~Is not an efficient way to do what we want: find
probability areas, increasing our chances of findin

. ) e maximum. However, we cannot just transi-
the maximum. The challenge is how to sample s(?i_on reedily to higher probability sequences at each
quences efficiently from the conditional distribution- > 9/ cco'y 10 NIGnerp y seq

. step, because the space is extremely non-convex. We
defined by the model. P P y

Gibb i id | ut G can, however, borrow a technique from the study
ibbs samplingprovides a clever solution (Ge- of non-convex optimization and ustmulated an-

man and G(_em_an, 1984). Gibbs sa_mpling _deﬁnesr?ealing(Kirkpatrick et al., 1983). Geman and Ge-
Markov chain in the space of possible variable as7,an (1984) show that it is easy to modify a Gibbs

signments (in this case, hidden state sequences) Stl\ﬁgrkov chain to do annealing: at tintewe replace
that the stationary distribution of the Markov chainthe distribution in (1) with

is the joint distribution over the variables. Thus it

is called a Markov Chain Monte Carlo (MCMC)
method; see Andrieu et al. (2003) for a good MCMC Pa(
tutorial. In practical terms, this means that we

can walk the Markov chain, occasionally outputtingvherec = {cy, ..., ¢t} defines acooling schedule
samples, and that these samples are guaranteedAteeach step, we raise each value in the conditional
be drawn from the target distribution. Furthermoredistribution to an exponent and renormalize before
the chain is defined in very simple terms: from eaclsampling from it. Note that whea = 1 the distri-
state sequence we can only transition to a state dmition is unchanged, and as— 0 the distribution

t t—1
PM (s( )|S£i )’ O)l/ct
> Pu(s st Y, o)




Inference | CoNLL | Seminars Feature NER TF
Viterbi 85.51 91.85 Current Word v v
Gibbs 85.54 91.85 Previous Word v v
Sampling 85.51 91.85 Next Word v v
85.49 91.85 Current Word Character n-gram all length< 6
85.51 91.85 Current POS Tag v
85.51 91.85 Surrounding POS Tag Sequence | v
85.51 91.85 Current Word Shape v v
85.51 91.85 Surrounding Word Shape Sequente v/ v
85.51 91.85 Presence of Word in Left Window | size 4|  size 9
85.51 91.86 Presence of Word in Right Window size 4 size 9
Mean 85.51 91.85
Std. Dev. 0.01 0.004 Table 2: Features used by the CRF for the two tasks: named

) . ) ) ) entity recognition (NER) and template filling (TF).
Table 1: An illustration of the effectiveness of Gibbs saimgp)|

compared to Viterbi inference, for the two tasks addreseed i

this paper: the CoNLL named gntity reqognition t{isk, and thg\,ay that is consistent with the Markov Network lit-
CMU Seminar Announcements information extraction task. We

show 10 runs of Gibbs sampling in the same CRF model thgrature (see Cowell et al. (1999)): we create a linear
was used for Viterbi. For each run the sampler was initidlize chain ofcliques where each cliques, represents the

to arandom sequence, and used a linear annealing schealule rﬁ iliati ; ; i i
sampled the complete sequence 1000 times, CoNLL perfo Jrobabilistic relationship between an adjacent pair

mance is measured as per-entity, Bnd CMU Seminar An- Of stated using aclique potentialgc, which is just
nouncements performance is measured as per-token F a table containing a value for each possible state as-

signment. The table is not a true probability distribu-
tion, as it only accounts for local interactions within

becomes sharper, and when= 0 the distribution the cll The cligue potentials themselves are de
places all of its mass on the maximal outcome, hav- clique. Ique potentials themselves ar )

ing the effect that the Markov chain always CIimbSfmed in terms of exponential models conditioned on

uphill. Thus if we gradually decreasefrom 1 to features of the observation sequence, and must be

0, the Markov chain increasingly tends to go UIO1nstant|ated for each new observ_atlon sequence. The
equence of potentials in the clique chain then de-

hill. This annealing technique has been shown tf th bability of a stat ! h
be an effective technique for stochastic optimizatio nes the probability of a state sequence (given the

(Laarhoven and Arts, 1987). observation sequence) as

To verify the effectiveness of Gibbs sampling and N
simulated annealing as an inference technique for Pcrr(S10) H¢i (S-1,5) 3)
hidden state sequence models, we compare Gibbs i=1

and Viterbi inference methods for a basic CRF, withwhereg; (s_1, ) is the element of the clique poten-
out the addition of any non-local model. The resultsijal at positioni corresponding to states_; ands; .2
given in Table 1, show that if the Gibbs sampler is Although a full treatment of CRF training is be-
run long enough, its accuracy is the same as a Viterbnd the scope of this paper (our technique assumes

decoder. the model is already trained), we list the features
o _ used by our CRF for the two tasks we address in
3 A Conditional Random Field M odel Table 2. During training, we regularized our expo-

. nential models with a quadratic prior and used the
Our basic CRF model follows that of Lafferty et al. : d P L
. uasi-Newton method for parameter optimization.
(2001). We choose a CRF because it represents the . N .
. . ; S is customary, we used the Viterbi algorithm to
state of the art in sequence modeling, allowing bot

L . o infer the most likely state sequence in a CRF.
discriminative training and the bi-directional flow of . ) . .
e . The clique potentials of the CRF, instantiated for
probabilistic information across the sequence. A

. o . some observation sequence, can be used to easil
CRF is a conditional sequence model which rep- q y

resents the probability of a hidden state sequence 2CRFs with larger cliques are also possible, in which case

given some observations. In order to facilitate obt_he pot_entlals represent the relat:(onshlp between a subreq
of k adjacent states, and contaB}* elements.

ta_ining the c_onditional propabilities we need Tor 3To handle the start condition properly, imagine also that we
Gibbs sampling, we generalize the CRF model in @efine a distinguished start state



compute the conditional distribution over states &4.2 The CMU Seminar Announcements Task

a position given in Equation 1. Recall that at posi-rhiS dataset was developed as part of Dayne Fre-
tioni we want to condition on the states in the reSkag's dissertation research Freitag (1998]. con-

of the sequence. The state at this position can Reis of 485 emails containing seminar announce-
m_fluenced b_y any other state t_hat It _shar_es a CIIqlWlents at Carnegie Mellon University. It is annotated
with; in partlgular, when _the clique size is 2, thereforfourfields:speake,rlocation start time andend

are 2 such cllques._ Ir_1 this case the Markov blankgfe gytton and McCallum (2004) used 5-fold cross
of the state _('Fhe mln_lmal set of states that renOIe%Iidation when evaluating on this dataset, so we ob-
a state conditionally independent of all other State?)atined and used their data splits, so that results can

consists of the two neighboring states and the 0bsgJy o herly compared. Because the entire dataset is

V‘_T_“OH sequence, all of Wh'_ch are observed. The COMsed for testing, there is no development set. We
ditional distribution at position can then be com-

. also used their evaluation metric, which is slightly
puted simply as different from the method for CoNLL data. Instead
of evaluating precision and recall on a per-entity ba-
sis, they are evaluated on a per-token basis. Then, to
calculate the overall fscore, the [Fscores for each
class are averaged.

Pcre(S1S-i, 0) o ¢i(S—1,S)¢i+1(S.S+1)  (4)

where the factor tableB in the cliqgue chain are al-
ready conditioned on the observation sequence.

4 Datasets and Evaluation 5 Modelsof Non-local Structure
We test the effectiveness of our technique on two e_Q“f models of non-local ;tr_ucture are thgmsglvgs
tablished datasets: the CoNLL 2003 English namdySt sequence models, defining a probability distri-

entity recognition dataset, and the CMU SeminalPution over all possible state sequences. It is pos-
Announcements information extraction dataset sible to flexibly model various forms of constraints
in a way that is sensitive to the linguistic structure

4.1 TheCoNLL NER Task of the data (e.g., one can go beyond imposing just

This dataset was created for the shared task of tﬁéaa identity conditions). One could imagine many

Seventh Conference on Computational Natural Lm%/\FI]ays of defining such models; for simplicity we use
) . e form

guage Learning (CoNLLj,which concerned named #00.5.0)

entity recognition. The English data is a collection Pu(sio) o« [ 6] (5)

of Reuters newswire articles annotated with four en- reh

tity types: person(PER), location (Loc), organi- Wwhere the product is over a set of violation types

zation (ORG), andmiscellaneougmisc). The data and for each violation type we specify a penalty

is separated into a training set, a development sparameted,. The exponenté, s, 0) is the count of

(testa), and a test set (testb). The training set cothe number of times that the violatiaroccurs in the

tains 945 documents, and approximately 203,000 tstate sequencewith respect to the observation se-

kens. The development set has 216 documents agdenceo. This has the effect of assigning sequences

approximately 51,000 tokens, and the test set hagth more violations a lower probability. The partic-

231 documents and approximately 46,000 tokens. ular violation types are defined specifically for each
We evaluate performance on this task in the mariask, and are described in the following two sections.

ner dictated by the competition so that results can be This model, as defined above, is not normalized,

properly compared. Precision and recall are eval@nd clearly it would be expensive to do so. This

ated on a per-entity basis (and combined into an Floesn’t matter, however, because we only use the

score). There is no partial credit; an incorrect entitynodel for Gibbs sampling, and so only need to com-

boundary is penalized as both a false positive and asite the conditional distribution at a single position

a false negative. i (as defined in Equation 1). One (inefficient) way

4Available athttp://cnts.uia.ac.be/conll2003/ner/ SAvailable athttp:/nip.shef.ac.uk/dot.kom/resources.html



PER | LOC | ORG | MISC Woodsshould also be labeled as a person. How-

PER | 3141 4 5 0 ” ) I t the label ¢
Toc 5436 188 3 ever, if we examine all cases of the labelings o
ORG 2975 0 other occurrences of subsequences of a labeled en-
MISC 2030 tity, we find that the consistency constraint does not

Table 3: Counts of the number of times multiple occurrendes ch0|d nearly so strictly in _thls case. As an exam-
a token sequence is labeled as different entity types inaties  ple, one document contains references to bdik

document. Taken from the CoNLL training set. China Da”y’ a newspaper, anﬂhlna the Country
Counts of subsequence labelings within a document
PER | LOC | ORG | MISC . .
PER 119211 5 > 3 are listed in Table 4. Note that there are many off-
LoC 0| 167 6 63 diagonal entries: th€hina Daily case is the most
ORG 22| 328 | 819| 191 common, occurring 328 times in the dataset.
MISC 14| 224 7 365

The penalties used in the long distance constraint
Table 4: Counts of the number of times an entity sequence odel for CONLL are the Empirical Bayes estimates
labeled diff_erently from an occurrence of a subsequence of jgken directly from the data (Tables 3 and 4), except
elsewhere in the document. Rows correspond to sequgn@és, ?Hat we change counts of 0 to be 1, so that the dis-
columns to subsequences. Taken from the CoNLL training set. ’
tribution remains positive. So the estimate ofer
_ o also being aroRG is z; there were 5 instance of
to compute this quantity is to enumerate all possiyp, entity being labeled as bothER appeared 3150
ble sequences differing only at positioncompute  times in the data, and we add 1 to this for smoothing,
the score assigned to each by the model, and rengjacauseper-misc never occured. However, when
malize. Although it seems expensive, this cOmpuye have a phrase labeled differently in two differ-
tation can be made very efficient with a straightforgpt places, continuing with theerR-ORG example,
ward memoization technique: at all times we mainjt is unclear if we should penalize it R that is
tain data structures representing the relationship bgrso anorc or anoRrac that is also @R To deal
tween entity labels and token sequences, from whigQjith this, we multiply the square roots of each esti-
we can quickly compute counts of different types ofate together to form the penalty term. The penalty
violations. term is then multiplied in a number of times equal
. to the length of the offending entity; this is meant to
51 CoNLL Consstency Model “encourage” the entity to shrink.For example, say
Label consistency structure derives from the fact thare have a document with three entiti€ntor Vol-
within a particular document, different occurrencegogradtwice, once labeled as£rand once asRg,
of a particular token sequence are unlikely to be laand Rotor, labeled as amRG. The likelihood of a
beled as different entity types. Although any one’ER also being arorG is %51 and of anoRrG also
occurrence may be ambiguous, it is unlikely that albeing aPERIis %69 so the penalty for this violation
instances are unclear when taken together. \/I \/I 2 ol )
The CoNLL training data empirically supports the_S (3151 © {ms)" The likelihood of aora be

strength of the label consistency constraint. Table 189 a subp?rase gf'aERz'S ﬁZ' So the total penalty
shows the counts of entity labels for each pair of/0uld P€335; X 3155 X 522

identical token sequences vv_ithin a docume_nt, Wh(—_:'rbe;2 CMU Seminar Announcements

both are labeled as an entity. Note that inconsis-
tent labelings are very rafe.In addition, we also )
want to model subsequence constraints: having seBif€ t0 the lack of a development set, our consis-
Geoff Woodsearlier in a document as a person istfency model for the CMU Seminar Announcements

a good indicator that a subsequent occurrence 5t much simpler than the CoNLL model, the num-
bers where selected due to our intuitions, and we did

6A notable exception is the labeling of the same text as botAot spend much time hand optimizing the model.
organization and location within the same document. Thisis —
consequence of the large portion of sports news in the CoNLL ’While there is no theoretical justification for this, we falin
dataset, so that city names are often also team names. it to work well in practice.

Consistency Modéel



Specifically, we had three constraints. The first is CoNLL |
that all entities labeled astart time are normal- QEFJ‘E?‘:’EMN LOC | ORG | MISC | PER 8%59
ized, and are penalized if they are inconsistent. Th&gm cLT-RMN | — _ _ _ | 8230
second is a corresponding constraint for end timesslocal+Viterbi | 88.16 | 80.83 | 78.51 | 90.36 | 85.51
The last constraint attempts to consistently label thgNonLoc+Gibbs | 88.51 | 81.72 | 80.43 | 92.29 | 86.86
speakers. If a phrase is labeled aspaakerwe as-  Table 5: f; scores of the local CRF and non-local models on the
sume that the last word is the speaker’s last nam@gNLL 2003 named entity recognition dataset. We also pevid
and we penalize for each occurrance of that WOI’E}TG results from Bunescu and Mooney (2004) for comparison.
whlch is not also Iabel_edpeal_<er_ Fo_r the start and CMU Saminar ARnoancaments |
end times the per_1a|ty is mL_JItlplled in based on ho ¥ Approach STIVE T ETVE | SPEAK | Lo T ALL
many words are in the entity. For the speaker, th€s&m crF 975 | 975 | 883 77.3 | 90.2

penalty is only multiplied in once. We used a han¢ S&M SkipCRF | 96.7 | 972 | 881 | 804 | 90.6
Local+Viterbi | 96.67 | 97.36 | 83.39 | 89.98 | 91.85

selected penalty of exp-4.0). NonLoc+Gibbs| 97.11 | 97.89 | 84.16 | 90.00 | 92.29

6 Combining Sequence Models Table 6: F scores of the local CRF and non-local models on
the CMU Seminar Announcements dataset. We also provide
In the previous section we defined two models ofhe results from Sutton and McCallum (2004) for comparison.
non-local structure. Now we would like to incor-
orate them into the local model (in our case, th : . .

por . ( . 5€, NBaseline CRF implementation. Inthe CoNLL named

trained CRF), and use Gibbs sampling to find the . o .
. . egtlty recognition task, the non-local models in-

most likely state sequence. Because both the traine

0,
CRF and the non-local models are themselves s(é[ease the Faccuracy by about 1.3%. Although

. . dsuch gains may appear modest, note that they are
quence models, we simply combine the two mod- . .
) . achieved relative to a near state-of-the-art NER sys-
els into afactoredsequence model of the following

form tem: the winner of the CoNLL English task reported
an kR, score of 88.76. In contrast, the increases pub-
lished by Bunescu and Mooney (2004) are relative
whereM is the local CRF model. is the new non- to a baseline system which scores only 80.9% on
local model, andF is the factored modél. In this the same task. Our performance is similar on the
form, the probability again looks difficult to com- CMU Seminar Announcements dataset. We show
pute (because of the normalizing factor, a sum ovéhe per-field It results that were reported by Sutton
all hidden state sequences of lengih. However, and McCallum (2004) for comparison, and note that
since we are only using the model for Gibbs samwe are again achieving gains against a more compet-
pling, we never need to compute the distribution exitive baseline system.
plicitly. Instead, we need only the conditional prob- For all experiments involving Gibbs sampling, we
ability of each position in the sequence, which camsed a linear cooling schedule. For the CoNLL
be computed as dataset we collected 200 samples per trial, and for
the CMU Seminar Announcements we collected 100
Pr(s|s-i,0) «x Pu(ss-i,0)PL(s|s-i,0). (7) samples. We report the average of all trials, and
) _ in all cases we outperform the baseline with greater
Atinference time, we then sample from the Markohan 9594 confidence, using the standard t-test. The
chain defined by this transition probability. trials had low standard deviations — 0.083% and
0.007% — and high minimun F-scores — 86.72%, and
92.28% — for the CoNLL and CMU Seminar An-
In our experiments we compare the impact of addingouncements respectively, demonstrating the stabil-
the non-local models with Gibbs sampling to ouity of our method.
B _ The biggest drawback to our model is the com-
This model double-generates the state sequence condi-

tioned on the observations. In practice we don't find this td_JUtational COSt'_ Taking 100 samples dramatically
be a problem. increases test time. Averaged over 3 runs on both

Pr(S|0) o< Py (S|0)PL(s|0) (6)

7 Resultsand Discussion



Viterbi and Gibbs, CoNLL testing time increasedpart-of-speech patterns, and then add dependencies
from 55 to 1738 seconds, and CMU Seminar Anbetween these text spans usioligue templates
nouncements testing time increases from 189 {bhis generates a extremely large number of over-

6436 seconds. lapping candidate entities, which then necessitates
additional templates to enforce the constraint that
8 Rdated Work text subsequences cannot both be different entities,

something that is more naturally modeled by a CRF.
Several authors have successfully incorporated Another disadvantage of this approach is that it uses
label consistency constraint into probabilistic setoopy belief propagatiomnd a voted perceptron for
quence model named entity recognition systemapproximate learning and inference — ill-founded
Mikheev et al. (1999) and Finkel et al. (2004) in-and inherently unstable algorithms which are noted
corporate label consistency information by using adsy the authors to have caused convergence prob-
hoc multi-stage labeling procedures that are effegems. In theskip-chain CRFsnodel, the decision
tive but special-purpose. Malouf (2002) and Curranf which nodes to connect is also made heuristi-
and Clark (2003) condition the label of a token atally, and because the authors focus on named entity
a particular position on the label of the most recentecognition, they chose to connect all pairs of identi-
previous instance of that same token in a prior seral capitalized words. They also utilize loopy belief
tence of the same document. Note that this violatgsopagation for approximate learning and inference.
the Markov property, but is achieved by slightly re- While the technique we propose is similar math-
laxing the requirement of exact inference. Insteadmatically and in spirit to the above approaches, it
of finding the maximum likelihood sequence ovewiffers in some important ways. Our model is im-
the entire document, they classify one sentence afpfemented by adding additional constraints into the
time, allowing them to condition on the maximummodel at inference time, and does not require the
likelihood sequence of previous sentences. This apreprocessing step necessary in the two previously
proach is quite effective for enforcing label consismentioned works. This allows for a broader class of
tency in many NLP tasks, however, it permits a foriong-distance dependencies, because we do not need
ward flow of information only, which is not suffi- to make any initial assumptions about which nodes
cient for all cases of interest. Chieu and Ng (20023hould be connected, and is helpful when you wish
propose a solution to this problem: for each toto model relationships between nodes which are the
ken, they define additional features taken from oth&fame class, but may not be similar in any other way.
occurrences of the same token in the documertor instance, in the CMU Seminar Announcements
This approach has the added advantage of allowingataset, we can normalize all entities labeled as a
the training procedure to automatically learn goodtart timeand penalize the model if multiple, non-
weightings for these “global” features relative to theconsistent times are labeled. This type of constraint
local ones. However, this approach cannot easilyannot be modeled in an RMN or a skip-CRF, be-
be extended to incorporate other types of non-locglause it requires the knowledge that both entities are
structure. given the same class label.

The most relevant prior works are Bunescu and We also allow dependencies between multi-word
Mooney (2004), who use Relational Markov Net- phrases, and not just single words. Additionally,
work (RMN) (Taskar et al., 2002) to explicitly mod- our model can be applied on top of a pre-existing
els long-distance dependencies, and Sutton and Mcained sequence model. As such, our method does
Callum (2004), who introduceskip-chain CRFs not require complex training procedures, and can
which maintain the underlying CRF sequence modehstead leverage all of the established methods for
(which (Bunescu and Mooney, 2004) lack) whiletraining high accuracy sequence models. It can in-
addingskip edgedetween distant nodes. Unfortu-deed be used in conjunction with any statistical hid-
nately, in the RMN model, the dependencies musten state sequence model: HMMs, CMMs, CRFs, or
be defined in the model structure before doing angven heuristic models. Third, our technique employs
inference, and so the authors use crude heuristi@ibbs sampling for approximate inference, a simple
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