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Introduction

Sociolinguistics and related fields like political science often analyze terminology and usage of politically and socially significant words.  Political movements have been focused around what terms should be used – in recent U.S. history, for example, .  Extensive qualitative work has been done on these issues - e.g. Raymond Williams, Keywords, which goes through the history of a set of semantically complex social/political terms.

There does already exist a field called ‘content analysis’, populated, it seems, largely by people in communications and political science departments; there are a number of tools out there that do statistical and other techniques on datasets.
  From my preliminary look at the content analysis world, it seems that much of their work is concentrated in linguistically simple but statistically sophisticated techniques.
  Though I myself didn’t have time to progress beyond word-based models, it would be interesting to apply syntactic and semantic analysis to these problems.

I constructed a tool to help explore political terminology in a socially significant corpus.  There are two main components: (1) a downloader that provides a script interface to the popular Lexis-Nexis Academic Universe newspaper and magazine database, and can download mass quantities of articles; and (2) an analyzer that clusters instances of a single word’s usage.  Details on the downloader’s usage are in the appendix and README; I will describe the analyzer here.

cluster.py – clustering and analyzing data

Once the articles are downloaded and preprocessed, you run the analyzer to cluster word usage.  cluster.py runs the following steps:

1.  Runs through all the article bodies in the current directory, finds each instance of the wanted word, and collects a 10 word context around it, containing both the words and some metadata (currently limited to publication and publisher name).  Context radius size can be set by the user.

2.  Presents a command-line interface to the user.  The expected command is to start subdividing the cluster of all instances into smaller and more coherent subclusters.  The program will keep clustering and subdividing those new clusters, until a specified threshold for internal threshold is reached.  [see appendix for interface details]

The clustering algorithm uses unigram vector machines with hierarchical, bottom-up, group-average agglomerative clustering.  Every instance is internally represented as a vector with each value being either 1 or 0 – whether or not a word from the lexicon occurs within that context.  The similarity between two vectors is calculated with the cosine measure:   [* means dot product]

sim(x,y) = cos(x,y) = x * y / (|x| |y|)

However, the program calculates the average similarity of a cluster of vectors, using an optimized method [described by (Cutting et al. 1992: 328)] involving the sums of vectors.  sum(c) means the the sum of all the vectors in a cluster c:

Average Internal Similarity(c) = (sum(c) * sum(c) - |c|) / ( |c| (|c| - 1))

The program uses a bottom-up clustering method, in which the cluster to be divided is first divided into |cluster| number of one-vector clusters.  It then finds the two most similar clusters ci and cj, on the basis of that average internal similarity measure from above, and then merges them into a new cluster.  The new cluster’s internal similarity is calculated simply by summing sum(ci) and sum(cj) and plugging appropriately into the formula.  The subdividing algorithm then adds this new cluster onto the list of clusters, and eliminates the two just combined.  It then repeats this entire process until all the vectors have been processed into two clusters.

The bottom-up algorithm is described in more detail in (Manning and Schuetze: 500-3); the group-average similarity is from (Manning and Schuetze: p507-9).  

The user interface is designed to facilitate interactive exploration of clustering results.  The user can tell the program to cluster until the clusters have achieved a certain level of average internal similarity (which I sometimes call ‘coherence’); then the user can display the results, showing the instances within each cluster.  A user would then inspect the results, noting similar social meanings and usages occurring together in a cluster, either looking at more or less refined levels of clustering.

On the choice of algorithms

I initially implemented it using complete-link hierarchical clustering; while this gave satisfying results that occasionally seemed better than group-average, it was even slower than the current implementation.  It’s not only a difference between O(n^3) and O(n^2) operating time, but specifically in my Python implementation, sums of vectors are comparatively fast to calculate compared to other similarity calculations, because I used the python vector library Numeric, which is implemented in C.

I chose hierarchical clustering because I thought that it would be useful to have recorded a tree of clusters, so that the user could select their threshold of how specific they wanted the clusters to be; one could look a range of very specific clusters as well as their encapsulating general clusters, when searching for social meaning in those clusters.  However, now that it’s actually implemented this way, it looks like a non-hierarchical method such as K-means may have been better.  Right now, sometimes you get a split early on that separates word senses that really should have stayed together; then when you’re inspecting the smaller clusters, you’ll find that instances with a certain socially significant co-occurring word have been split among several different clusters.  See my results for “liberal w/5 class” for one example.

Some results

I explored two word usage issues I’ve had previous experience with:  ‘fedayeen’; and ‘liberal’ co-occurring  with ‘class’.

fedayeen

‘Fedayeen’ has two very different uses: first, it’s self-given name of pro-Palestinian guerrilla groups that staged attacks against Israel most prominently in the 1950’s and decades thereafter.  Another different use is as the Fedayeen al’Saddam, an Iraqi paramilitary organization (non-guerilla and under the Iraqi government) that came to international attention when it fought against U.S. and British forces in 2003.  From earlier inspections with just the Lexis-Nexis web interface, I found occurrences of the Iraq sense of the word ‘fedayeen’ as almost non-existent before March 2003.  I hypothesized that if I collected instances of pre-2003 and post-march-2003 uses of ‘fedayeen,’ the program should cluster these different uses into different clusters.

Results actually conformed to my expectations.  Here’s successful context placements for splitting the overall group into 2 clusters: 

Cluster #1:

        'with regard to the Iraqi armed forces and even the Fedayeen Saddam ,' said the ICRC ' s spokeswoman in'

        'no future ." U . S. intelligence reports indicate the Fedayeen were dispatched from their strongholds in the Baghdad area'        'analysts are not sure of the strength of the Saddam Fedayeen , a major Iraqi paramilitary group . " We'

        'hospital , which at the time was occupied by the Fedayeen -- a unit of the Republican Guard fiercely loyal'

and Cluster #2:

        'Six Day War . After Israel ' s victory , fedayeen continued to infiltrate the kibbutz , setting fires and'

        'for repentance . Terrorists , whether seen as Palestinian " fedayeen ," Italian Red Brigades or rightist extremists , are'

        'territory even before our security forces are alerted . The fedayeen couldn ' t have driven cars across the border'

Unfortunately, this analysis may have been skewed because it was counting Fedayeen and fedayeen as separate words.  For all results, see results/fedayeen/results.smaller2.reformat .

liberal w/5 class
Here, I decided to analyze a more specific usage: how “liberal” relates to “class”.  Using Lexis-Nexis’ within-n-words operator, I retrieved articles with “liberal” appearing within 5 words of “class”.  I restricted the search to magazines and journals, not newspapers, which presumably might have more opinions and use more politically charged terms.  I then slightly modified cluster.py to only create context instances that had both “liberal” and “class” in them; I then ran the few hundred resulting instances through the clustering algorithm.

Perhaps owing to the complexity of different shaded meanings to the word ‘liberal’, results were very mixed.  With the total set of instances set split into 11 clusters, however, I did manage to get some useful groupings of usages:

political class . Any Quebec Liberal with links to the  (out.18470.13) -- Maclean's

in community , whereas their Liberal partners , another class   (out.18318.63) -- The Economist

middle class served to blunt Liberal hopes for yet another      (out.18470.82) -- Maclean's

all were categorized together; this is useful because it corresponds to the sense of a political party titled “Liberal”.  Within the American-publication-centric Nexis database, lowercased “liberal” often refers to the American political context.  Note that these publications this sense occurs in, are non-U.S.
One cluster, in particular, was rife with the phrase “middle – class”, connoting the idea of liberalism as a middle- or upper- class, predominantly white phenomenon:

popular with middle - class liberals , though Mr Smith  (out.18470.170) -- The Economist

of them middle - class liberals . Immediately following the     (out.18318.10) -- National Review

the naive middle - class liberals who attempt to oppose         (out.18470.134) -- The Washington Post

with middle - class white liberals , to control growth  (out.18470.175) -- The American Prospect       Spring, 1993

the American upper class were liberals , how many factory       (out.18318.177) -- The Economist       

One interesting mistake was this instance, which was included in the middle/upper/white cluster.  

the white middle class rejected liberalism on both economic and         (out.18470.28) -- The Weekly Standard

The semantic meaning is actually opposite of the others’.  This mistake can be attributed to the unigram model that missed the negation sense of ‘reject’.

Finally, two other clusters had all the occurrences of ‘class warfare’.  For example:

because the class - warfare liberals are wrong , with   (out.18318.68) -- The Weekly Standard

on the class - warfare liberals ' wish list .   (out.18302.69) -- The Weekly Standard

and in the other cluster,

," but earlier warned against liberal " class warfare ."        (out.18302.23) -- The American Prospect

the truth . Behind the liberal facade is class warfare  (out.18318.125) -- In These Times

One interesting thing is that all occurrences of ‘warfare’ occurred in either of these two clusters (though there were many other instances not including ‘warfare’ in each.)  Also, from not-too-quantitative measures of me inspecting the publication titles, these instances often came from publications known to be conservative or anti-liberal, which would be a successful demonstration of language as an indicator of political bias or beliefs – a key point of much sociolinguistics work.  But in this example we also see a problem: the 3rd instance of ‘class warfare’ comes from The American Prospect, which is actually a liberal journal.  It puts ‘class warfare’ in ironic double-quotes; this semantic feature of irony is completely lost to my model which discarded punctuation upon vector formations, and if it did retain quotes, it certainly wouldn’t associate them with the phrase ‘class warfare’.

Finally, this also highlights a problem of hard hierarchical clustering I noted earlier: instances of “warfare” got separated early on, then ended up in separate categories after later subdivisions got them concentrated in their respective clusters..  An iterative non-hierarchical algorithm may have been more useful in this regard.  Also, a soft clustering algorithm that allowed instances to belong to multiple categories may have been of use; we might have been able to create a useful category that ended up including instances of ‘class warfare’, for example.

On some level, it’s hard to gauge the effectiveness of the system, since it’s intended to be used as an exploratory tool.  However, judging from how the algorithm managed to highlight certain connotations and usages of terms that I myself have been able to pick up from reading articles over a span of some years, I think there’s definite potential for such a clustering tool to be of tremendous use to social analysts in finding the social meaning of words, or to be used as a jumping-off point for generating ideas and hypotheses.  Hopefully, increasingly sophisticated natural language processing techniques can be further used as a tool for social science analysis in the future.

Appendix – Program usage

Skip to Step #4 for interesting stuff.  Everything here is for a Unix/Linux system; also, I’m assuming

Configuration – see the notes at the top of nspider.pl and cluster.py.

Step #1:  Download the articles

nspider.pl is the program to download the articles.  You can use most of the standard Lexis-Nexis query language, which includes helpful searches such as within sentence, within n words.  nspider.pl requires a specific format you have to use for date ranges, since it parses it to subdivide the search to get around limitations of Academic Universe’s web interface.  After putting in the search page URL as by the instructions inside nspider.pl, here’s an example usage to report how many articles it would download:

and then to actually download them as out*.html:

nspider.pl '(liberal w/5 class) and (date aft 1999/1/1 and date bef 2002/1/1)'

If you’re on a linux machine (the raptor’s on the leland network, for example) you can use nspider-conc.pl count the total numer of articles you’re going to download, first:

nspider-conc.pl '(liberal ...’

whereas nspider-conc.pl –d   will actually download them.  See the top of nspider-conc.pl for all the stupid linux vs. solaris vs. afs platform annoyances associated with nspider-conc.pl.  nspider.pl, by contrast, will always work.

Step #2:  Preprocess the articles

preproc.pl . *.html

In the directory where the articles were downloaded.  This creates .body, .pub, and .comp files.  If you like, you can now rm *.html .

Step #3: Select less articles

Usually you should select a manageably sized subset of the articles that were downloaded.  The following steps will randomly select just 60 articles to work on, a good number that’s nice and fast to use at first:

mkdir smaller; cd smaller

shuffle.py 60 ..

Don’t worry about disk usage; shuffle.py creates symlinks, it doesn’t copy files.  This means you have 

Step #4:  Cluster and explore the instances

cluster.py is the program for analyzing, clustering, and exploring.  Once everything is set up, from the directory with the articles, simply execute

cluster.py word_to_analyze 

After reading in the instances, you are presented with a python interpreter prompt; here are a number of recommended commands to execute.  [‘t’ is the global variable bound to the tree of all calculated clusters; initially, it’s a one-node tree of the single cluster of all instances]

growTree(t, target_coherence)  will start subdividing the current cluster and its children clusters until the target_coherence internal average similarity is reached by the leaf clusters of the tree.  The program will recommend a value for target_coherence that’s double that of the initial coherence; just use that to start.

view(fetchFromTree(t))  will show the instances of all the smallest, most refined clusters generated.  The instances shown will comprise all of the instances processed.

view(fetchFromTree(t, min_coherence))  will show all the instances again, but only subdivided as far as need be to have each cluster have at least min_coherence average internal similarity.

viewx(...)  does the same thing as view(), but it opens the results in a new window if you’re using X and have gvim (a graphical vi derivative) installed on your machine.

len(fetchFromTree(t, min_coherence))  can be very useful when trying to find a level of coherence you want to inspect at; this will tell you how many clusters you’ll be viewing at min_coherence.  A general rule of thumb is to find a value of min_coherence that gives you 10 or so clusters, then view() them.

pprint(applyTree(avgInternalSim, t))  will show you the tree of calculated clusters, and the coherence of each cluster.  The bottommost leaves represent the clusters that a fetchFromTree(t) will give you.

� One useful list of different content analysis tools is <http://www.wcfia.harvard.edu/misc/initiative/identity/content_analysis.pdf>.


� Searches for the phrase “content analysis” yield a variety of resources.  An interesting content analysis mailing list is at <http://bama.ua.edu/archives/content.html>.





