Automatic Topic Extraction and Classification of Usenet Threads

Susumu Harada
Shashikant Khandelwal

Dept. of Computer Science

Stanford University

{harada,kshashi}@stanford.edu

Abstract

We implemented a topic extraction system that takes as input a collection of postings from a Usenet newsgroup and outputs a list of prominent topics that characterize the contents of the newsgroup, and for each topic, gives the set of threads that discuss the topic along with their relevance measure with respect to the topic. We use two methods, chi-square feature extraction and Latent Semantic Analysis, to extract the topic terms.
1. Introduction

Usenet has been providing a means for people across the world to participate in online discussions on variety of topics since the early 1980’s, and still continues to draw thousands of postings a day. With so many postings and a great number of different threads proceeding concurrently, it is a great challenge to identify the set of postings or threads that relate to a specific topic one is interested in. Current Usenet clients can group postings by the thread they belong to, but they do not provide any further organization. . The important technical details discussed in newsgroups are much desired, and give better answers particularly to technical questions than searching the web does. However it is a daunting task to search the complete list of newsgroups, many of which may be talking about the same topic, and browse through all the threads searching for the right ones.

A system that could automatically process the newsgroup and generate a list of topics being talked about could be useful to give a brief synopsis of the whole newsgroup and also for advanced search. Even a goal based traditional IR system could be significantly improved, if backed by some classification or metadata about the newsgroup postings. Also, given the weights of the topics and their relative similarity measures among each other as well as between documents, one can generate a visualization of the newsgroup threads and their topics, providing a way to both visualize and navigate the clustered threads easily.

We implemented a system to automatically extract newsgroup threads and categorize them based on most prominent topical categories. We implement and compare two methods for feature extraction from newsgroup threads, one based on purely statistical methods and the other making use of semantic information in the newsgroup threads in order to build a topical structure for a newsgroup corpus. We compared these two methods, viz. chi-square based feature extraction and Latent Semantic Analysis, to determine which method will yield better results. Our initial hypothesis was that the Latent Semantic Analysis will be able to extract more sensible topics, as suggested by many of the literatures, but in practice the difference in results from the two methods was not very significant.
2. System Architecture

The system architecture diagram is show in Figure 1. The following sections describe each section of the processing pipeline.
2.1 Thread Extraction

The first task involves extracting thread structure from the raw dump of the newsgroup postings. The dump of the newsgroup postings was acquired by exporting the entire newsgroup into a single text file through PINE with full header information for each message.

The dump file is then fed through the thread extractor, which organizes each message in a tree structure corresponding to the thread order, determined by parsing the message headers. During this process, a corpus of the entire newsgroup is constructed incrementally as each new term is encountered, as well as building up the statistical information for each term such as the term frequencies (number of times a term occurred in a thread) and threads frequencies (number of threads in which the term occurred). Since we used Java for ease of implementation, we make ample of references to keep the memory usage to the minimum.

We also applied a lemmatizer to strip off the non-content words, based on existing lists [11] [12] combined with our own additions to it, as features in newsgroups are mostly nouns, and sometimes, verbs. In addition, a word-filtering module attempts to filter out any other undesired words based on a set of heuristics. First, any words starting with a non-alphabetic character are discarded. It also removes any words starting with URL prefixes (“http”, “ftp”, etc) or containing “@”,“.” or “?”. Porter Stemming Algorithm [10] was also used to convert words into their root form to reduce the size of the corpus. Headers contain information (such as date, sender’s email, etc.) which might be relevant for data mining procedures and which must be consequently recognized and stored, were also parsed out. The interpretation of newsgroup items is often dependent on the context, i.e. on the list of messages to which the current message is an answer. As previous messages are often reported in the email using standard graphical conventions (most often a “>” sign) it is extremely important 1) to avoid extracting information from reported emails; 2) to preserve the text of reported email for the phase of semantic interpretation, in order to provide a correct resolution of anaphoric references. However, we did not pursue this problem further, as our interpretation of the whole thread was as belonging to one topic, and hence treated the whole thread as one document, neglecting the quoted messages from previous postings while parsing.

Finally, the word-filtering module included an adjustable parameter which specified a threshold number of times a term must occur across the entire newsgroup in order to be included in the corpus. The reasoning behind this was that a word appearing only once or so across the entire newsgroup will most likely not contribute to the discrimination of the thread topic.

2.2 Topic Extraction

We implemented two methods for extracting topics out of collection of threads; chi-square and Latent Semantic Analysis.

2.2.1 Chi-square

The type of features most commonly used in Information Retrieval is individual words and their occurrence / co occurrence (Burrows (1992) as well as Binongo (1994)). Essentially it involves finding the most frequently used words and treating the rate of usage of each such word in a given text as a quantitative attribute. The words, which serve as features for a text are chosen using the chi-square measure of distinctiveness [Manning and Schutze, 1999]. Chi-square selects words that have the most skewed distribution across categories. This includes words whose occurrence in a category is either much larger than the expected distribution or is much lesser than the expected distribution. This has been reported as effective in characterizing textual differences by McMahon et al. (1979) and Hofland & Johansson (1982). However a general drawback of this statistical method is that overall frequency does not distinguish words or strings that occur plentifully in only one section of a text from those that occur more steadily throughout it. Ideally we want markers that permeate a particular kind of text. However, it is seldom a drawback in this particular application to newsgroups; since, in an average sized newsgroup, the counts observed were very low anyway. We used unadjusted frequency counts (simple tf) as out counts

	a
	b

	c
	d

Since there are four cells in the problem above, the formula for chi-square is

 chi-square = sum of [(O-E)^2 / E]

where

 O = observed frequency

 E = expected frequency

Thus, chi-square deals only with frequency counts resulting from nominal data. The expected frequency calculation is a simple statement of probability. In this case,

[image: image1.wmf](

)

(

)

(

)

(

)

(

)

d

b

c

a

d

c

b

a

c

b

d

a

n

+

´

+

´

+

´

+

´

-

´

´

=

2

2

c

where
[image: image2.wmf]d

c

b

a

n

+

+

+

=

2.2.2 Latent Semantic Analysis

Latent Semantic Analysis uses Singular Value Decomposition on the term document matrix to extract the most salient term/document vectors in the orthonormal term/document space, allowing the documents to be mapped down to a reduced dimension term space. The generated subspace represents higher order relationship between the terms and documents that are not evident in the individual documents. The document vectors in this subspace can then be analyzed to determine the clusters of documents and thus their shared topic.
The process begins by representing the set of documents (in our case threads) as a term document matrix A. Matrix A is an m x n matrix where m is the number of terms in the entire newsgroup, and n is the number of threads. The entries of the term document matrix are weights corresponding to the contribution of each term as a feature to the document. In our case, we used TF*IDF (term frequency * inverse document frequency) to calculate the weights [9]. The TF*IDF weight was calculated as

wij = log(tfij) * log([m-mi]/ mi)

where wij is the weight for a term i and document j, tfij is the number of times the term i occurred in document j, m is the total number of documents and mi is the number of documents in which term i appeared.

The term document matrix was then processed via Singular Value Decomposition, which yields three matrices

A=USVT
where U is the matrix of term vectors, S is the diagonal matrix of singular values ordered by size, and V is the matrix of document vectors. A graphical representation of the decomposition is shown in Figure 2 [8].

Once the Singular Value Decomposition of A is obtained, the decomposed matrices are truncated to some size k (shown as black regions in Figure 2), where k is a number smaller than the rank r of A and represents the size of the dimension of the subspace to which we wish to reduce the original term document matrix. By multiplying the truncated matrices back together, we obtain Ak, the reduced dimension term document matrix. The document vectors of Ak are then fed into the topic cluster module to be clustered into related topics.

2.3 Topic Clustering

Doing feature extraction on the newsgroup threads gives the salient features of every thread but does not provide any information about the correlation between the threads, Also it seems natural that the number of topics discussed in the newsgroup are much less than the number of threads as multiple threads might be talking about the same or related topics.

An obvious attempt to model this situation and summarize the results obtained from feature extraction would be to cluster the threads together. Various methods of unsupervised clustering like Kmeans with linear discriminant analysis (S. Balakrishnama, A. Ganapathiraju) to find the right K can be used. However a simple hierarchical clustering based on merging similar threads can lead to a good grouping of the newsgroup threads into topics.

The similarity measure used is a simple vector space cosine measure, and the similarity parameter can be tweaked to get the desired grouping accuracy. The document vectors obtained as a result of the topic extraction step are m-dimensional vectors, where m is the total number of terms in the newsgroup. The topic clustering step calculates the document-document similarity measure matrix using cosine similarity between document vectors, and generates a sorted list of document pairs based on their similarity. We then find the 2 most similar topics and merge then using proper weights, taking into account the number of previous merges, so as to generate the correct mean value of the cluster at each step. This process is repeated until the maximum similarity measure amongst all remaining document vectors becomes less than the predefined threshold value. Another way to break out of the clustering could be after we get the desired number of clusters. Right now the similarity value is set at 10%, because of the sparseness of data.
3. Results

We first discuss the parameters in the implementation which affect the results.

1. Term count min threshold: It is the required minimum term count of a word, and if a word has count less than this, we neglect the word. We experimented with values of 1 and 5. A low value of 1 was better for a sparse data like ours.
2. Similarity measure for clustering: If 2 topic vectors are more similar than this minimum threshold, we merge them. We used low values for similarity, as low as 10%, again because of the sparse nature of the data. A run on a very large newsgroup like talk.environment, gave good clusters with large similarity value of 20%.
We ran our algorithms against several newsgroups, including comp.databases and rec.arts.movies
Table 1: Newsgroup statistics

	Newsgroup
	comp.databases
	rec.arts.movies

	Unique terms
	3625
	9721

	Word count
	29157
	123221

	Term count min threshold
	5
	1

	Term count after thresholding
	977
	9704

	Threads
	93
	110

	Postings
	400
	193

A similarity threshold of 10% on comp.databases with LSA feature extraction with a term count min threashold of 1 gave some good topics:
	Threads assigned to Topic (dbase, index, filter, query, clipper, mysql, foxpro, server) by LSA

	Clipper to mysql queries

	DBASE to MYSQL conversion

	Are index changes written to logs

	Problem with Microsoft Indexing catalog database

	Synchronizing 2 databases

	[mysql] Saving in more than one directory

	Need help identifying type of database file.

	datafiles...

	What database file type for *.ov *.lk

	binary data storage using file index

	Database generator for windows

	Estimating Forms

	Trying to Delete Files in DBase III

	Client-Server / Clipper / Visual Fox Pro

	Business Intelligence and Software Development

	Data Update to database

	Update database between terminal service and client server

	Restoring SQL Server Database.

	Help with SQL Server xp_cmdshell bcp stored proc.

	R:Base Compiler

A term count min threshold of 5, resulted in one single large topic, with few other totally different threads scattered into their own topics. This was expected because if we remove the discriminative words from each threads, whose count in such a sparse data will be less, we are left with feature words like db, table, list, column, key, code, user which occur in every thread and increase the similarity between them.
The same run with Chi-square feature extraction gave smaller clusters with the same similarity value of 10%. It was very interesting to note the large number of topics in this case. One reason for this might be that since LSA brings out hidden relationships between the documents, it finds more common features among them, this leading to more similarity, and bigger clusters. While chi square looks only at term-features which actually occur, it clusters according to the existence of discriminating words in the threads.
We ran the results on rec.arts.movies, and got pretty amazing results using chi-square using term frequency minimum threshold as 1 and merging similarity of as less as 10%. The final clustering came out amazingly well, with all movies in separate clusters and the topic words really representative of the movies. This was expected as the movie review data is very discriminative in itself, and every movie will have some distinct features not in other movies, especially since we are not trying to catch the general sentiment but the movie features themselves.
A few interesting things observed were

1. Due to less data (typical size of our newsgroups were postings for 1 month, approximately equal to 100 - 150 threads), there was inherently less similarity between the threads. Hence while clustering; since we were operating at the lower range of similarities, there was a huge jump from lots of topics to suddenly few topics with lots of threads clustered into them. Doing the same thing across newsgroups or within the same newsgroup with a larger corpus would have resulted into a much better clustering.

2. These groups of threads always got clustered into the same topic whichever method we used. This shows a strong similarity relationship between them

1.)
	Threads assigned to Topic (filter, index, dbase, mysql, clipper, say, right, Microsoft)

	Clipper to mysql queries

	DBASE to MYSQL conversion

	Are index changes written to logs

	Problem with Microsoft Indexing catalog database

2.)
	Threads assigned to Topic (model, engine, cost, tool, map, schema)

	database expert please support!

	Any database schema display and mapping tool?

	Database tool for easy publishing

	Database Modeling tool

3. LSA gives good topic clustering with larger values of similarity threshold than chi square does. This is expected as SVD would make documents more similar and similar documents would already be close together in the term-vector space, thus requiring a higher similarity threshold to get properly clustered.
3.1 Discussions

The main challenge behind getting good results from either algorithm was the selection of the right parameters for each newsgroup. First, the minimum term frequency threshold had to be chosen carefully. Since larger value would allow us to filter out many words and thus reduce the dimensionality of our document vectors (leading to better disambiguation between topics), choosing a value that is too large may also lead to key topic words being filtered out. Since the average number of postings per thread and terms per posting greatly influences the probable number of key topic words per thread, we attempted to derive a pseudo-optimal value for this threshold for each newsgroup by observing these statistics.

We also had to determine the appropriate value for the singular value truncation parameter in Latent Semantic Analysis. Here again, picking a small value will result in the original document vectors being mapped down to a low dimensional subspace, leading to more generalized topics, but truncating too much will result in over-generalization of the topics and a loss of some topic specific keywords. This is an even harder parameter to choose than the minimum term frequency threshold, since there are no obvious direct correlation between the change in the parameter value and the resulting subspace dimensions. However, observing the relative magnitudes of the ordered singular values does provide some indication of the range of singular values that are significant. We chose to derive this truncation parameter value by taking the greater of either one half of the rank of the term document matrix or the index of the largest singular value that is less than 10% of the largest singular value.

Various other methods to aid feature selection could have been applied to the newsgroup to enhance the generated topic information. For example, one very good method could be ranking authors and giving a weight boost to a posting whose author is figures among the prominent list. Authors can be ranked based on deciphering the thread structure and trying to determine how well he answers the topic being discussed in the thread, based on how much information content his posting contains, does he end the discussion, size of posting etc.

Newsgroup postings are like emails, without a proper grammar and more informal (exactly opposite to newswire). Hence some methods that are applied to emails like parsing using a head driven phrased structured grammar etc could have been applied while processing the corpus.
4. Conclusions and Future Work
We found that Latent Semantic Analysis, which we hypothesized to outperform chi-square method by far, did not yield significantly better results. This seems to be due to the challenge in picking the right parameter values for Latent Semantic Analysis that will yield the best results. One major issue we faced was in how to evaluate the results. We originally intended to rate the topic-thread assignment produced by our algorithm using a subjective scaling from 1 to 5, then weighing the results based on the ratio of the number of threads assigned to the topic to the total number of topics. However, we soon realized that this scoring is not necessarily a good measure of the “accuracy” of the algorithm. This is definitely an area for improvement in coming up with a solid rating and classification formula for the extracted topics and the underlying document.

After doing topic extraction, one could use this topical information to query the newsgroup ie. Take in user queries, do query expansion using a knowledge base, and match it against the topics first, and then against relevant threads.

Another direction could be to visualize the relationships between the topics and the documents (threads) by spreading them in the term-space with some kind of visual representation of the relationships, akin go WebSOM [13]
References

[1] Landauer, T.K., Foltz, P.W., Laham, D. Introduction to Latent Semantic Analysis. Discourse Processes, 1998.

[2] Deerwester, S., Dumais, S.T., et al. Indexing by Latent Semantic Analysis. Journal of the American Society of Information Science, 1990.

[3] Bun, K.K., Ishizuka, M. Topic Extraction from News Archive Using TF*PDF Algorithm. Proceedings of the 3rd International Conference on Web Information Systems Engineering, 2002.

[4] Dumais, S.T. Latent Semantic Indexing (LSI) and TREC2. Proceedings of The Second Text Retrieval Conference, 1994.

[5] Griffiths, T.L., Steyvens, M. Prediction and Semantic Association. Advances in Neural Information Processing Systems, 2003.

[6] Husbands, P., Horst, S. and Ding, C. On the Use of Singular Value Decomposition for Text Retrieval. Proceedings of 1st SIAM Computational Information Retrieval Workshop, 2000.

[7] Papadimitriou, C.H., Raghavan, P., et al. Latent Semantic Indexing: A Probabilistic Analysis. PODS, 1998.

[8]Berry, M.W., Dumais, S.T., O’Brien, G.W. Using Linear Algebra for Intelligent Information Retrieval. SIAM Review, 1995.

[9]Pocklington, R., Best, M.L. Cultural Evolution and Units of Selection in Replicating Text. Journal of Theoretical Biology, 1997.

[10] Porter, M. Porter Stemming Algorithm. http://www.tartarus.org/~martin/PorterStemmer/

[11] DVL/Verity Stop Word List. http://dvl.dtic.mil/stop_list.pdf

[12] University of Glasgow Stop Word List. http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
[13] WEBSOM - Self-Organizing Maps for Internet Exploration http://websom.hut.fi/websom/
Topic extraction

Figure 1: System architecture

Threads grouped by topic

= x x

1 3

5 9

Topic clustering

LSA

CHI2

Thread extraction and cleansing

Dump of newsgroup postings

┐Term

Term

┐Doc

Doc

Figure 2: Singular Value Decomposition

k

k

k

m x n

r x n

r x r

m x r

m x n

k

=

�� Ak

=

� � VT

��S

�� U

�� A

PAGE

_1116410994.unknown

_1116411188.unknown

