
Sentiment Analysis of User-Generated Twitter
Updates using Various Classification

Techniques

Ravi Parikh and Matin Movassate

June 4, 2009

1 Introduction

Twitter is a “micro-blogging” social networking website that has a large and
rapidly growing user base. Thus, the website provides a rich bank of data in
the form of “tweets,” which are short status updates and musings from Twit-
ter’s users that must be written in 140 characters or less. As an increasingly-
popular platform for conveying opinions and thoughts, it seems natural to
mine Twitter for potentially interesting trends regarding prominent topics in
the news or popular culture.

A successful sentiment classification model based on the expansive Twit-
ter data could provide unprecedented utility for businesses, political groups
and curious Internet users alike. For example, a business could gauge the
effectiveness of a recent marketing campaign by aggregating user opinion on
Twitter regarding their product. A user saying “I just used [Product A]
today and it JUST BLOWS HARD!” would detract from the overall senti-
ment, whereas a user claiming “[Product A] is my FAVORITE product ever!”
would add to the overall sentiment. Similarly, a political lobbyist can gauge
the popular opinion of a politician by calculating the sentiment of all tweets
containing the politician’s name.

Obviously, this hypothetical application would be exceedingly useful. But
to construct it, we would first need to build an accurate sentiment analyzer
for tweets, which is what this project aims to achieve. Therefore, the prob-
lem we chose to tackle within natural language processing is to determine
the sentiment of a given tweet. That is, given a user-generated status update
(which can not exceed 140 characters), our classification model would deter-
mine whether the given tweet reflects positive opinion or negative opinion on

1

the user’s behalf. For instance, the tweet “I’m in florida with Jesse! i love
vacations!” would be positive, whereas the tweet “Setting up an apartment
is lame.” would be negative.

Sentiment analysis in Twitter is a significantly different paradigm than
past attempts at sentiment analysis through machine learning, providing
a dramatically different data set that proposes a multitude of interesting
challenges. Notable past projects include sentiment classification of movie
reviews. Twitter is different in that sentiment is conveyed in one or two
sentence blurbs rather than paragraphs, leading to fewer ambiguities in the
form of “This movie has [list of good characteristics over many sentences].
However, it is still not worth seeing.” There are instead numerous other
difficulties. Twitter is much more informal and less consistent in terms of
language, and users cover a much wider array of topics touching on many
facets of their life than the limited rhetoric of movie reviews (e.g. a movie
they just watched, a test they’re studying for, a person they’re hanging out
with). Also, sentiment is not always as obvious when discussing human-
generated status updates; many tweets are ambiguous even to a human reader
as to their sentiment. Finally, a considerably large fraction of tweets convey
no sentiment whatsoever, such as linking to a news article, which provide
some difficulties in data gathering, training and testing.

In this paper, we apply several common machine learning techniques to
this problem, including various forms of a Naive Bayes and a Maximum
Entropy Model. We attempt various optimizations as well based on error
analysis and intuitions that are specific to the unique rhetoric and language
of Twitter.

2 Data

We took advantage of a JAR archive called “jtwitter.jar”, which leveraged a
version of the Twitter API specifically for Java. We wrote a small app that
pulled queries from Twitter’s public timeline in real-time, and then these
queries were evaluated and hand-tagged for sentiment by us. We had a total
of 370 positive tweets and 370 negative tweets that were used for training
and testing. Of these, we randomly chose 100 of each for testing, and the
rest of the tweets were used for training. We considered acquiring more data,
but both the Naive Bayes models as well as the MaxEnt classifier were able
to achieve high metrics with this small training set.

This data set does indeed seem small, or at least small enough so that
we would be unable to obtain preferable metrics with it. Data-gathering is
perhaps the biggest issue that Twitter-based sentiment analysis poses com-

2

pared to more traditional problems of sentiment analysis such as movie or
product reviews. Thus, we figured it would not be worth the significant extra
time simply for a few more data points. However, as will be evident in the
Results section, we were able to achieve excellent accuracy (particularly with
the Naive Bayes classifier).

Each tweet is between 1 and 140 characters. We did not bother tagging
tweets in foreign languages or tweets with excessive amounts of colloquialism-
s/mispellings that made it difficult to decipher for even humans. Addition-
ally, many tweets do not convey sentiment; for example, “just tried pesto for
the first time” is a tweet that is neither positive nor negative. Even tweets like
“got promoted at work today” don’t actually convey sentiment; the author
here is not rendering judgment on whether this is a positive development,
despite our cultural notions about the nature of promotions. Instead, a tweet
like “got promoted at work today...gonna celebrate tonight!” clearly demon-
strates positive sentiment. These tweets where sentiment was not conveyed
were not used in training or testing.

Even with a robust Twitter API and a quick method of obtaining tweet
classifications for training data purposes, a two-person effort was not enough
to generate a truly sizable collection of positive and negative tweets (on the
order of 1000 tweets). This was because a large majority of tweets either
contain only a link, are in a foreign language, or convey no sentiment what-
soever, meaning tweets that conveyed some level of opinion or emotion were
surprisingly difficult to encounter. On average, processing 200 tweets resulted
in roughly 5-10 positive tweets and 5-10 negative tweets alike, with the rest
expressing no demonstrable sentiment. This is an interesting reflection on
how Twitter is used as a service, demonstrating that users turn to the site
more to discuss events objectively rather than rendering judgment.

3 Code Structure

Our source code for testing and implementation was developed in Java.
We took advantage of starter code from CS124 HW 3 and CS224n HW
3. The main files utilized are cs224n.assignments MaximumEntropyClas-
sifierTester.java (a MaxEnt classification model), cs224n.classifier.Unigram-
BernoulliNaiveBayes.java, cs224n.classifier.UnigramMultinomialNaive Bayes
(our Naive Bayes models), and cs224n.classifier.Preprocessor (a class that
preprocesses tweets as described below).

In addition to these classes we created the class cs224n.classifier.Twitter-
Retriever, which leveraged the Java jtwitter API to pull tweets in real time
from Twitter’s public timeline and allowed easy hand-tagging. This file was

3

not used beyond this initial hand-tagging. We chose not to include this file
in the final submission, since it takes advantage of a large library and is not
useful in running our models.

4 Preprocessing

Through our error analysis and intuition, we noticed several characteristics of
tweets that could be standardized through preprocessing. Twitter users are
much more likely to have grammatical/spelling errors, colloquialisms, and
slang incorporated into their output, due to the 140 character limit that is
imposed on users. As a result, regular expression matching of common errors
and substituting with standard language helped our models’ performance by
providing more consistent lexical behavior across tweets. For example, sub-
stituting any matches of the regular expression “lu?v?” with “love” allows
all similar tokens to be classified as one. (“Luv” or “luuuuvvvv” are slang
expressions for “love” within internet parlance). Another example is substi-
tuting the expression

wh?(a|u)t’?(s|z) up

with the phrase “what’s up.” The above expression enumerates 16 possible
common ways that Twitter users might write this phrase.

We also eliminated some punctuation, such as periods, commas, and end
marks. Twitter user names mentioned within a tweet (as signified by an
@ sign appearing before the token) were also removed from our training
and test data sets. While exclamation marks and other punctuation can
be strong indicators of emotion and sentiment, we noticed that our perfor-
mance increased without these. This is likely because exclamation marks
can indicate strength of negative and positive emotion, but aren’t particular
to one. However, we chose not to eliminate colons and parentheses; often,
Twitter users indicate sentiment with emoticons such as :) (a smiley face).
We instead decided to standardize these, with a single regular expression en-
compassing several different forms of smiley faces. These punctuation-based
optimizations also helped performance.

In addition, inspired by the practice of Pang and Lee in their sentiment
analysis research, we stripped out the word “not” from tweets and appended
the characters “NOT ” before the following token in a tweet. So for instance,
the tweet “not feeling well today” would be altered to become “NOT feeling
well today.” This way, negatory words could be matched together in the
training process, lowering the probability of a tweet like “Family Guy is

4

NOT GREAT OR FUNNY jeez” to be incorrectly classified as positive due
to the presence of the words “great” and “funny.”

5 Unigram Naive Bayes

The ultimate task here for our sentiment analyzer is to calculate the probabil-
ity that tweet d is in class c, where c = 0 or 1. We implemented two unigram
Naive Bayes models. In both of these, we use the Naive Bayes simplifying
independence assumption:

P (c|d) = P (c)
∏

1≤k≤nd

P (tk|c)

Where tk denotes the kth token sequentially in a tweet, and nd is the size
of a tweet. The Naive Bayes assumption is that these probabilities for each
token are independent, and thus the joint probability is merely the product.
In order to compute the most probable class, we compute the arg max as
follows:

arg max
c
P̂ (c|d) = arg max

c
P̂ (c)

∏
1≤k≤nd

P̂ (tk|c)

= arg max
c

log(P̂ (c)
∏

1≤k≤nd

P̂ (tk|c))

= arg max
c

log(P̂ (c)) +
∑

1≤k≤nd

log(P̂ (tk|c))

In the above equation, notice that P̂ (c) = 0.5, since we make the assumption
that both negative and positive tweets are equiprobable (indeed, we have
equal amounts of training and testing data for both). We have two different
methods of computing P̂ (tk|c), however, yielding two unigram models. We
implemented a multinomial model, in which the counts of the number of
occurrences are used as follows:

P̂multi(tk|c) =
Tctk

|Vc|

Where Tctk denotes the number of times token tk appears in class c, and |Vc|
is the number of total words appearing in class c. A slightly different model is
the Bernoulli model, which instead records P̂ber(tk|c) as the fraction of tweets
in which the term tk occurs. In both of these situations, we used add-one
(or Laplace) smoothing, so that zero counts would not adversely affect the
performance of our Naive Bayes model.

5

5.1 Results

We achieved the following accuracy on the test set for each model. We trained
on a total of 270 positive and negative tweets each, and 100 tweets each for
testing. These metrics were achieved after preprocessing (note that the F1
score equal to 2np

n+p
):

• Multinomial Unigram: 0.81 negative, 0.91 positive, 0.857 F1

• Bernoulli Unigram: 0.85 negative, 0.85 positive, 0.850 F1

These metrics were achieved without word replacement preprocessing (regu-
lar expression matching), but keeping intact other preprocessing:

• Multinomial Unigram: 0.77 negative, 0.91 positive, 0.834 F1

• Bernoulli Unigram: 0.84 negative, 0.81 positive, 0.825 F1

These metrics were achieved without punctuation preprocessing, but keeping
intact other preprocessing:

• Multinomial Unigram: 0.80 negative, 0.86 positive, 0.829 F1

• Bernoulli Unigram: 0.88 negative, 0.79 positive, 0.833 F1

These metrics were achieved without any preprocessing:

• Multinomial Unigram: 0.78 negative, 0.78 positive, 0.780 F1

• Bernoulli Unigram: 0.87 negative, 0.63 positive, 0.731 F1

This shows a chart of performance under varying preprocessing steps:

6

In an effort to boost the size of our training data set, we also tried testing
our classifiers using non-Twitter training data. Namely, we used pre-classified
movie reviews from LingPipe to train on. Here were our achieved metrics:

• Multinomial Unigram: 0.92 negative, 0.26 positive, 0.405 F1

• Bernoulli Unigram: 0.80 negative, 0.46 positive, 0.584 F1

It was unsurprising that both models performed poorly on this data. It was
interesting to note that both models were heavily skewed towards negative
tweets, and classified a very high ratio of the total number of tweets as neg-
ative. The increased propensity for our Naive Bayes classifier to classify a
tweet as negative indicates that our model is much stronger at correctly iden-
tifying negative sentiment, and substantially weaker at correctly identifying
positive sentiment. Reasons for this anomaly are described in the following
error analysis section.

5.2 Error Analysis

The majority of the errors made by both the Bernoulli and Multinomial
Naive Bayes models above were identical, with a few exceptions. This was to
be expected; due to the brevity of tweets, words tend to appear at most once
in a tweet. Even common words such as “the” tend not to appear more than
once in a 100-character tweet. As a result, the Bernoulli and Multinomial
probabilities for several words will have the same effect on the computed
probabilities. Thus our error analysis is for the most part common for both
models. We do briefly address some sentences on which the two models
differed, however, below.

5.2.1 Without Preprocessing

Without preprocessing, there were several basic errors that we later elimi-
nated. (We address the errors that still persisted after preprocessing in the
next section.) These errors were due to a multitude of reasons. The following
are examples of misclassified tweets:

• “@epiphanygirl we gon’ be like 15 deep coming to see u on Saturday
in atlantic city. We luuuuvvvvv you!!! Lol!” - There were several
instances of misclassified tweets where our classifier was unable to use
strong indicator words to identify sentiment due to nonstandard though
common misspellings. Clearly “love” is a strong indicator of positive

7

emotion, and indeed there were several tweets that we noticed in train-
ing and testing data that used variations of the word. However, the
nonstandard spelling in this tweet confounded our classifier.

• Another example of nonstandard slang is in the tweet “Frack! The new
Bones isnt up on hulu!!!!!!!!” Here, the expletive at the beginning is an
indicator of negative emotion but is not a standard expletive, though
its similarity to another commonly-used expletive makes it meaning
obvious to humans.

• “It’s soooo funny... Guys, U should watch it! (=” - This is another mis-
classified positive tweet. A large indicator of sentiment in many tweets
are emoticons, or smiley faces and sad faces simulated with punctua-
tion. This tweet contains “(=” which is a rarer emoticon for smiley
faces (the conventional one is “(:”). This is another situation where
tweets have a wide array of ways of expressing the same token. This
was caught through preprocessing, with a regular expression identifying
various forms of emoticons and standardizing them.

We tried to avoid overfitting our training and testing data; as a result, many
regular expression word replacements that could have better standardized
the language and potentially improved our results were not implemented.

We also noticed that several tweets had tokens such as “@Adree6603”,
where the @ sign indicates that the tweet is directed at another Twitter user
with that monicker. These tokens are clearly not useful for determining sen-
timent, and every time these were observed, they were classified as unknown
tokens. As a result another preprocessing step that we included was elim-
inating these, as they have virtually zero effect on the net sentiment of a
tweet.

5.2.2 With Preprocessing

Some phrases still eluded our Naive Bayes classifiers even with preprocessing.
The following are examples of misclassified tweets:

• “your realy meen” - a misclassified negative tweet. This was due to
misspellings of indicator words such as “mean.” This was not corrected
during preprocessing; this is not a common typographical error, and
thus it was not caught. There were several tweets which were likely mis-
classified by Naive Bayes since certain tokens were misspelled in an un-
conventional way. The rapid pace of Twittering and the 140-character
limit of tweets encourages users to post their thoughts quickly and

8

frequently, through as many channels as possible, encouraging hasty
spelling and unconventional grammatical quirks. The nature of the
quirks are hard to normalize, even with adequate levels of preprocess-
ing, so any dramatic misspellings similar to the preceding tweet are
difficult to deal with properly.

• “i thought i saw a preview for that on mtv movie awards which was a
joke” - Referring to something as “a joke” is clearly a negative sentiment
indicating its uselessness or futility, and is the main indicator word for
sentiment in this tweet. However, a joke is often associated with light-
hearted, humorous and thus positive tweets, and therefore this tweet
was misclassified.

• “got home from a long trip into the mountains happy to be back down
battery charged” - The main indicator word in this positive tweet is
“happy”; however, there are several other words such as “long” which
might have a propensity for negative tweets that would lead this to
be misclassified. Such nuances are difficult for a generative classifier
like Naive Bayes to deal with, and the best way for approaching these
complexities would be to add more complicated, additional features
besides just the words involved in a tweet. Potential ideas for additional
features are described in the Further Improvements section below.

We tried to avoid overfitting our training and testing data; as a result, many
regular expression word replacements that could have better standardized
the training data and potentially improved our results were not implemented.
Instead, we only implemented regular expression substitutions for words that
occur very frequently. Had we decided to sift through the training data
and find commonly-occurring words, we would have skewed our results to
more accurately fit the positive/negative words occurring specifically in the
training data, causing a level of overfitting that would fall apart on the
test data. SImilarly, if we had decided to sift through the test data and find
commonly-occurring words, we would be destroying the spirit of the classifier
assessment, and would cause an unfair bias towards the test data that would
artificially inflate our results.

5.2.3 Differences Between Models

All tweets misclassified by the Bernoulli model that were classified correctly
by the multinomial model were 6 positive tweets, and all tweets misclassified
by the multinomial that were correctly classified by the Bernoulli were 4
negative tweets. This was just a coincidence, however. Most of the incorrectly

9

classified tweets in these cases were ones where they were borderline cases
with a lack of clear indicator words, and the probabilities happened to go
one way in one classifier and the other way in the other classifier. Thus, it
seems that the class of our Naive Bayes model - Bernoulli or multinomial -
made negligible differences on the classifications and overall accuracy of our
Naive Bayes classifier.

5.3 Further Improvements

Several potential improvements could be implemented in the preprocessing
phase, but would require careful consideration. We considered implementing
a spell-check feature that would further standardize the observed lexicon,
lessening the probability of encountering UNKNOWN tokens during testing
and providing a more reliable and expansive classifier model. Essentially,
it would work by reading in a token, determining whether it’s present in a
Lexicon, and then performing a maximum of 4 edits to see if any local set
of changes would be a word within the Lexicon. But, as is evident from the
Twitter user data we collected, there are several acronyms and slang terms
that arise in Twitter that can be strong indicators of sentiment that would be
too brazenly corrected by an automatic spell-checker. A useful spell-checking
implementation would therefore need a large lexicon of these types of tokens,
and creating this would be tedious.

Additionally, we could implement more nuanced features for the Naive
Bayes classification instead of simply each word within the tweet. For in-
stance, we could’ve taken advantage of a Part-of-Speech tagger to determine
not only which words contribute to positive/negative sentiment, but also
what POS those words have when they’re influencing the sentiment of a
tweet. For example, the two tweets “just fooling around before my econ
final” and “my last test made me feel like a giant fool” convey completely
different levels of sentiment even though they both involve use of the word
“fool.” Of course, a Part-of-Speech tagger requires relatively sanitized input,
and Twitter user data has widely varying levels of grammatical and spelling
deficiencies, so it did not seem feasible to include it at this level of develop-
ment. This would increase the number of token types we’d see, and would
thus increase their sparsity, so it would be necessary to attain more training
data to offset this sparsity.

Also, from analyzing a number of tweets, it becomes evident that certain
words that appear near trigger words such as “me” or “I”, essentially pro-
nouns which refer directly to the speaker him/herself, should be considered
more important and have more weight towards describing the sentiment of
the tweet. The intuition behind this is that nearby words to a first-person

10

pronoun directly describe the speaker’s state, which is the best indication of
the speaker’s attitude and thus the overall sentiment of the tweet. For exam-
ple, the tweets “I just finished watching Barca DESTROY MANCHESTER”
and “that final completely destroyed me” both convey very different levels of
sentiment, even though they both include the word “destroy,” which would
probably be a bigger indicator of negativity. But in the former example,
“destroy” isn’t being used in reference to the speaker’s state, so it doesn’t
actually imply that the user is expressing sentiment like the latter example
would.

For our Naive Bayes classifier, we made no effort to distinguish between
low-content words such as “the” or “some”. While actively filtering out low-
content words and retaining high-content words could’ve provided a much
more authentic distribution of how words and tokens affect overall Twitter
sentiment (since “happy” is much more likely to affect the sentiment of a
tweet than “the” is). Ultimately, however, we decided against implementing
this level of filtering during training and testing, primarily because a Naive
Bayes classifier is a generative model - specifically, in our circumstance, one
that deals with binary outputs - and so it needs to compare both the positive
and negative possibilities to determine the highest classification likelihood.
Most of the time, low-content words would affect positive and negative possi-
bilities equally; there’s no reason to assume they would skew the distribution
one way or another, though this may very well not have been the actual case.

6 Multinomial Bigram Naive Bayes

We also implemented a multinomial bigram Naive Bayes model, which cal-
culated the log probability in a method similar to the multinomial unigram
model, but using bigrams instead of single tokens. Due to the sparsity of the
data, the majority of bigrams would appear only once in training or testing,
and therefore it did not make sense to have a pure bigram model. Instead,
we also calculated the log probability as given by the unigram model as well,
and added these together using a weight α in a linear interpolation fashion:

P (c|d) = αPunigram(c|d) + (1− α)Pbigram(c|d)

6.1 Results

We tested different values for α, running the model incrementing alpha by
0.01 from 0.00 to 1.00. The optimal values of alpha were 0.90 ≤ α ≤ 1.00, due
largely to the sparsity of bigrams in the data. The following chart illustrates

11

the F1 scores, as well as positive and negative classification accuracy, of our
model on different values of α:

As shown above, the bigram model was unable to improve on the unigram
model in any significant way. This might be partly due to the sparsity of
the data. In earlier studies involving classification of movie reviews, there
were many more tokens per review than the number of tokens per tweet, and
the language was more standardized (i.e. followed rules of standard English
grammar). As a result bigram data was more meaningful there, but in a
140-character limit status update, there’s going to be few meaningful sets of
bigrams to merit the use of a bigram model for Naive Bayes classification.

6.2 Future improvements

Increasing the amount of training data could possibly help, as it would pro-
vide a far larger set of bigrams. In fact, a larger training data set would much
more greatly benefit a bigram Naive Bayes classifier than a unigram Naive
Bayes classifier, for this very reason. There are other ways to address the
sparsity of training data, however, and various Backoff methods or smooth-
ing implementations could help us deal with the sparsity of bigram in our
Naive Bayes classifier.

12

In addition, better preprocessing would allow the language to become
more standardized and perhaps lead to a more effective bigram model. For
instance, the bigrams “I’m bored” and “im bored” and “ima bored” all repre-
sent the same level of sentiment, but the preceding tokens would be bucketed
into different portions of the Naive Bayes generative probability distribution,
thereby lowering the probability mass of common constructs that are spelled
in a variety of ways. This level of sparsity affects bigram distributions for the
Naive Bayes model much more dramatically than it does a unigram-based
Naive Bayes model.

7 Maximum Entropy Classification

The intuition of the MaxEnt model is to use a set of user-specified features
and learn appropriate weights. We built an appropriately smoothed Max-
imum Entropy Classifier that aimed to select feature parameter values to
maximize the log-likelihood of the tweet test data we generated. In addition,
High weights given to features mean that these are strongly indicative of a
certain class. The estimate of P (c|d) for class c and tweet d is given by:

P (c|d) =
1

Z(d)
exp(

∑
i

λi,cFi,c(d, c))

Where Z(d) is a normalization function that ensures a proper probability dis-
tribution, Fi,c are binary feature functions that give a value for the presence
of feature fi in class c in the tweet d, and λ are feature-weight parameters.
These parameters are learned to maximize the entropy of the distribution.

7.1 Results

We achieved the following accuracy on the test set for each model. We trained
on a total of 229 positive and negative tweets each, and 100 tweets each for
testing. The highest metrics achieved were as follows:

• Negative Test Points: 100, Number Correctly Classified: 70

• Positive Test Points: 100, Number Correctly Classified: 48

• Overall Accuracy: 0.64

The features we took advantage of in our MaxEnt model are the following,
with the description of each feature alongside the feature name:

13

Name Description
WORD the current word
LENGTH the length of the current word
NUMVOWELS number of vowels in current word
STARTSCAPS? current word starts with a caps letter
NUMCAPS # of capital letters in the current word
ISCAPS? current word is in all capital letters?
SUF suffix, last 3 chars in current word
PRE prefix, first 3 chars in current word
ISCAPS AND PREVWORD PREVWORD and ISCAPS?
PREVWORD the previous word
PREV2WORD word appearing 2 before current word
NEXTWORD the next word
NEXT2WORD word appearing 2 after current word
STARTSCAPNW next word starts with a capital letter

This shows a chart of performance under various feature combinations. Namely,
it indicates how certain orthographic features contributed to the overall ac-
curacy of the MaxEnt classifier. The larger the bar, the more important the
feature was in determining how a word described the overall sentiment of a
tweet:

7.2 Error Analysis

Without preprocessing, our models tend to make several easily fixable errors,
as shown above in our error analysis for our Naive Bayes models. Therefore

14

we chose not to detail our error analysis of our MaxEnt model without pre-
processing, instead focusing on how it performed after preprocessing.

Comparing the dramatically different results between the Naive Bayes
and MaxEnt classifier, it becomes clear that the MaxEnt method of taking
advantage of sequenceable features simply doesn’t apply well to the unique
nature of tweets. Each different form of the Naive Bayes classifier worked
overwhelmingly better than than the MaxEnt classifier, prompting us to stick
with Naive Bayes as the primary mode of classification in future development
of our Twitter sentiment analyzer.

However, we could explore Support Vector Machines (SVM) in future
experiments, as Pang and Lee demonstrated comparable results to Naive
Bayes and MaxEnt within their movie review analyzer. And while Pang and
Lee did in fact demonstrate excellent results with a MaxEnt classifier on
movie reviews, this is primarily because movie reviews are much more well-
suited towards the sequence-based model that MaxEnt facilitates. Without
leveraging CFG parsing-based or Part-of-Speech features, it becomes difficult
to extract context-based features from a single given tweet that indicate
levels of sentiment. The local context of a sentence within a movie review
document greatly aids in determining the sentiment of that sentence, that
is, determining whether the surrounding sentences have overlapping features
helps in determining whether the current sentence will contribute to the
overall review’s sentiment. Comparing this to the sequence-based model
applied to tweets, it becomes clear that the surrounding feature context of
words within a tweet do very little in assessing the overall level of sentiment
on a tweet. Thus, we couldn’t take advantage of features based on locality,
which are the truth strengths of the MaxEnt classification technique.

Most of the features we were able to leverage involved loose orthographic
features, based solely on the characters and structure of the word being looked
at (as MaxEnt calculates log probabilities on each word within a given tweet).
Some examples involve the number of capital letters in a word and the length
of a word. As indicated in our results above, the feature that most aided in
our classification model was the number of capital letters in a word, as this
increases when a user feels more passionately about a certain subject. How-
ever, though there are plenty of orthographic features, very few of them shed
any significant insight on how the word itself will contribute to the overall
sentiment of a tweet. So the fundamental issue with the MaxEnt classifier
is as follows: the short nature of tweets limit the amount that MaxEnt can
leverage locality and sequence, which requires us to resort to ineffective fea-
tures based almost primarily on orthographic details (though we did include
some combination features such as ISCAPS AND PREVWORD).

As evidenced by our results, there was a much greater propensity for

15

the MaxEnt classifier to predict a negative sentiment than it was to predict
a positive sentiment, causing our percent correct for negative tweets to be
nearly 1.5 times greater than the percent correct rate for positive tweets.
One possible reason for this anomaly is that certain words are very flexible
in the level of sentiment they convey, and that our training data happened
to disproportionately present these words in a negative light. For example,
the tweets “I am so freaking tired of proving myself to people” and “freaking
24 season finale TONIGHT!” indicate that the word “freaking” can occur in
dramatically different levels of sentiment. In addition, a tweet of the form
“today was not at all as bad as I thought it would be” could get classified
as a negative tweet, only because of the token “bad” and the fact that the
negating “not” occurs many slots before it.

For further improvement on our models, we will attempt methods of dis-
covering beneficial feature templates that are less rooted in trial-and-error
and ad hoc methods. Ultimately, all we could do to determine fruitful features
for classification was to simply look over our Twitter data and determine In
order to determine which features are successful and which ones arent, we
were limited to simply making incremental changes to our feature set and see-
ing how that affected the existing classifier performance. But some features
work better in the presence of other features, as some features can overlap
with a given feature, thus decreasing their utility, or neatly complement a
given feature, thus increasing their utility. Again, since no set of features
were very compelling for determining the overall sentiment of a tweet, we
simply resorted to these trial-and-error means of developing features.

8 Acknoledgments

We leveraged the starter code from CS124 assignment 3, which was a Naive
Bayes model used to classify movie reviews by sentiment, as well as the starter
code for CS224N assignment 3, in which we implemented a MaxEnt model.
We also used the jtwitter Java API, available at http://www.winterwell.com/
software/jtwitter.php, in order to more easily pull tweets off Twitter for
hand-tagging. We also used sentiment-tagged movie review data from Ling-
Pipe (http://alias-i.com/lingpipe/demos/tutorial/sentiment/read-me.html),
but only briefly to compare different training data sets, and not in any other
substantive way. We also would like to thank Professor Manning and the
entirety of the CS224N course staff for expansive feedback regarding our
proposal and advice on how to proceed with our project.

16

9 Conclusion

Sentiment classification on tweets is a significantly different problem than
performing similar analysis on movie or product reviews. In the latter cases,
there are several problems that arise in a long-format review in determining
sentiment. However, Twitter offers an entirely different challenge, which is
largely created by the nonstandard and diverse language employed by Twitter
users.

We implemented two Naive Bayes unigram models, a Naive Bayes bi-
gram model and a Maximum Entropy model to classify tweets. We found
that our Naive Bayes classifiers worked much better than our Maximum En-
tropy model could. Our results were quite good, and both models performed
better than known performances on movie review classification, for example.
However, our best accuracy still leaves room for improvement, which could
come in the form of better preprocessing and more clever feature selection.
In addition, we could take the time to collect much more data (a factor of 10
times more, perhaps), making sure to implement the proper preprocessing
techniques to ensure that overfitting doesn’t occur in the widely varying class
of language that can occur on Twitter.

Even with a robust Twitter API and a quick method of obtaining tweet
classifications for training data purposes, a two-person effort was not enough
to generate a truly sizable collection of positive and negative tweets (on the
order of 1000 tweets). This was because a large majority of tweets either
contain only a link, are in a foreign language, or convey no sentiment what-
soever, meaning tweets that conveyed some level of opinion or emotion were
surprisingly difficult to encounter. On average, processing 200 tweets resulted
in roughly 5-10 positive tweets and 5-10 negative tweets alike, with the rest
expressing no demonstrable sentiment.

Sentiment classification on tweets is a significantly different problem than
performing similar analysis on movie or product reviews. In the latter cases,
there are several problems that arise in a long-format review in determining
sentiment. However, Twitter offers an entirely different challenge, which is
largely created by the nonstandard and diverse language employed by Twitter
users.

We implemented two Naive Bayes unigram models, a Naive Bayes bi-
gram model and a Maximum Entropy model to classify tweets. We found
that our Naive Bayes classifiers worked much better than our Maximum En-
tropy model could. Our results were quite good, and both models performed
better than known performances on movie review classification, for example.
However, our best accuracy still leaves room for improvement, which could
come in the form of better preprocessing and more clever feature selection.

17

In addition, we could take the time to collect much more data (a factor of 10
times more, perhaps), making sure to implement the proper preprocessing
techniques to ensure that overfitting doesn’t occur in the widely varying class
of language that can occur on Twitter.

The explosive growth of Twitter has attracted considerable media and
consumer attention to this service. In terms of long-term development, the
ultimate utility of our sentiment analyzer is to build a classifier adept enough
to mine the Twitter database given a certain keyword, and return the overall
site-wide sentiment associated with the provided keyword. As Twitter at-
tracts more and more users, the accuracy and utility of such an application
will only increase, since an ever-increasing volume of opinions and ideas will
spread across the site. The usefulness of such a sentiment analyzer would
provide an unprecedented level of analytics for companies and politicians
alike, as well as provide an interesting source of experimentation for regular
users.

10 Sources

Bo Pang and Lillian Lee. “A Sentimental Education: Sentiment Analysis
Using Subjectivity Summarization Based on Minimum Cuts.” 2004. Proceed-
ings of ACL, pp. 271–278.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. “Thumbs up?
Sentiment Classification using Machine Learning Techniques.” 2002. Pro-
ceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 79–86.

18

