
Modeling function word errors in DNN-HMM
based LVCSR systems

∗Melvin Jose Johnson Premkumar, †Ankur Bapna and ∗Sree Avinash Parchuri
∗Department of Computer Science

† Department of Electrical Engineering
Stanford University

{melvinj,ankurbpn,aparchur}@stanford.edu

Abstract—Deep Neural Network (DNN) based acoustic
models produces significant gains in Large Vocabulary
Speech Recognition (LVCSR) systems. In this project,
we build a DNN acoustic model and analyze the errors
produced by the system, specifically the ones due to
function words. We analyze the class variances of the
frame data depending on whether they belong to the set
of function words or not. We experiment with different
ways of modeling the errors produced due to function
words. Two different ways of modeling the function words
in the neural network were tried and the results have been
reported. We have obtained gains in the frame accuracy of
one of the systems compared to the baseline. In future, we
plan to build a complete system and look for improvements
in the word error rate (WER).

I. INTRODUCTION

Automatic Speech Recognition (ASR) aims to
convert a segment of spoken language audio (known
as utterances) to a corresponding accurate transcrip-
tion. Figure 1 provides a brief overview of the
architecture of a typical speech recognition system.
It can be seen to consist of four main components:
Feature Extraction, Acoustic Model, Decoder, Lan-
guage Model.

A. Feature Extraction

During feature extraction, windows of raw PCM
audio samples are transformed into features that
better represent the speech content of the signal
within that window. The most popularly used feature
representation is Mel-frequency cepstral coefficients
(MFCCs). These coefficients are derived from the
spectrum of the frequency domain, representing the
change in frequency content of the speech signal.
The frequency domain is mapped nonlinearly so as

to approximate human sensitivity to differences in
pitch. Other coefficients like LPC, PNP etc. can also
be used based on the application.

B. Acoustic Model

An acoustic model serves to map the extracted
features to a sequence of likely spoken sounds,
namely phonemes. This is usually done by using
a phone likelihood estimator which can be a Gaus-
sian Mixture Model (GMM) or an Artificial Neural
Network (ANN) to estimate the likelihood of each
phone. This is then coupled with the pronunciation
lexicon which maps words to phone sequences. A
hidden markov model (HMM) is used to model the
durational and spectral variability of speech signals.

C. Language Model

In an ASR system, the language model provides
the probability of a particular sequence of words. In
other words, it tries to capture the properties of the
language. It is used in the decoding phase along with
the acoustic model to generate the word sequences
for the audio signals.

D. Decoder

The acoustic model provides a distribution
over all possible phonemes for each individual
frame and the language model provides the prior
probability of the word sequence being sensical.
Using these two probabilities the decoder generates
the most likely word sequence for the given audio
input. As the decoder passes over the data, the
possible sequences of states are stored within a
graph known as a lattice, which can be pruned to
reject the least likely sequences. Once the most



Fig. 1. ASR system architecture

likely sequence is determined, the phonemes can be
mapped to complete words, creating a transcription
of the original audio.

The rest of the report is organized as follows.
In section II, we provide a brief overview of
our experimental setup. Section III discusses our
baseline system and various other experiments
performed on it. In section IV, we present our
experimental results. Section V provides discussion
and analysis on our experimental results. We finish
with the conclusion and future work in section VI.

II. EXPERIMENTAL SETUP

The experiments were conducted using a
variant of the open-source KALDI toolkit [1].
Neural-network training was done using python
scripts which took advantage of GPU processing
capabilities through the use of the GNUMPY and
CUDAMAT libraries.

The data-set used for these experiments was
the Switchboard-1 Release 2 corpus (LDC97S62),
which is a collection of about 2,400 two-sided
telephone conversations among 543 speakers.
The data-set was divided into 300 files, each
representing about an hour’s worth of conversation.

The neural-net is trained using the frame-data (in
the form of Mel-Frequency Cepstrum Coefficients)
and the senone labels. Currently, we input 41
frames of MFCC data to obtain senone labels (from
among 8986 possible senone labels) for the current
frame (the other 40 frames provide context). We use
the alignment files (ali*.txt), key files (key*.txt) and
the feature files (feat*.bin) generated by KALDI as
input to the DNN. For evaluation, we use scripts
that perform a feed-forward on the neural network

and output the most probable senone for the given
input frame.

III. BASELINE SYSTEM

A. Performance of Current System

TABLE I
Error Analysis - Baseline

#wrds %frames %errors frameAcc(%)
(top50)

frameAcc(%)
(others)

50 30.28 33.23 43.14 50.24
100 38.38 42.65 43.25 52.08
200 46.99 52.32 42.84 53.76
500 57.41 64.67 41.21 57.27

Table I shows the percent of frames containing
the top n words, along with the contribution of
the top n words to the frame classification errors,
as well as the frame accuracy for the top n words
and the rest of the words. As it can be seen, the
percentage of errors made on the top n words is
larger than the percentage of frames that they are
present in. Additionally, the frame classification
accuracy for the top n words is significantly lower
than that for the rest of the words.

B. Experiments with epochs and number of files
Table II shows the results of the experiments

run on the baseline varying the number of training
files, and the number of epochs for training. While
the frame classification accuracy did go up with the
number of epochs, the training time also increased
significantly for each additional epoch. Furthermore,
the gain in accuracy was smaller as the number
of epochs were raised beyond 10. Therefore, we
found it more practical to use more training files
(30) and less epochs (4) for our experiments, since
this configuration seemed to give us a good balance



Training Files Epochs FrameAcc (%)
10 4 40.97
20 4 46.02
30 4 48.67
10 10 46.18
10 15 47.05

TABLE II
SENONE ERROR-RATES FOR VARYING TRAINING-SET SIZES AND

EPOCHS

between frame classification accuracy and training
time.

C. Top 50 words in the phoneme space

We used t-Distributed Stochastic Neighbour
Embedding (t-SNE) [5] to visualize the top-50
words from the corpus in the senone-space. t-SNE
is a technique for dimensionality reduction that is
well suited for the visualization of high-dimensional
datasets. More specifically, we used a third-party
implementation of Barnes-Hut-SNE [6] which
scales better to big data-sets.

Figure 2 shows the top-50 words in the corpus,
plotted in the senone-space after using t-SNE to
reduce the data to two-dimensions. It is seen that
the top 50 function words are closely clustered
together in the senone space. Hence, there are
possibilities of confusions occurring between the
senones corresponding to these words.

D. Most Commonly Confused Words

Table III enumerates the most commonly con-
fused words in the baseline system. This list
was generated by analyzing the original transcripts
against the proposed transcripts output by the ASR
system when run on a development set. The results
indicate that short and frequently occurring function
words like ’a’, ’the’ and ’it’ generate the most com-
mon errors. Furthermore, these function words are
commonly confused for other function words that
are close to them in the senone-space - for example
’a’ and ’the’ appear close together in senone space,
and are one of the most frequently generated words.

Rank Actual Word Classified Word
1 i- i
2 it that
3 uh um
4 and in
5 in and
6 the that
7 uh a
8 a the
9 to gonna

10 to too

TABLE III
WORDS MOST COMMONLY CONFUSED IN THE BASELINE

SYSTEM

E. Confusion Matrix for Senones

Figure 3 shows the confusion matrix for the
first 200 senones in the baseline system. It can
be seen that there are a lot of confusions between
the senones and hence they require special attention.

F. Motivation to model function words

As observed by our results on the current system,
function words form a bulk of the speech corpora.
All the words in our list of top 50 words by
frequency are function words. Content words are
much less frequent. Our system uses MFCC labels
for the current frame and neighboring 20 frames
on each side to predict the senone labels for the
current frame. We would expect these data vectors
to have a much higher variance for content words
when compared to function words, since function
words have a much smaller subset of words which
get repeated often while content words have a large
number of infrequent words.

Our expectations are corroborated by our exper-
iment results. We computed the class covariance
matrices for the data vectors corresponding to the
senones for the top 50 most frequent words and the
set of content words and evaluated the eigenvalues
of these matrices (to determine the gains in direc-
tions of maximum spreads). We found that the 2
largest eigenvalues for the content words are more
than double those of the top 50 words [Table IV].
This indicates that the data for a particular senone
is more spread out if that senone belongs to one of



Fig. 2. Top-50 words in the senone space

Fig. 3. Confusion Matrix for first 200 senones in the baseline system (The colormap has been restricted to the [0-1000] range to help
legibility)

the content words rather than the function words.

TABLE IV
Covariance calculations

Function words Content words
Value1 Value2 Value1 Value2
1.68e+003 4.36e-015 3.70e+003 1.79e-013

Besides, from our experiments on the current
system [Table I] we also find that the function
words contribute to more errors when compared
to content words. This is also observed in [4]. It
was observed that during speech, function words
are much less emphasized (around 14%) when
compared to content words which are stressed
almost 93% of the time. It was also observed that



words which are stressed during speech are much
less likely to get mis-recognized.

Previous work by Goldwater et al. [2] revealed
that there was a significant increase in the number
of errors dealing with short and frequently used
words (usually function words) in Gaussian
Mixture Model - Hidden Markov Model (GMM-
HNN) based ASR systems. Our analysis on the
DNN-HMM based ASR system revealed similar
trends.

Since the senone data for function words is much
less spread out and function words still contribute
to a larger share of errors, we try to model their
senones separately in an effort to reduce the errors
produced by the speech recognition system while
working with function words. We try two different
approaches to model the function words senones.

In our first method, we try to create separate
classes for all senones corresponding to a particular
function word. This enables the system to learn
from context when dealing with a function word
senone. Secondly, we create a separate cluster of
classes, one for each senone. This cluster is used
to classify the senones corresponding to function
words.

IV. EXPERIMENTAL RESULTS

A. Details of the Neural Networks

The current system consists of a neural network
that can be trained on the MFCC labels obtained
from the speech data frames. The input to the
neural network consists of the MFCC data from
the current frame and from 20 frames on each side
of the current frame to provide context. It outputs
the probabilities of the current frame corresponding
to each of the possible 8986 classes. Currently,
each class corresponds to a senone (triphone). The
neural network can consist of a variable number of
hidden layers, depending on the experiment being
performed. The frame predictions of the neural
network can be fed to a HMM that has been trained
on the word dictionaries. This HMM produces the
sequences of phonemes which are then weighted

by the language model.

After experimenting with many configurations,
we finally decided to use a neural network with
6 hidden layers with 256 units in each layer. The
input layer consists of 41 frames of MFCC labels
and the output layer consists of varying number
of neurons depending on the type of system used.
A standard system takes close to 7 hours to train
on a GPU and more than 30 hours to train on a CPU.

In the first system (FunctionWordClasses) we
implement, we try to model the function words as
separate classes. We define 50 new classes in the
neural network, each corresponding to all possible
senones for a particular function word. Our system
can successfully read data from the available binary
files and train the new neural network on the
training set and produce the senone or class labels
as its output.

In the second system (SplitTwoClasses) we
implement, we try to model the function word
senones differently from the content word senones.
We create separate classes for all the senones that
occur in any of the function words. This creates
low variance classes for the new function word
senones. Our system can successfully read data
from the available binary files and train the new
neural network on the training set and produce the
senone or class labels as its output.

B. Implementation Details

The neural-network code was adapted from
the Stanford variant of the KALDI toolkit. We
wrote new data-loader instances which parsed
and modified the training data as required by our
models, by substituting the original senone-ids
assigned to frames with the ids generated by our
models.

A test harness was written to test the trained
neural network using the development set,
recording statistics such as frame classification
accuracy, contribution of top n words to the frame
classification error, and the frame classification
accuracy for the top n words and the other words



separately.

Additional python scripts were written to
generate confusion matrices from the trained
neural-network and to plot these matrices using
matplotlib. Similarly, scripts were written to
generate the phone-to-word and senone-to-word
mappings and to visualize them using t-SNE for
analysis.

TABLE V
Experimental Results

System Frame Accuracy (%)
Baseline 48.67
SplitTwoClasses 35.07
FunctionWordClasses 52.28

V. DISCUSSION AND ERROR ANALYSIS

TABLE VI
Error Analysis - FuncWordClasses

#wrds %frames %errors frameAcc(%)
(top50)

frameAcc(%)
(others)

50 30.28 26.49 58.17 50.04
100 38.38 37.05 53.86 51.16
200 46.99 47.70 51.48 52.83
500 57.41 61.44 48.84 56.72

Table V gives the comparison between the
baseline system and the two models built by us. It
can be seen that the FunctionWordClasses model
wherein a new class is created for each function
word outperforms the other two models in terms
of frame accuracy. The poor performance of the
SplitTwoClasses model can be attributed to the
fact that creating two versions of the same senone
creates sparsity issues since we are essentially
doubling the number of possible outputs. Another
possible reason would be that this new scheme does
not provide the context information between the
senones of belonging to a single word as provided
by the FucntionWordClasses model. We refer to
the FucntionWordClasses model as new-sys and
perform further analysis on it.

Table VI gives our analysis on the new-sys
similar to the one in Table I . It can be seen that
the percentage of contribution to the errors by the

top n words has significantly reduced compared to
the baseline system. A significant increase in the
frame accuracy of the top n words can also be seen.
This shows that the new-sys model with separate
classes for each function word has been successful
in modeling the errors generated due to these words.

Figures 3 and 4 represent the confusion matrices
of the top 200 senones of the baseline and the new-
sys. Figure 5 gives the confusion matrix for the
newly added classes for the function words in the
new-sys. It can be seen that the new-sys has much
less confusions than the baseline. This bolsters the
results seen in Table VI. It should also be noted
that the new classes created in the new system are
pretty well distributed and have comparatively lesser
confusions as seen in Figure 5.

VI. CONCLUSION AND FUTURE WORK

In this project, we aimed to model the errors
caused by function words in a DNN-HMM
based ASR system. We experimented with two
different ways of modeling the errors. Our best
system provides a significant improvement in the
frame accuracy compared to the baseline system.
However, these numbers are not comparable across
the systems since they use different architectures.
Hence, we perform a thorough analysis on both
the baseline and the new system in terms of the
percentage contribution of errors of the top 50
function words. We noticed a significant drop in
the percentage of errors due to the top 50 function
words in the new system.

In the future, we would like to integrate our
best neural net with the complete ASR pipeline,
i.e, editing the pronunciation dictionary, altering
the HMM model and retraining it to obtain WER.
We would then like to compare the WER of our
system and the baseline. We would also like to try
other methods of modeling the senone errors like
data-driven clustering and check for improvements
in performance.

VII. ACKNOWLEDGEMENT

We are very thankful for all of the guidance,
support and resources that Andrew Maas and Awni



Fig. 4. Confusion Matrix for first 200 senones in the new system (The colormap has been restricted to the [0-1000] range to help legibility)

Fig. 5. Confusion Matrix for new 50 classes (The colormap has been restricted to the [0-500] range to help legibility)

Hannun have provided us through this process.
We would also like to thank all the TAs for
their suggestions. Finally, Prof. Manning for his
reassuring words about the scope of the project and
his guidance.

REFERENCES

[1] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg
Stemmer, and Karel Vesely. The Kaldi Speech Recognition
Toolkit. In IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding. IEEE Signal Processing Society. De-
cember 2011.

[2] Sharon Goldwater, Daniel Jurafsky and Christopher D. Manning.
Which words are hard to recognize? Prosodic, lexical and
disfluency factors that increase speech recognition error rates.
Speech Communication 52(3):181-200. 2010.

[3] Andreas Stolcke. SRILM - An Extensible Language Modeling
Tooklit. In Proc. Intl. Conf. Spoken Language Processing, Den-
ver, Colorado. September 2002.

[4] Alex Waibel, Kai-Fu Lee. Readings in Speech Recognition.
Morgan Kaufmann Publishers, 1990.

[5] L.J.P. van der Maaten and G.E. Hinton. Visualizing High-
Dimensional Data Using t-SNE. Journal of Machine Learning
Research 9(Nov):2579-2605. 2008.

[6] L.J.P. van der Maaten. Barnes-Hut-SNE. In Proceedings of the
International Conference on Learning Representations. 2013.


