
Abstractive Summarization using a Feed-Forward Neural
Attention Model

Alex Alifimoff
aalifimoff@stanford.edu

Jencir Lee
jli14@stanford.edu

Abstract

We implement a model from Rush et
al. which performs abstractive sen-
tence summarization. We train the
model over a series of text, summary
pairs scraped from Wikipedia. We then
try to combine this model with dis-
tributed vector representations of sen-
tences from Kiros et al. to try to per-
form summarization over larger texts.

1 Introduction
1.1 The Summarization Problem
Summarization is largely considered an un-
solved problem in natural language process-
ing. The goal of the summarization task is to
produce a condensed version of the input text
which preserves the meaning of the original as
much as possible.

We focus specifically on abstractive summa-
rization, as opposed to extractive or compres-
sion summarization. Abstractive summariza-
tion formally consists of an input string x ∈ X ,
where X ⊂ ({0, 1}V , {0, 1}V , ...{0, 1}V ) where
V is the size of our vocabulary. An abstractive
system finds a second string y ∈ X such that

y = arg max
y∈X

s(x,y) (1)

An extractive system finds a summary using
only words that are extracted from the original
input. This more formally expressed as:

y = arg max
m∈{1,...,M}N

s(x,x[m1,...,mN ]) (2)

A compressive summarization simply
deletes words from the input sentence:

y = arg max
m∈{1,...,M}N ,mi−1<mi

s(x,x[m1,...,mN ]) (3)

Naturally, the abstractive summarization
task is more difficult from an algorithmic
standpoint, but does allow for much more ex-
pressive output.

1.2 Scoring
The first obstacle in approaching the summa-
rization task is defining a score function. We
work with an approximate scoring function
that takes into account a fixed window of con-
text, abbreviated yc. Thus we have,

s(x,y) ≈
N−1∑
i=0

g(yi+1,x,yc) (4)

We turn to the log probability as a realiza-
tion of our score function:

s(x,y) = log p(y|x; θ) (5)

log p(y|x; θ) ≈
N−1∑
i=0

log p(yi + 1,x,yc) (6)

This allows us to focus our attention on
modeling the probability of a particular word
given its context and the input sentence, or
p(yi+1,x,yc).

2 Modeling
2.1 Language Model
We chose to reimplement a state-of-the-art
model originally designed by Rush et al.1 The
model uses a feed-forward neural network to
directly predict p(yi+1,x,yc). The model
makes use of word embeddings to augment the
predictive power of the network. While the
original model trains these word embeddings
while training the standard weight matrices,

1http://arxiv.org/pdf/1509.00685v2.pdf



Figure 1: Network diagram for the Rush et al.
summarization model

our model makes use of pre-trained word vec-
tors to reduce the amount of training necessary
to get a well-functioning model.

The model is:

p(yi+1|yc,x; θ) ∝ exp(V h+W enc(x,yc)),

y′
c = [Eyi−C+1, . . . ,Eyi],

h = tanh(Uy′
c).

where enc is an encoder. Figure 1 provides
a network diagram of the model.

This model is paramaterized by θ =
(E,U ,V ,W ). E ∈ RDxV is a word embed-
ding matrix. The weight matrices are U ∈
R(CD)xH , V ∈ RV xH , and W ∈ RV xH . H
is the size of our hidden layer, V is the size
of our vocabulary, D is the size of the word-
embeddings and C is the length of our context.

2.2 Word Embeddings
To reduce the training time needed to train
word embeddings from scratch, as well as to
reduce how complicated the model was to im-
plement, we chose to use pre-trained word em-
beddings. For this, we selected the commonly
used Global Vectors for Word Representation,
or GloVe embedding set. 2

2.3 Encoders
In the original Rush et al. paper, they
choose to implement three encoders: a convo-
lutional neural model, an attention-based neu-
ral model, and a baseline bag-of-words model.

2We considered using word2vec, but the omission of
a number of tokens necessary for our task led us to use
GloVe instead

The most effective encoder in the Rush et al.
paper was the attention-based encoder, so we
chose to simply implement the attention-based
encoder and the baseline.

For the purpose of representing unknown
words, we chose to average the 1,000 least
common word vectors. We used this average
vector each time an unknown word appeared
in our training and test sets.

Bag-of-Words Encoder
The bag-of-words encoder is defined as:

enc1(x,yc) = p⊤x′

p = [1/M, . . . , 1/M ],

x′ = [Fx1, . . . ,FxM ].

This encoder works very simply. It has an
internal embedding (in our implementation,
we again used the GloVe set to approximate
this embedding) to get an H dimensional rep-
resentation, and then assumes a uniform dis-
tribution over the relationship to the input
words. The new parameters of this encoder
are F ∈ RHxV .

Attention-based Encoder
The attention-based encoder is defined as:3

enc3(x,yc) = p⊤x̄,

p ∝ exp(x′Py′
c),

x′ = [Fx1, . . . ,FxM ],

y′
c = [Gyi−C+1, . . . ,Gyi],

∀i x̄i =

i+Q∑
q=i−Q

x′
i/Q.

In this model, G ∈ RDxV and P ∈ RHx(CD).
F is as defined in the Bag-of-Words encoder
(note the parallels).

The motivation behind the attention-based
encoder stems from reducing the complexity of
the convolutional encoder, which was required
to produce an output conditioned on the entire
input sentence, as opposed to a particular con-
text. Effectively, what the attention-based en-
coder does is augment the bag-of-words model

3We try to remain consistent with the notation in
Rush et al. by labeling this as enc3 to emphasize the
ommission of the convolutional encoder



Figure 2: Network diagram for the Rush et al.
attention-based encoder

with a learned soft-alignment, which essen-
tially allows it to concentrate on a particular
part of the input context, as opposed to build-
ing a representation over the entire input.

2.4 Training
Now that we have our method for arriv-
ing at p(yi+1,x,yc), we need some way
to set the weights of the network. Here,
Rush et al. choose to use negative log-
likelihood. We can easily define the log-
likelihood over a set of n input pairs,
(x(1),y(1)), (x(2),y(2)), . . . , (x(n),y(n)).

NLL(θ) = −
J∑

j=1

log p(y(j)|x(j); θ),

= −
J∑

j=1

N−1∑
i=1

log p(y(j)
i+1|x

(j),yc; θ)

As is evident, this conveniently factors into
the log of our predictions over each output
word, conditioned on its context, the input,
and our parameters. We then follow in the
footsteps of Rush et al. and can minimize
the negative log-likelihood using mini-batch
stochastic gradient descent.

2.5 Search & Summary Generation
Although we have a convenient model for de-
termining the score of a particular summary
and a mechanism for scoring and training our
model, we do not yet have a mechanism for
generating the actual summary itself. We fol-
low work in machine translation and instead

Figure 3: An example alignment (from Rush
et al.)

of opting for an exact or greedy search, we opt
to take the middle ground between the two.
We implement a beam search which maintains
the entire vocabulary while only considering K
possible words as it generates each word of the
summary.

However, our approach does not require
nearly as complicated of a search algorithm as
machine translation, as we can simply move
from left-to-right generating words with no
constraint about using each word in the in-
put. We use the same simple beam search
algorithm as Rush et al. and encourage the
reader to turn there for more information.

3 Datasets
Because of the difficulty associated with ob-
taining the standard DUC dataset 4, com-
monly used as the benchmark in text summa-
rization, we elected to collect our own dataset
to train our model.

3.1 English Wikipedia / Simple
Wikipedia

We found a wealth of potential text - sum-
mary pairs on Wikipedia. Simple English
Wikipedia offered us a mirror of a large num-
ber of wikipedia pages. We made the reason-
able assumption that the first sentence of the

4This dataset is composed of a wide variety of news
articles. The Rush et al paper used the first sentence of
these news articles in addition to the headline to train
their model



Simple English wikipedia article would be a
summary of the first paragraph of the stan-
dard English Wikipedia article.

We collected a total of 10,500 pairs of
text/summary pairs from Wikipedia. We
performed some filtering to remove articles
that were not suitable for training for a va-
riety of reasons - these included inability to
programmatically find matches between the
wikipedias, and similar problems (like hitting
disambiguation pages).

4 Implementation
Our implementation was done in Theano, a
symbolic toolkit for Python which is widely
used by the deep-learning community. Theano
is designed to work with CUDA, allowing for
faster training of our neural network on dis-
tributed infrastructure. All of the code for
our model implementation is available and in-
cluded with submission. Additionally, we in-
clude the code for scraping Wikipedia, which
was also written in Python.

4.1 Evaluation Metric
We turn to the standard metrics for evaluat-
ing sentence generation tasks. One popular
metric for evaluating summaries is ROUGE, or
Recall-Oriented Understudy for Gisting Eval-
uation, which has a variety of instantiations,
based on the length of the n-gram used to
identify similarity. We report ROUGE-1 and
ROUGE-2. The metric is defined for some N
as:
∑

S∈ReferenceSummary

∑
n−gram∈S Countmatch(n− gram)∑

S∈ReferenceSummary

∑
n−gram∈S Count(n− gram)

(7)

5 Limitations
Before we turn to our results, we want to con-
sider some the limitations on our system that
prevent it from being state-of-the-art.

The first major handicap is the lack of an
extremely large database. Sadly, the difficulty
to obtain the rather substantial DUC database
that is typically used to train and evaluate
this task majorly handicaps our model, as it
inevitably lacks a substantial amount of train-
ing data that most algorithms operating in this
space can utilize.

Second, our simplifying assumption to re-
place the embedding matrices in the model
with the pre-trained set of GloVe vectors also
comes at the cost of more accurate transla-
tions, as we can’t train word embeddings that
are specific to our task. This is linked to the
first issue, as part of the motivation for us to
use pre-trained embeddings stemmed from the
lack of a huge training set that would be nec-
essary to develop highly accurate word embed-
dings.

In particular, the potential limitations of
using pre-trained embeddings is evident just
in examining the model. There are a variety
of embedding matrices using in the model (in
fact, even the bag of words approach can po-
tentially use an embedding separate from the
one trained in the core language model). Hav-
ing different matrices for different parts of the
model allows us to develop highly specific em-
beddings for particular subtasks. Obviously,
our model misses some of this nuance that was
captured in the original Rush et al model.

Additionally, using pre-trained embeddings
also required us to develop some novel ap-
proaches for dealing with inadequacies in our
vector set. For example, GloVe does not in-
clude a vector for unknown words. We chose to
approximate this vector by averaging the 1,000
least commonly seen vectors in the GloVe
dataset. 5

6 Results
Sadly, while we managed to create a function-
ing implementation of the model in Rush et al,
we were handicapped by the amount of train-
ing time we could perform to build an effec-
tive model. Our best functioning model was
trained with the following hyperparameters:

• GloVe Vector Size: 300

• Hidden Layer Size: 1000

• L2 Penalty Coefficient: 0.0

• Context Length: 5

• Summary Output Length: 20

• Search Beam Size: 10
5As noted previously, we chose to use GloVe instead

of word2vec because of missing end-of-sentence tokens.



• Vocabulary Size: 50,000

• Mini-batch Size: 25

In order to speed up training, we had to re-
duce the size of the vocabulary significantly
from the entire set available to us in GloVe.
Additionally, we trained over 6.6k training ex-
amples and a test set of 200 training pairs
and 600 training epochs. The training of
this iteration of the model took approximately
six hours. Additionally, we utilized Theano’s
CUDA support in addition to GPU’s on the
author’s desktop and Amazon Web Services
to train the model.

We tried several other iterations of the
model, but as the training took such a long
time and required most of the computing re-
sources at our disposal, it was difficult to test
a wide variety of variations of the model to
find the best functioning one.

For context, the Rush et al. model man-
aged to obtain a ROUGE-1 of 26.55 with
an attention-based encoder and no additional
tuning. With additional tuning, their model
achieved ROUGE-1 of 28.18. We ran the pre-
trained Rush et al. model on our data as well
and achieved a ROUGE-1 of 26.12.

6.1 Error Analysis
Mostly, our summaries only included unigram
matches to the reference summaries, causing
our ROUGE scores to be particularly low. In
particular, our bag-of-words encoder did not
manage to produce any bigram matches. We
omit specific examples as they are mostly non-
sense.

Our attention-based encoder was slightly
better, and managed to produce a slim num-
ber of bigram matches, but, like the bag of
words encoder, mostly produced non-sensical
summaries. Largely, we managed to match a
number of common phrases like ”in the” and
”for the”. Interestingly, one common bigram
match was ”Gregorian calendar”, likely due
the prevalence of Wikipedia pages about par-
ticular years in our training set.

One of the particular problems that was in-
troduced in our effort to reduce training time
was reducing the size of our embedding matrix
by removing uncommon words. However, one
problem that this introduced is that there is

Encoder ROUGE-1 ROUGE-2
Bag-of-Words 1.23 0.00
Attention-Based 5.34 1.28

Table 1: Results on Wikipedia data set using
both encoders

significant information lost in a number of our
summaries which have a large number of un-
known words. In these summaries, we would
frequently have no unigram matches.

7 Extension: General Text
Summarization

We propose a possible refinement of the gen-
eral summarization algorithm to extend its ap-
plication to general text summarization.

Some interesting work has surfaced in gener-
ating distributed vector representations of sen-
tences, as opposed to simply works, to ideally
encapsulate some amount of meaning. Primar-
ily, we look to the work of Ryan Kiros’ skip-
thought vectors. 6 The skip-thoughts model
abstracts the same methodology of the stan-
dard skip-gram model to the sentence level:
that is, given a particular sentence in a se-
quence of sentences si, skip-thoughts vectors
are encoded to predict the context of the sen-
tence, or sentences si−1, si+1

7.1 Naive Approach
We modify the approach of Rush et al. to
build an approach to paragraph level sum-
marization using skip-thought vectors. The
natural approach in this situation is to re-
place both embedding matrices F (in the en-
coders) and E (in the language model) and
G (only in the attention-based encoder) with
skip-thought sentence embedding matrices in-
stead, and generalize the training set to the
paragraph level.

This allows us to build a model to pre-
dict the probability of the next sentence given
the context (which is now defined as a trail-
ing number of sentences) and the input (now
a vectorized sentence representation). In
this case, we are generate some output γ =
y1,y2, . . . ,yk with each y ∈ X , where X is
the set previously defined. Likewise, we have
an input ξ = x1,x2, . . . ,xk with each x ∈ X .

6http://arxiv.org/abs/1506.06726



In this case, we now have matrices E ∈ RDxS ,
F ∈ RHxS , and G ∈ RDxV with S being the
cardinality of the set of all sentences.

Here, we gain significantly by having static
embedding matrices, as representing a ma-
trix with size S when considering any natural
language is simply impossible. We can gen-
erate vectorized sentence representation with
the approach from Kiros, and because we don’t
need to train those representations. Provided
that the Skip-Thought vectors representation
we have used are trained on a sufficiently gen-
eral dataset. 7

7.2 Refinement
However, this immediately poses some signifi-
cant problems when we begin to consider the
problem of generation. Applying a simple
beam search to generate γ doesn’t work as
it did previously, as we have to generate en-
tire sentences before we can apply the sim-
ple beam search used in the work of Rush et
al. This makes the search space very large,
and effectively prevents us from heuristically
pruning during our generation phase, render-
ing our beam search useless. We try to develop
an approach to still allow effective generation
of sentences while making effective use of the
skip-thoughts representation.

If we redefine our embedding matrix to its
original manifestation E ∈ RDxV (in the lan-
guage model), F ∈ RHxV for our context (in
the encoder), we see we can use the same
generation approach as before - using beam
search to generate and score our sentences one
at a time. In this sense, we use vectorized
word representations to augment our language
model, while using the vectorized sentence
representations to augment context. This the-
oretically allows us to expand the length of the
input context that we can use while allowing
us to leverage the same algorithms.

Sadly, we were not able to test this approach
due to the significant amount of training time
required to get a functioning model, however
we’ve successfully implemented the framework
for training and testing the model. Because of
the large size of the vectors associated with
this model, we found there were substantial

7We use the Skip-Thought vectors Python imple-
mentation provided by Kiros, which is trained on the
significantly vast BookCorpus dataset.

increases in the time needed to train an epoch
to the point that it was not worth our limited
time to train instead of the simpler model.

8 Conclusions

Naturally, we were a little disappointed in the
results of our summarizer, as we set relatively
ambitious goals to expand the horizon of the
field, however slightly. Largely, we believe
that the main handicap of our model was the
inability to train the model for a particularly
long period of time. Even though a particular
iteration of training only took on the order of
6 hours, it was difficult to experiment with a
wide variety of hyperparameters.

However, it is possible that decisions along
the design process also influenced the effective-
ness of our model. Naturally, one advantage of
the Rush et al. model is the ability to produce
specific word embedding matrices for both in-
put and context in the encoder, as well as a
completely separate embedding matrix for the
language model.

However, on the bright side, we developed
an adaptation of the implementation of the
Rush et al. model which opens the door for po-
tentially more powerful summarization (given
sufficient training time). We ensure that this
model can be applied in the same generation
framework as the general Rush et al. model.

8.1 Possible Future Work
Sadly, since such a large portion of our time
was focused on implementing the model, sub-
stantial opportunities for extending the model
weren’t explored. We present a couple of our
ideas on how to further refine the model as a
possible inspiration for future work in the field
of summary generation.

Markovization of Word Embeddings
The word embedding matrices provide a sub-
stantial number of opportunities for extension.
One possible idea that we had was to extend
the embedding matrix by considering not only
the word, but the part of speech of the partic-
ular word being considered. Provided a sub-
stantially large enough training corpus, this
could significantly augment the power of the
transformation similarly to how markovization
in parsing allows for refined accuracy in parse



trees. Similarly, markovization could be di-
rectly applied to the embedding matrix to gen-
erate embedding for n-grams, as opposed to
unigrams.

Phrase Embeddings
One feature we implemented while considering
word2vec vector representations of words was
to do phrase detection, as the word2vec cor-
pus includes a significant number of bigram
and trigram phrases in addition to simple un-
igram words. Since we don’t have the ability
to do this while using the word embeddings
from GloVe, it is likely that our algorithm suf-
fers from this as well. We would borrow a
page from the book of machine translation and
consider using phrases in addition to simple
words.

Coreference and Named Entities
Summary generation in particular could ben-
efit from utilizing coreference resolver and
named entity recognition to augment the beam
search. There is a significant amount of tun-
ing to particular metrics performed by Rush
et al in their original paper. In future work,
we expect there would be significant benefit
in setting up a system built off this prob-
ability model and several other models de-
signed to address specific deficiencies of our
model, linked in a linearly-optimizable regres-
sion, similar to how work in machine transla-
tion scores translations across several models,
combined with beam search. We believe this
would easily help address some clear deficien-
cies in both our summaries and the summaries
of Rush et al.


