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Abstract

In this project, we designed multiple fea-
turelizers to extract information and an-
swer multiple choice reading comprehen-
sion questions. Given a triple of passage
question and answer, the featurelizer will
generate a set of features which are de-
signed using robust NLP tools. We then
feed generated features into a neural net-
work classifier which gives a probability
score for each answer. The features we
used are improved sliding window, key
word distance, syntax feature, word em-
beddings, multiple sentences and corefer-
ence resolution.

1 Introduction

Machine comprehension (MC) is a raising re-
search field which attracts interest from both
industry and academia. There are a number of
datasets available for this task, each designed to
reflect different challenges in MC. The Facebook
bAbI dataset (Weston et al., 2015) contains short
examples which requires to derive answers by
combining two sentences. The MC500 dataset
(Richardson et al., 2013) contains longer passages
and various types of multiple choice questions.
Wiki QA (Smith et al., 2013) introduces a context
where agents are required to read full-length
wikipedia articles before answering related ques-
tions.

We use MC500 as the guildeline to evaluate
our MC system. The dataset provides 500 in-
stances of stories. Each instance contains one
passage, four multiple choice questions and each
question contains four choices. Instances are
designed such that answers to each question can
be entailed only using information in the passage.
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A typical question is shown as follows:

Passage: ...John asked Tim if he could play
on the slide. Tim said no. John was very
upset and started crying. A girl named Susan
saw him crying. Susan told the teacher Ms.
Tammy. ...

Question: Who saw John crying and
told Ms. Tammy?
A) Tim
B) Susan
C) John
D) Ms. Tammy

Such tasks are easy for human readers but are hard
for machines. Even though answers are designed
to be retrievable from the passage, it does not
imply that the agent could be knowledge-free. In
fact, locating the answer in the passage requires a
large knowledge base. For example, in the sample
above,an agent has to understand “a girl named
Susan” implies “the girl is Susan”. In general,
Machine Comprehension challenge involves the
application of many fields, especially in NLP and
machine learning.

2 Previous Works

State-of-art methods usually approach Machine
comprehension in two major directions: neural
network based and feature based. Both directions
incorporates with the observations that the knowl-
edge required to retrieve answers must be learned
or hard-coded.

For neural network based methods, (Her-
mann et al., 2015) suggests word similarities can
be used to train LSTM which embed sentences



into a vector space which preserves sentence
similarities. Similarly, (Kapashi and Shah, 2015)
uses word embedding (Mikolov et al., 2013)
vectors as input to LSTM to approach Wiki QA
task.

On the other hand, feature designed systems
represent candidate answers by hand-crafted fea-
tures to train linear classifiers (regression (Wang
et al., 2015), SVM (Narasimhan and Barzilay,
2015), ect.). (Richardson et al., 2013) proposed
a simple bag-of-word and word-distance feature
as baseline. (Smith et al., 2015) uses enhanced
bag-of-word feature to capture cross-sentence
matches. (Wang et al., 2015) uses various NLP
tools to process the original data and uses matches
in semantics, dependencies and work tokens as
features. In (Sachan et al., 2015), the system
introduce hypothesis as latent variables in the
model.

Neural network based systems automatically
generate features from a weak feature, whereas
feature based systems provide strong features
specifically designed and tuned for the dataset.
Therefore, neural network based systems have
more potential to generalize; however, feature
based systems reveals more NLP natures of the
problem and have better performance in practice.

3 Approach

3.1 Overview
Our system framework is similar to the one
proposed in (Wang et al., 2015). For each
multiple choice question, it consists of a pas-
sage P , a question Q and a set of answers
A = {A1, A2, A3, A4}; there is exactly one
answer A∗ ∈ A labeled correct. Our goal is
to select the answer A∗ without knowing the
labelings.

Given a multiple question (P,Q,A), our system
generates features for each answer candidates
Ai. The features are represented in feature vector
f(P,Q,Ai). Those features can be used to train
a classifier which selects the answer. In training
stage, our pipeline includes three steps:

1. Read in each question (P,Q,A) and prepro-
cess the text file using Stanford CoreNLP
(Manning et al., 2014) tools.

2. From preprocessed data, generate feature
vectors f(P,Q,Ai) for each candidate an-
swer. We also label each candidate answer
with a binary label indicating whether it is the
correct one.

3. Train a classifier using feature vectors and bi-
nary labels.

Similarly, in testing stage we also preprocess the
data and generate feature vectors. However, given
candidates to a particular question (P,Q,Ai),
instead of generating binary labels, the classifier
outputs a distribution describing the likelihood
that Ai is correct. We select the answer with
maximum likelihood.

3.2 Enhanced Sliding Window Features
The baseline system proposed in (Richardson et
al., 2013) uses a simple bag-of-words score to
evaluate each candidate answer. Concretely, we
first concatenate the question and an answer to
form a string s. Within a sliding window in P
of size k, we count the number of word matches
to s and score the answer by the maximum sliding
window count. To prevent counts boosted by triv-
ial words, we weighted the count of each word w
by its inverse frequency across the passage, given
by:

IC(w) = log

(
1 +

1

c(w)

)
where c(w) counts the word in the whole passage:

c(w) =

|P |∑
i=1

1(Pi = w).

The original baseline uses k = word size(s),
which is the total number of words in s.
(Narasimhan and Barzilay, 2015) suggests that
a simple modification could significantly boost
the performance. Instead of using the score of
size-k sliding window, we used the sum of sliding
window scores from size-2 to size-30.

We also notice that weighted sum of sliding
windows of various size has even better perfor-
mance in experiments. Intuitively, weights for
each sliding window should be obtained during
classifier training, but doing so would introduce
a large number of extra dimensions to the feature
vector. Given that we only have about 20000



answers, it is likely that the classifier would not be
well-trained to capture other features. In practice,
we use fixed weights set to be the inverse of the
sliding window sizes.

3.3 Distance Features
Another feature used in the baseline system is dis-
tance of key words between question and candi-
date answer. The intuition is that the part of the
passage representing the question is usually not far
away from the one for the true answer. For a ques-
tion Q and answer Ai, we calculate the ”distance”
between the question and answer by:

di = min
q∈SQ,a∈SA,i

d(q, a),

with
SQ = (Q ∩ PW )\U,

and
SA,i = (Ai ∩ PW )\(U ∪Q).

U provides a dictionary of ”stop words” which
intend to filter out non-keywords.

3.4 Syntax Features
The sliding window score captures similarities
by word matches. However, it does not capture
matches in word dependencies. Investigating
grammar structures of questions and answers
(Wang et al., 2007) provides insights to latent
variables which aligns question-answer pair. In
syntax features, we represent similarities between
statements using dependency tree parsing (Chen
and Manning, 2014).

Simply concatenate the question and the an-
swer would not yield correct dependencies.
We must use a full answer statement to reflect
relationship between words in the question and
that in the answer. MC500 dataset provides a set
of RTE statements auto-generated from original
question and candidate answers. However, after
manually examining those statements, we noticed
that many of them fail to follow basic grammar
rules. It is hard to obtain reliable parse to those
statements.

Instead, we generate more reliable statements
mainly following rules proposed by (Wang et
al., 2015). We slightly modified the rules to

obtain more accurate results. In general, we
denote arc(u, v) be the grammar relationship
between word u and word v and POS(u) be the
part-of-speech Penn Tree tag for word u. For
question q, let c be the wh-word and rq be the root
word. Similarly, for answer a, let ra be the root
word. Rules are described as follows, each with
an example in the box:

1. c = what, POS(rq) = V B and rq =
do, and arc(c, rq) = dobj. Let uq be the
word such that arc(uq, rq) = nsubj. If
ra is a verb, let ua be the word such that
arc(ua, ra) = nsubj, removed ua from a.
In q, remove the first two words as well as rq,
insert the updated a after uq.

Q: What did he do on Tuesday?
A: He went to school.
Generated: He went to school on Tues-
day.

2. c = what, POS(rq) = V B and rq 6= do,
and arc(c, rq) = dobj. If ra is a verb, let ua
be the word such that arc(ua, ra) = nsubj.
Remove ua and ra from a. In q, insert the
updated a after rq.

Q: What did he eat at lunch?
A: apple.
Generated: He eat apple at lunch.

3. c = what, POS(rq) = NN , and
arc(c, rq) = nsubj. If ra is a verb, let ua
be the word such that arc(ua, ra) = nsubj
and replace the entire a by ua. In q, replace c
by the updated a.

Q: What was on Jen’s dress?
A: turtle
Generated: turtle was on Jen’s dress.

4. c = where, arc(c, rq) = advmod, and
POS(rq) = V B. If there is a word uq such
that arc(uq, rq) = dobj. In q, insert a after
uq, otherwise insert a after rq. Also delete
first two words in q.



Q: Where did he ride the bike?
A: in the kitchen.
Generated: he ride the bike in the
kitchen.

5. c = where, arc(c, rq) = advmod, and
rq = is. Let uq be the word such that
arc(uq, rq) = nsubj. In q, delete the first
two words, put rq after uq, and finally insert
a after q.

Q: Where was the cat hiding?
A: by the lake.
Generated: the cat was hiding by the
lake.

6. c = who, arc(c, rq) = nsubj, and
POS(rq) = NN . If ra is a verb, let ua be
the word such that arc(ua, ra) = nsubj and
replace the entire a by ua. In q, replace c by
the updated a.

Q: Who is the president?
A: Obama is.
Generated:Obama is the president.

It is also intuitively sounding to construct rules
for other types of questions. For example, for
”why” questions we can generate the statement
by connecting the answer and question using
”because of”. However, in practice, the passage
usually does not explicitly state such relation-
ships. It is more likely that the actual statements
in the passage lies in several different logically
connected sentences. Therefore, we cannot
retrieve dependency matching out of those type of
answers. It turns out that adding more such rules
rarely improve the result.

After generating the answer statement, we
parse the statement and compare its dependency
tree to each sentence s in the passage. The
score sy(P,Q,Ai, s) to each sentence is given
by the number of exact dependency matches. In
other words, let es(us, vs) be an edge for s and
ea(ua, va) be one for a, we increment sy by 1 if
us = ua, vs = va and arc(us, vs) = arc(ua, va).

We select the sentence with maximum score as
the syntax feature:

sy(P,Q,Ai) = max
s∈P

(P,Q,Ai, s).

3.5 Word Embeddings
In previous features, we compare word matches
with direct string match. (Mikolov et al., 2013)
suggests that it is possible to embed words into a
vector space in which similarities between words
is measured by inner products. Furthermore,
(Wang et al., 2015),(Hermann et al., 2015) and
(Kapashi and Shah, 2015) suggests that in linear
combination of word vectors is representative
for phrases and sentences. In addition, as the
embedding provided by (Mikolov et al., 2013) is
trained over a dataset containing over 30 billion
training words, this embedding implicitly covers
abundant amount of knowledge which we might
not able to retrieve if training merely on the
MC500 dataset.

The word embedding we feature measures
similarities between concatenated Q-A pairs
(Q + Ai) and a sentence (s) in the passage.
Concretely, we measure the cosine of the angle
between the vector of the concatenated state-
ment and that of the sentence. Let v(w) be the
embedding of a given word w:

vQAi =
∑

w∈Q+Ai

v(w),

and
vs =

∑
w∈s

v(w),

we use the word embedding feature:

we(P,Q,Ai) = max
s

vTQAivs

‖vQAi‖‖vs‖
.

3.6 Multiple Sentences
Our previous features, sw, sy, and we, each
represent the triple (P,Q,Ai) using a score of
a particular portion of the passage (a sliding
window or a sentence). Although the score is
obtained by comparing to those obtained from
other portions of the passage, the feature itself
only reflects a local statistics of the passage, but
failed to retrieve information across the whole
passage.



All of our features describes the likelihood
where the answer statement would lie in a partic-
ular portion (sliding window or sentence) in the
passage. However, the answer statement could
lie sparsely in the sentence and the system have
to logically entail those scattered statements. For
those answer candidates, statistics taken on a
single sentence is far from reliable.

For a feature F (P,Q,Ai) selected from in-
dividual sentence scores f(P,Q,Ai, s), we
previously have:

F (P,Q,Ai) = max
s∈P

f(P,Q,Ai, s).

We enhance the score selection process so that fea-
tures previously taken on single sentences are im-
proved to incorporate the overall score of the pas-
sage. For a sentence s, we compute the weighted
sum of all sentences in the passage, taking nearby
sentences with higher weights. Specifically, we
generate new score g for each sentence by:

g(P,Q,Ai, s)

=
∑
s′∈P

exp

{
−d(s, s

′)2

τ2

}
f(P,Q,Ai, s).

Then we select the maximum of the enhanced fea-
ture:

F ′(P,Q,Ai) = max
s∈P

g(P,Q,Ai, s).

3.7 Coreference Resolution
Our previously used exact-string match and word
vector similarities would fail on coreferences.
In other words, if two different phrases (e.g.
“Mr.Obama” and “the president”) actually refer
to the same entity, our feature generator should
regard them as matched phrases.

Stanford CoreNLP (Manning et al., 2014)
provides a robust tool for coreference resolution.
Given a passage, CoreNLP pipelines generates a
set of entities and for each entities a set of tokens
refering to this entity. It also selects the most
representative name string for each entity. For
each token in the passage, if it refer to certain
entity, we replace the token by the name of the
entity.

3.8 Classifier
Our system uses a shallow neural network as the
classifier. The neural network contains one hidden

layer with 12 nodes. The learning rate is 0.3 and
the momentum is 0.09.

4 Performance

Our system achieved results comparable to the
baseline system. Although the full implementa-
tion did not yield the desired accuracy, further
investigation does reveal many interesting NLP
natures of the problem.

Table 1 shows accuracies using a single fea-
ture. Word embedding we turns out to have
the best single-feature improvement. It implies
that word embedding is a representative feature
having the potential to support more generalized
models as suggested by (Hermann et al., 2015)
and (Kapashi and Shah, 2015).

Feature Accuracy
Baseline(SW+D) 0.551
Enhanced SW+D 0.565

SW+D+Coref 0.555
SW+D+Syntax 0.570

SW+D+WordEmbed* 0.595

Table 1: Performance of Single Features. The first
line uses baseline features SW+D. Since a classi-
fier is applied to the baseline features, it accuracy
is different from the one proposed by (Richardson
et al., 2013). Each other row is obtained by adding
one feature/improvement over the baseline SW+D
features. * denotes significant single-feature im-
provement comparing to the baseline.

Table 2 shows the final performance with full
implementation. We are able to achieve accu-
racy comparable to baseline system reported in
(Richardson et al., 2013) on test set and dev set.
Since our train accuracy is significantly higher
than others, we add one more set of experiments
to ensure that the classifier is not overfitted. We
swap the train set and test set. It turns out that we
still get high accuracy on train set, which implies
that questions in the test set is harder than those in
the train set.

To further investigate the performance, we record
accuracy on different types of questions. Notice
that the accuracy is high on ”why”, ”when” and
”how” questions. We are able to outperform
(Smith et al., 2015) on ”how” type questions by



dev test train train*
Single 0.512 0.577 0.658 0.622
Multi 0.614 0.548 0.613 0.560
All 0.570 0.561 0.633 0.588

Table 2: Performance of Full Implementation. We
train the dataset using “train” and record the accu-
racy over “dev”, “test” and “train”. The last col-
umn is obtained using “test” as training data but
“train” as test data.

12.0%. However, the accuracy is especially poor
on ”which” and ”count” types of questions. Both
types require the system to understand and reason
over multiple portions in the passage.

Type Correct Total Accuracy
How 15 24 0.625
When 5 7 0.714
Which 8 24 0.333
Why 39 61 0.639

Count 7 17 0.412
What 178 307 0.580
Where 29 57 0.509
Who 43 77 0.558
Other 13 26 0.500
All 337 600 0.561

Table 3: Accuracy on Different Types of Ques-
tions. The statistics are taken over test set.

5 Analysis

The performance of our system depends heavily
on the way answer statements get matched to the
passage. Our system is able to retrieve the correct
answer if the passage have a focused description
on the desired answer statement, and meanwhile
discuss other candidate answers in very different
ways. Our system get confused when candidate
answer statements appear in similar way in the
passage. It will also get deceived if answer
statement is a rewrite which significantly differ
the original statement. Specifically, the sys-
tem is affected by noises caused by paraphrased
words, irrelevant matches, redundant matches, etc.

P: On the farm there was a little piggy named
Andy. Andy was very sweet, but he was
always dirty. He loved to roll around in the

mud. None of the other piggies wanted to
play with him. He wished they would be his
friends. One day he was going on a walk on
the farm. He walked by and saw his favorite
big tree. He walked farther than he ever had
before. He saw a bunch of pretty flowers.
Then he saw something that he had never
seen before. It was a river! He ran down to
the river, shouting with joy. He got down low
in the cool water swam around for a bit. He
ran back to the farm where the other piggies
were. He was finally clean. They all played
games until dinner time. When it was time
for dessert the piggies each got a cupcake.
Looking at all his new friends, Andy smiled
and took a big bite of his tasty treat.

Q: What did the piggies do when Andy
got back from his walk?
*A) play games and eat dinner
B) play in the mud and go for a walk
C) swim in the river and play games
D) go for a walk and look at flowers

In this example, the correct answer statement is
contained in at least two sentences (“He ran back
to the farm...” and “They all played games”). Our
classifier successfully select the correct answer
with distributions shown in table 4. Our classifier

Candidate Distribution
A 0.293
B 0.097
C 0.272
D 0.002

Table 4: Example Distribution of Answer Candi-
dates

shows a strong preference to the correct answer
A, and a slightly weaker preference to C which
contains ”play games” which is partially correct.
Furthermore, directly investigating the feature
vector reveals some interesting observations as
shown in table 5. The correct statement A has
high sw score as all key words (back, play, games,
dinner, etc.) occurred in a compact portion of
the passage. However, it is worthy mention the
reason that sy score is the highest on candidate B.
Notice that in the very beginning of the passage,
the passage says:“He loved to roll around in the
mud...(two sentences)...One day he was going



Candidate sw d sy em

A 0.304 0.083 0.185 0.247
B 0.235 0.083 0.438 0.254
C 0.216 0.083 0.188 0.252
D 0.244 0.750 0.188 0.244

Table 5: Example Feature Vectors of Answer Can-
didates

on a walk...” On one hand, the syntax feature
failed to obtain the answer due to redundant
dependencies in the answer candidates. In other
words, sy is likely to return a high score for
a long description in the passage, regardless
whether such description actually answers the
question. On the other hand, sy successfully
retrieve information across multiple sentences
using our proposed multi-sentence enhancement.

Our system would also get confused when
the answer statement is a paraphrase of the
original statement. Although word embed-
ding vector capture similarity between words, it
become less reliable if the difference is significant.

P: ...Erin accidentally kicked Jennifer’s leg in
the pool...
Q: Who got hurt at the party?

In the example above, our system is not able to
retrieve information about ”hurt” from matchings
since it is stated as ”kicked” in the passage.
Furthermore, the generated answer statement
is in passive form but the original statment is
in active form. Such difference introduce extra
considerations to our features which relies heavily
on matching.

As shown in table 3, the most challenging
type of questions we found in the dataset are those
required to summarize a particular aspect of the
passage:

Q: How many rooms did I say I checked.

In those questions, neither the answer statements
nor their paraphrases are explicitly embedded in
the passage. It requires us to generate specified
matches (“I say I checeked”) as we did for other
features, and then reduce those matches (“How

many”) to the answer. The major challenge re-
quires us to parse the question into two parts and
solve two sub-questions cooperatively.

6 Future Considerations

We could extend features which require match
counting to incorporate with word embedding
space to better reflect wordwise similarities. For
syntax feature, our analysis show that depen-
dency graph match should be weighted to reflect
relationship between a question and an answer
candidate. For multiple sentence enhancing, we
can view our approach as applying a convolution
filter over the score of each sentence, which
reveals the potential of applying signal processing
or CNN techniques.

More generative approaches are also possi-
ble. Good hand-designed features can be used to
feed deep learning models to reduce the dimen-
sion of feature vectors. We can also use features
obtained from deep learning models to further
investigate NLP natures of MC task.

7 Conclusion

In this project we developed a MC system us-
ing sliding windows, syntax, and word embedding
as features. We improved those features through
coreference resolution and multiple sentence en-
hancing. Our full system performance reveal inter-
esting NLP natures of the MC task, which implies
possible furture research direction.
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