
Context Encoding LSTM
CS224N Course Project

Abhinav Rastogi
arastogi@stanford.edu

Supervised by - Samuel R. Bowman

December 7, 2015

Abstract
This project uses ideas from greedy transi-
tion based parsing to build neural network
models that can jointly learn to parse sen-
tences and use those parses to guide se-
mantic composition. The model is used
for sentence encoding for tasks like Sen-
timent classification and Entailment. The
performance is evaluated on Stanford Sen-
timent Treebank(SST) and Stanford Natu-
ral Language Inference (SNLI) corpus.

1 Introduction

Sentence encoding models are used to obtain dis-
tributed representation of a sentence. These mod-
els map a sentence to a feature space and then a
classifier operating on these features can classify
the sentences for a particular task e.g, Sentiment
classification, Question answering, Inference clas-
sification etc. A popular approach to obtain the
distributed sentence representation is to start with
a distributed representation of sentence tokens ob-
tained from a word embedding and combine them,
often using a recurrent architecture, to form a sin-
gle vector.

Recurrent models like LSTM-RNN (Palangi,
2015), obtain the sentence encoding by combin-
ing the tokens in sequential order. On the other
hand, tree structured models like Tree LSTM (Tai
et al., 2015) combine the sentence tokens in an or-
der dictated by the parse tree. Such models are
a linguistically attractive option due to their rela-
tion to syntactic interpretations of the tree struc-
tures. However, such models generate a non-static
graph structure (the tree structure depends on the
sentence). The proposed model exploits the corre-
spondence between a binary parse tree and stack
based shift-reduce parsing to propose a model ex-
ploiting semantic compositionality as in a TreeL-
STM whilst using a static graph structure that can
take advantage of existing neural network libraries
like Theano for both automatic differentiation and
highly optimized matrix computations.

The proposed model can be easily adapted to
jointly learn the parsing and interpretation when
sentence parses for training data are not known.

2 Overview

This section describes the correspondence be-
tween shift-reduce parsing and a tree structured
model through a simple example. The example
also illustrates the working of the model from a
high level without going much into details.

Figure 1: An example from Stanford Sentiment
treebank (SST) containing the sentiment scores
of intermediate tree nodes. These trees are pre-
processed to obtain binary parse trees as shown
on right

Instr. Stack and Buffer
- [], [”The”, ”actors”, ”are”, ”fantastic”, ”.”]
S [”The”], [”actors”, ”are”, ”fantastic”, ”.”]
S [”The”, ”actors”], [”are”, ”fantastic”, ”.”]
R [”The actors”], [”are”, ”fantastic”, ”.”]
S [”The actors”, ”are”], [”fantastic”, ”.”]
S [”The actors”, ”are”, ”fantastic”], [”.”]
R [”The actors are”, ”fantastic”], [”.”]
S [”The actors are”, ”fantastic”, ”.”], []
R [”The actors are”, ”fantastic .”], []
R [”The actors are fantastic .”], []

Table 1: Sequence of operations corresponding
to the parse tree shown in Figure 1 and the state
of Stack and Buffer after each step is executed.
Word (phrase) vectors have been represented as
the word (phrase) they correspond to for clarity.

1

(a) The Model 1/2 network unrolled for two transitions on the input the cat sat down. The start state of the
stack and buffer at the initial step t = 0 are the sole inputs to the model at test time.

(b) The fully unrolled Model 1/2 network for the cat sat down with some layers omitted for clarity.

Figure 2: Two views of Models 1 and 2 (which use equivalent model graphs). In both views, the
lower boxes represent the input buffer, and the upper boxes represent the stack. Yellow highlighting
indicates which portions of these data structures are visible to the tracking unit and to the composition
unit. Thin gray arrows indicate connections which are blocked by a gating function, and so contribute
no information.

If each node of a binary parse tree is consid-
ered to be a vector, the tree structure can be used
to define an order in which these vectors should be
combined. The procedure starts with the word em-
bedding vectors corresponding to the leaf nodes.
In a bottom-up fashion, the vectors corresponding
to the children of a non-terminal node n can be
composed together using a TreeLSTM unit to ob-
tain the vector representation of the node n.

The same algorithm can be described recur-
sively as- “To obtain the vector representation of a
node n, obtain the vector representation of the left
subtree l, then its right subtree r and then combine
the representations of l and r using a TreeLSTM
unit.” This recursive definition is easily amenable
to a stack based implementation as shown in Ta-
ble 1. The model is initialized with an empty stack
and a buffer consisting of word-vectors of all the
tokens in the sentence. Two kinds of operations
are supported on the Stack and the Buffer -

1. SHIFT - Pop one element from the top of the
buffer and push it on the stack.

2. REDUCE - Pop top two vectors from the
stack, use a TreeLSTM to combine them, and
push the result back on the stack.

Starting with the state of the stack and the buffer
as described above, the structure of a binary parse
tree maps to a unique sequence of SHIFT and RE-
DUCE operations. After executing these instruc-
tions, the element located on the top of the stack
corresponds to the vector representation of the en-
tire sentence.

3 Model Architecture

The proposed model has been depicted in Figure
2. It is a recurrent model which can be unrolled
to K steps. The model consists of the following
components-

• Stack - A B ×D×K tensor where B is the

2

batch size D is the dimension of the word
embedding and K is the maximum number
of transitions allowed. This tensor is initial-
ized to zeros.
• Buffer - A B ×D×K tensor pre-populated

with word-embeddings. The remaining slots
which don’t contain words are filled with ze-
ros. The reason for keeping extra space is
discussed later.
• Tracking Unit - This unit (depicted in red)

combines views of the stack and buffer (the
top element of the buffer and the top two el-
ements of the stack, highlighted in yellow)
from the previous time-step. This unit also
has a recurrent connection from the previ-
ous time step. This connection is hoped
to encode the “context” as described later.
The output of the tracking unit is fed into
a sigmoid operation classifier (blue) which
chooses between the SHIFT and REDUCE
operations.

Two different implementations of the Track-
ing unit have been used in the experiments.
(i) A Linear layer (ii) LSTM.
• Composition Unit - This unit (depicted in

green) sees the top two elements of the stack
and combines them into a single vector. This
unit also has a recurrent connection from the
previous time step which has not been de-
picted in Figure 2. This unit is made up of
a TreeLSTM unit.

The dynamics of the model are very similar to
a Shift-Reduce parser. At each step, the Tracking
unit decides the transition to be made based on
the inputs from the previous state. If SHIFT is
chosen, one word embedding is popped from the
buffer and pushed onto the stack. If REDUCE is
chosen, the buffer is left as is, and the top two
elements of the stack are popped and composed
using the composition unit (green), with the result
placed back on top of the stack.

However, there is a key difference between this
model and Shift-Reduce (SR) parser, which is a
greedy transition based parser. In SR parsing, the
decision made by the tracking unit is solely based
on the top two elements of the Stack and the top
element of the Buffer. In the presented model,
recurrent connections exist between the Tracking

unit. It is hoped that these connections can convey
the information regarding the tokens observed in
previous steps and hence the predicted transitions
are no longer greedy.

4 Data preparation

All training data must be parsed in advance into an
unlabeled binary constituency tree. The models
presented here don’t need parses to be available
during test time. The model has been tested for
two datasets -

1. Stanford Sentiment Treebank (SST) - The
training data consists of a binary parse of
8544 sentences corresponding to movie re-
views. The sentences are classifier into 5 sen-
timent classes 0 to 4, 0 being a highly nega-
tive and 4 being a highly positive sentiment.

2. Stanford Natural Language Inference
Corpus (SNLI) - It consists of binary parse
of 550,153 sentence pairs. Each sentence
pair belongs to one of the three classes - Con-
tradiction, Entailment or Neutral.

For both SST and SNLI we use the parses in-
cluded with the corpus distributions whenever
parses are needed. A pre-trained word embedding
(GloVe) is used for obtaining the distributed word
representations. The words in the training data are
then replaced by the word indices in the embed-
ding. The parse structure is then decomposed into
two lists - one corresponding to the list of token
indices as seen in the sentence from left to right
and second corresponding to the sequence of tran-
sitions obtained from the parse structure.

For example, the parse tree “((the cat) (sat
down))” is converted to the token index sequence
[1, 45, 9073, 4949] where the four indices cor-
respond to the four words and the transition se-
quence [0, 0, 1, 0, 0, 1, 1], where 0 corresponds to
SHIFT and 1 to REDUCE.

For efficient batching, it is desirable that all to-
ken index sequences be of same length M and all
transition sequence should be of same length K
across all examples. For evaluation, K = 100 has
been used while training and K = 150 while test-
ing. Sentences having fewer than K transitions
are padded with SHIFT transitions in the begin-
ning and special NULL tokens having a token in-
dex of 0 are inserted in the beginning of the token

3

index list. If the number of transitions in a sen-
tence is larger than K, it is cropped and the corre-
sponding word indices are also removed.

In a sentence of x words, a correct binary parse
is expected to contain x SHIFT operations and
x − 1 REDUCE operations. However, during
test time, the model predicts its own transitions,
hence this constraint is not guaranteed to hold.
So, M = K is chosen to protect the model from
breaking down in case the tracking unit wrongly
predicts all the transitions to be SHIFT.

5 Training

5.1 Supervision
The model is trained using two objective functions
simultaneously - (i) Semantic objective function
- It is computed by feeding the value from the
top of the stack at the final timestep (the full sen-
tence encoding) into a downstream neural network
model for some semantic task, like a sentiment
classifier or an entailment classifier. The gradients
from that classifier propagate to every part of the
model except the operation classifier (blue). (ii)
Syntactic objective function - It takes the form
of direct supervision on the operation classifier
(blue) which encourages that classifier to produce
the same sequence of operations that an existing
parser would produce for that sentence. The gra-
dients from the syntactic objective function prop-
agate to every part of the model but the down-
stream semantic model. The gradient updates are
propagated using Stochastic Gradient Descent us-
ing RMS Propagation strategy.

5.2 Training configuration
The presented model has been trained in two dif-
ferent configurations described below. The evalu-
ation phase is the same for both these models.

1. Model 1 - At training time, following the
strategy used in LSTM text decoders, the
decisions made by the operation classifier
(blue) is discarded, and the model instead
uses the correct operation as specified in the
(already parsed) training corpus. At test time,
this signal is not available, and the model
uses its own predicted operations.

2. Model 2 - Model 2 makes a small change to
Model 1 that is likely to substantially change

the dynamics of learning: It uses the op-
eration sequence predicted by the operation
classifier (blue) at training time as well as at
test time. It may be possible to accelerate
Model 2 training by initializing it with pa-
rameters learned by Model 1.

Since Model 2 is exposed to the results of
its own decisions during training, it is en-
couraged to become more robust to its own
prediction errors. (Bengio et al., 2015) ap-
plied a similar strategy1 to an image caption-
ing model. They suggest that the resulting
model can avoid propagating prediction er-
rors through long sequences due to this train-
ing regime.

5.3 Regularization
Regularization is a standard technique used to pre-
vent high capacity models from over-fitting the
training data by restricting the degrees of freedom
of the weights. Two standard regularization tech-
niques have been used - (i) L2 regularization (ii)
Dropout - In the connections from the word em-
bedding and within the semantic task classifier

6 Results

Classification
Accuracy

Transition
Accuracy

Training
Updates

Model 1 0.4854 0.6967 110000
Model 2 0.4462 0.6410 46500

(a) SST

Classification
Accuracy

Transition
Accuracy

Training
Updates

Model 1 0.727183 0.675695 48900
Model 2 0.652045 0.745967 22000

(b) SNLI

Table 2: Performance of the two models on SST
and SNLI validation data. These are the best re-
sults across several hyper-parameter settings.

Table 2 presents the results for Model 1 and 2
on the validation set of SST and SNLI data. A
boolean dataset consisting of random boolean ex-
pressions made up of AND and OR operators was

1The authors experiment with several strategies which
interpolate between oracle-driven training and oracle-free
training (Models 1 and 2 in our presentation, respectively).

4

used for debugging purposes and the two models
converged fairly quickly on it, achieving a transi-
tion accuracy of > 0.98 in 750 updates.

For five class classification task on SST corpus,
the state of the art classification accuracy is 0.51
using Constituency Tree LSTM (Tai et al., 2015).
However, this model requires sentence parse to
be present at test time (produced using Stanford
PCFG parser). For SNLI, the state of the art clas-
sification accuracy for non-attention based models
is 0.776 using LSTM encoders (Bowman et al.,
2015).

7 Experiments and Error Analysis

7.1 LSTM vs Linear Layer in Tracking unit

Figure 3 shows the learning curves (validation set
classification accuracy vs number of updates) on
SST data for two different implementations of the
Tracking unit - Linear layer and LSTM. It is ob-
served that LSTM is slower to train in the begin-
ning but outperforms the Linear layer after train-
ing longer. This is expected because LSTM’s are
better suited to learn long-term dependencies as
they combine the states additively. The plots cor-

Figure 3: The learning curves for tracking unit
made up of Linear layer (green) and LSTM (blue)

respond to the same dimensionality

7.2 Parsing Performance

The quality of binary parse obtained by the two
models can be quantified using the metrics listed
below. These metrics are calculated using a binary
bracketed data evaluation tool called Evalb.The
results obtained for SST dev set are shown in Ta-
ble 3. The parsing results for SNLI were observed
to be quite poor (they even broke the evaluation
tool) despite having a decent transition accuracy.

• Bracketing precision = (Number of correct
constituents) / (Total number of constituents)
Complete match
• Average crossing = (Number of constituents

crossing in a gold constituent) / (Total Num-
ber of sentences)
• 2 or less crossing = ratio of sentences having
≤ 2 crossing brackets

Metric Model 1 Model 2
Valid Sentence 0.9891 0.4727

Bracketing Precision 0.6046 0.1879
Complete match 0.0340 0.0096
Average crossing 0.0722 0.1328
2 or less crossing 0.1892 0.0597

Table 3: Various parsing metrics for SST dev set
containing 1101 sentences.

These results also show that there is not a clear re-
lation between transition and parsing accuracy. It
seems that not all transitions are equally important
in determining the accuracy of the parse.

7.3 Label Confusion
The label confusion matrix for SST data using
Model 1 is shown in Table 4. The matrix lists
the counts of (original label, predicted label) pairs
and is helpful in visualizing the label pairs that
are confused more frequently. As the numbers in-
dicate, the most confused sentiment labels for a
label l are l − 1 or l + 1. This indicates that the
mistakes are not too severe.

0 1 2 3 4
0 46 76 7 10 0
1 28 183 43 33 2
2 7 91 68 61 2
3 2 44 35 171 27
4 0 8 12 84 61

Table 4: Label confusion matrix for SST Model 1
on dev set. The rows correspond to original labels
and the columns correspond to predicted labels

Table 5 shows the confusion matrix for SNLI
dev set obtained using Model 1. It is observed that
the wrongly predicted labels are almost uniformly
distributed among the other two labels.

5

Entail Neutral Contradict
Entail 2556 453 320

Neutral 574 2220 441
Contradict 398 580 2300

Table 5: Label confusion matrix for SNLI Model
1 on dev set. The rows correspond to original la-
bels and the columns correspond to predicted la-
bels

7.4 Variation with Sentence Length
Table 6 shows the variation of parsing metrics
with maximum allowed sentence length. This
analysis is useful in figuring out how does the
model perform on longer sentences. It is expected
that the model will lose performance as the sen-
tence length is increased because the longer sen-
tences require the network to propagate the infor-
mation across larger timesteps.

The obtained results are as expected. The
percentage of valid sentences drops, percentage
of complete matches drops, average crossing in-
creases and percentage of sentences having ≤ 2
crossing brackets also drops. So all metrics ex-
cept the bracketing precision seem to be getting
worse as the sentence length increases.

Metric 10 20 40
No. of sentences 200 633 1086
Valid Sentence 1.000 0.994 0.989

Bracketing Precision 0.667 0.629 0.697
Complete match 0.155 0.057 0.035
Average crossing 0.021 0.045 0.070
2 or less crossing 0.645 0.316 0.192

Table 6: Variation of parsing metrics for SST dev
set with the maximum allowed sentence length
(10, 20 and 40)

8 Future Work

There are several directions of future work we
have in mind-

• Encoding the contents of the stack and
buffer The tracking LSTM (red) needs ac-
cess to the top of the buffer and the top two
elements of the stack in order to make even
minimally informed decisions about whether

to shift or reduce. It could benefit further
from additional information about broader
sentential context. This can be provided by
running new LSTMs along the elements of
each of the stack and the buffer (following
(Dyer et al., 2015)) and feeding the result
into the tracking LSTM.

• Contextually-informed composition The
composition function in the basic model
(green) combines only the top elements of
the stack, without using any further infor-
mation. It may be possible to encour-
age the composition function to learn to do
some amount of context-sensitive interpreta-
tion/disambiguation by adding a connection
from the tracking LSTM (red) directly into
the composition function.

For Model 0, no tracking LSTM is needed
for the ordinary operation of the model, but
it would be possible to add one for this pur-
pose, taking as inputs the top two values of
the stack at each time point and emitting as
output a context vector that can be used to
condition the composition function.

• Typed REDUCE operations Shift-reduce
parsers for natural language typically oper-
ate with a restricted set of typed REDUCE
operations (also known as “arc” operations).
These operations specify the precise rela-
tion between the elements being merged. It
would be possible to the parse-supervised
models to learn such typed arc operations,
expanding the op set dramatically to some-
thing like SHIFT, REDUCE-NP, REDUCE-
S, REDUCE-PP, ...} (in the case of con-
stituency parse supervision). The model can
then learn a distinct composition function de-
pending on the relation of the two elements
being merged.

• Differentiable Stack and Buffer - If the
stack and buffer in the model can be made
differentiable (Grefenstette et al., 2015), gra-
dients may be propagated through them. It
will be interesting to see what the model
learns when fractional push and pop instruc-
tions are allowed.

6

References

Samy Bengio, Oriol Vinyals, Navdeep Jaitly,
and Noam Shazeer. 2015. Scheduled sampling
for sequence prediction with recurrent neural
networks. Proc. NIPS.

Samuel R. Bowman, Gabor Angeli, Christo-
pher Potts, and Christopher D. Manning. 2015.
A large annotated corpus for learning natural
language inference. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association
for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling,
Austin Matthews, and Noah A. Smith. 2015.
Transition-based dependency parsing with
stack long short-term memory. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 334–343, Beijing, China, July. Associ-
ation for Computational Linguistics.

Edward Grefenstette, Karl Moritz Hermann,
Mustafa Suleyman, and Phil Blunsom. 2015.
Learning to transduce with unbounded mem-
ory. arXiv preprint arXiv:1506.02516.

Hamid Palangi, et al. 2015. Deep sentence
embedding using long short-term memory net-
works. arXiv.

Kai Sheng Tai, Richard Socher, and Christo-
pher D. Manning. 2015. Improved semantic
representations from tree-structured long short-
term memory networks. arXiv.

7

