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Abstract

This project is one of the research top-
ics in Professor William Dally’s group.
In this project, we developed a pruning
based method to learn both weights and
connections for Long Short Term Mem-
ory (LSTM). In this method, we dis-
card the unimportant connections in a pre-
trained LSTM, and make the weight ma-
trix sparse. Then, we retrain the remaining
model. After we remaining model is con-
verge, we prune this model again and re-
train the remaining model iteratively, un-
til we achieve the desired size of model
and performance. This method will save
the size of the LSTM as well as prevent
overfitting. Our results retrained on Neu-
ralTalk shows that we can discard nearly
90% of the weights without hurting the
performance too much. Part of the results
in this project will be posted in NIPS 2015.

1 Introduction

Deep neural network has been widely used in natu-
ral language processing (NLP) tasks [1-5] includ-
ing machine translation, image captioning, name
entity recognition, sentiment analysis, and lan-
guage models. Besides the fully connected neural
network, the most popular models for NLP task
is recurrent neural network (RNN) [1]. RNN can
be used to model the sequential data such as lan-
guage. However, the vanila RNN is very difficult
to train due to the vanishing gradient problem [6].
Long short term memory (LSTM) [7] is a RNN
model which has complex gating functions to cap-
ture the long and short term memory to make the
model easier to train.

One of the problems of LSTM is that the model
typically has large number of learnable parame-
ters due to three gating functions. That makes

the model easier to overfit and has a large num-
ber of parameters which cost a lot of memory,
which reduces the power of LSTM in practice for
a small amount of data or mobile usage. This is
also a general problem for deep learning. Profes-
sor William Dally’s group is working on the topic
of efficient deep learning to solve this problem.
One of the work is pruning the deep neural net-
work and makes the model sparse to save stor-
age as well as sparse matrix operation to speed
up computation. The group has made progress
on convolutional neural network (CNN) [8]. This
project is part of the current research in this group,
which is extending the similar idea in RNN models
such as LSTM for NLP applications. Th goal of
this project is to explore the performance of prun-
ing LSTM, and investigate how much weights we
can discarded without hurting the performance of
LSTM.

The basic idea of pruning deep neural network
is that given a pretrained model, we can ignore
the unimportant connections. The unimportant
connections is the connections between neurons
which have a relative smaller absolute value of
weights. The input of the connection with smaller
weights has little effect on the output. Therefore,
we can discard that connections. The intuition
is inspired from the human brain [9]. Some of
the neuron connections developed in children are
gradually discarded when they grow up. These
discarded connections are typically less used or
less important.

After we pruned the pretrained model, we
should retrain the remaining part to adjust the
weights. After the retrained model converge, we
can still treat it as a pretrained model and then
prune and retrain iteratively. During this proce-
dure, we can learn both weights and connections
in the deep neural network, rather than learning
weights only by regular method. Also, this method
will also prevent overfitting and underfitting. In



the case of a smaller dataset, we first adopt a deep
network which typically overfits the data if trained
directly, then we prune the pretrained overfitted
model, and then retrain it to prevent overfitting and
also underfitting.

2 Pipeline of model

In this section, we will describe the pipeline of
learning both weights and connections based on
pruning. The general pipeline is shown in Fig.
1, where we prune the pretrained model first, and
then iteratively retrain and prune the remaining
model to some extent.

Figure 1: The pipeline of pruning based method to
learn both weights and connections.

2.1 Prune the pretrained model.
The key procedure of our method is pruning the
pretrained model. As we mentioned about, the
goal of pruning weights is to discard the unim-
portant connections between neurons. Here we
use the value of the weights to evaluate the ”im-
portance” of connections. The connections with
weights relatively smaller will be labeled as unim-
portant and will be discarded. Fig. 2 shows the
example of one layer of pretrained fully connected
neural network with certain weights. We can find
that the weights of connections with blue color are
relatively smaller than the weights of red connec-
tions. Therefore, the input of blue connections
has less effect on the output neuron, and we can
observe that these connections are less important.
After we discard the blue connections we achieve
a sparse neural networks. In this project, instead

Figure 2: Pruning the unimportant connections
based on weights.

of using the raw absolute value to prune, we prune

the connections based on the weights distribution
of pretrained model. For example, we will prune
the connections with the weights within the stan-
dard deviation of weights in pretrained model. For
more details in the relationship between std and
pruned percentage is in the results section.

2.2 Pretrained model and dataset

The first steps of our method is to get a pretrained
model in standard LSTM. For fairness consider-
ation, we download a public available pretrained
model instead of training from scratch by ourself,
because the weights in the public available model
are well adjusted and easy to compare.

We choose the Neural Talk [3] as our pre-
trained model since it is trained on the LSTM
and the pretrained model is public available
in http://cs.stanford.edu/people/
karpathy/neuraltalk/. The Neural Talk is
used to generate image captioning which is a NLP
task. The model feed the image features extracted
from CNN to the first time step of LSTM, and use
the LSTM as a sequence generator to generate
sentence to describe the image. The following
equations describe this model.

i = WeCNN(I)

y(t) = LSTM(i · I(t = 0),Wdx(t))

where I is the raw image, and CNN(i) is the im-
age feature extracted from CNN, and We is the
embedding matrix for image, LSTM() represent
is the LSTM. It takes x(t) which is the word vec-
tor in each time step, Wd is the embedding matrix
of words. LSTM only takes the image features i
as input at the first time step where the indicator
function I(t = 0) is 1. y(t) is the predicted word.

For implementation of LSTM, we stack the
weights of input gates, output gates and for-
got gates together as a large matrix denoted as
WLSTM , so in our project, we investigate pruning
We, Wd and WLSTM .

We use the model trained on Flickr 8K dataset
as our pretrained model. The Flickr 8K dataset
has 8000 images with each image has 5 sentences
to describe it. We choose each image and sentence
pair as a sample, and also discard the rare words
in the ground truth. After preprocessing, there are
40000 training samples and 2538 distinct words in
vocabulary.



The size of a fully connected LSTM on Flickr
8K dataset is We is 4096 by 512, Wd is 512 by
2538 and WLSTM is 1025 by 2048. The total
learnable parameters are 5495808.

2.3 Retrain the model

After we prune the pretrained model, the next step
is retraining the remaining model. We have two
options to retrain: one is prune directly to the de-
sired percentage, and retrain the model only once.
Another option is iteratively prune the model, and
retrain multiple times. For example, if we plan to
prune 90% of the weights, we can directly prune
90% of the weights, and retrain the model. Oth-
erwise, we can prune 50% first, and then retrain
the remaining model until it converges, then we
can further prune the retrained model to 60% and
retrain, we can prune and retrain repeatedly until
we reach the model with only 10% of the weights
remains.

The advantages of iteratively pruning is that we
can learn both weights and connections gradually,
instead of directly prune too much connections
once. The step between each pruning is a hyper-
parameter and requires tuning in practice.

To retrain the model, we should adjust the
dropout ratio, because after pruning, we have less
number of neurons, so we should dropout less
number of the neurons. Also, we need to use a
relatively smaller learning rate and relatively less
epochs to avoid destroy the pretrained weights too
aggressively. We find the 10−4 learning rate with
10 training epochs will make the model converge
and achieves better results.

2.4 Evaluation

We use the BLEU score to evaluate the perfor-
mance of image captioning. BLEU score [9] has
been widely used in machine translation and im-
age captioning. We compute the BLEU score of
BLEU1, BLEU2, BLEU3, and BLEU4 for each
retrained model, and compare the BLEU score of
the pretrained model.

2.5 Implementation

The implementation of pruning and retraining is
using the mask matrix for We, Wd and WLSTM .
The reason is that for the discarded connections,
we set its value as zero. Therefore the mask matrix
can be constructed as follows, we set the pruned
connections as 0 and remaining connections as 1.

For forward propagation we elementwised multi-
ply the weights matrix by the mask matrix before
each forward propagation. And for backpropagag-
tion, we elementwisely multiply the gradients of
weights by the mask before we update the weights.

3 Experiments

Our experiments consist of four parts: first, we
study the relationship between standard deviation
of weights distribution and the pruned percentage.
Second we study the performance of prune model
without retraining, and investigate the sensitivity
of We, WLSTM and Wd. Third, we experiment
with directly pruning, which is pruning only once.
Last, we study the performance of iteratively re-
train.

3.1 Pruning percentage
We prune the model based on the standard de-
viation of the weights distribution of pretrained
model rather than the raw absolute value. To quan-
tify the pruning rate, we define a term of threshold
th. The pruned threshold is th means we discard
the weights between [−th ∗ std, th ∗ std] where
std is the standard deviation of pretrained model.
So, th = 0 means we do not prune any connec-
tions. The larger value of th, the more connec-
tions are discarded and we have a higher pruning
rate. Table 1 shows the pruning rate and threshold
of We, Wd and WLSTM . The pruning rate repre-
sents the percentage of connections are discarded,
the 90% means only 10% of weights remains. We
can find that the weights distribution is slightly dif-
ferent among different matrix due to the threshold
is slightly different for given prune rate.

Prune rate We Wd WLSTM

0% 0 0 0
50% 0.75 0.68 0.7
60% 0.91 0.85 0.85
70% 1.1 1.06 1.03
80% 1.3 1.3 1.26
90% 1.61 1.63 1.61

Table 1: Relationship between threshold and prun-
ing weights for We, WLSTM and Wd.

3.2 Performance without retrain
We will analysis the performance of directly prun-
ing without retraining. Table 2 is the BLEU score
performance without retraining. We can find that



as the increase of pruning rate, the BLEU score
decreases dramatically if we do not retrain. This
is because that the orignal weights can not be
adopted directly for a sparse model. Note that here
we investigate the overall pruning rate, which is
we prune all the weight matrix together.

Prune rate BLEU1 BLEU2 BLEU3 BLEU4

0% 55.7 37.3 24 15.7
50% 54 35.2 22 14.1
60% 51.5 32.8 19.9 12.3
70% 45.6 27.5 15.4 8.9
80% 35.3 29.2 7.6 2.6
90% 27.3 0 0 0

Table 2: The BLEU score with various overall
pruning rate.

Figure 3: The BLEU score with various WLSTM

pruning rate.

Figure 4: The BLEU score with various We prun-
ing rate.

Then we will prune each matrix of We, Wd and
WLSTM separately to study which matrix is the
most important and more sensitive to the pruning.
Fig. 3 is the performance of pruning WLSTM only.
Fig. 4 is the performance of pruning We only and
Fig. 5 is the performance of pruning Wd only.

We can find that the model is more sensitive to
WLSTM . The performance degrades quickly as
the increase of pruning rate, and We is less sensi-
tive to pruning, the performance does not changed
too much. This is because the WLSTM dominates
the weights in LSTM model, and We is only used
in the first time step when embedding the image
features. Therefore in practice we can prune the
We more aggressively, and prune WLSTM less.

Figure 5: The BLEU score with various Wd prun-
ing rate.

3.3 Performance of retrain model

Here we will investigate the performance of di-
rectly prune our model to the desired percentage
and retrain only once, as well as iteratively prune.
Table 3 and 4 show the performance of directly
prune and iteratively prune respectively.

Prune rate BLEU1 BLEU2 BLEU3 BLEU4

0% 55.7 37.3 24 15.7
50% 55 36.6 23.4 15.1
60% 55 36.7 23.8 15.5
70% 55.5 37 24 15.7
80% 55.9 37.4 24.2 15.8
90% 54.1 35.9 23 14.9

Table 3: The BLEU score with various pruning
rate and prune directly retrain only once.

Prune rate BLEU1 BLEU2 BLEU3 BLEU4

0% 55.7 37.3 24 15.7
50% 55 36.6 23.4 15.1
60% 55 36.7 23.7 15.5
70% 55.6 37 23.9 15.6
80% 55.9 37.3 23.9 15.3
90% 55.4 37.1 23.7 15.3

Table 4: The BLEU score with various pruning
rate and prune and retrain iteratively.

Compared with the results from Table 2 and Ta-
ble 3, we can find the if we retrain the pruned
model, the performance increases a lot and is al-
most the same as the pretrained model (0% prun-
ing rate). Also, we can find that when the pruning
rate is 80%, the performance of retrained model is
even higher than the pretrained model. This phe-
nomenon indicates that the original model is over-
fitting the data. When the pruning rate is between
0% and 70%, we are actually overfitting the data.
And when the pruning rate is 90%, we are under-
fitting the data.

Then, we will compared the results between Ta-



ble 3 and Table 4. We can find that the iterative
retraining does not improves the results when the
pruning rate is low compared with prune directly.
However, when the pruning rate is high such as
90%, iterative retrained model is better than the
directly pruned and retrained model. This is be-
cause the fact that for the high pruning rate, if we
pruned the model directly to the desired pruning
rate and retrain only once, we will lose some po-
tential useful connections. However, if we itera-
tively prune our model, we are actually learning
both weights and connections gradually. As we
prune the model step by step, we will carefully
discard the unimportant connections based on the
converged models at each step. Therefore, the it-
erative pruning and retraining is better than the di-
rectly pruned model due to the better performance
in high pruning rate.

We can conclude that for the LSTM model
trained in Neural Talk, nearly 90% of the weights
can be discarded without hurting the model per-
formance. So the remaining weight matrix is very
sparse. This result will be very useful for the sce-
nario with limited memory and storage such as
mobile usage. Storing and processing sparse ma-
trix is more efficient than dense matrix, we will
also benefit a lot from it.

3.4 Pruning limit

Our further work is to explore the limit of prun-
ing, Which is the upper bound of the number of
connections we can discard. We use the iterative
pruning and retraining scheme since it has a better
performance in high pruning rate.

We increase the pruning rate from 90% and find
that when the pruning rate is 95%, the perfor-
mance of retrain model has an obvious gap with
the pretrained model, where all the weights within
3 standard deviation has been discarded. Fig. 6
shows the performance of iterative retrain, the pre-
trained model as well as the without retrain.

From Fig. 6, we can find that when the pruning
rate is 95%, there is a significant decrease in the
performance. This is because we prune too much
connections and the model is underfitting the data.
Therefore, we can conclude that the pruning limit
of LSTM is 95%.

3.5 Pruning as regularization

Here we will discuss the difference between prun-
ing and other regularization techniques. As we
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Figure 6: The performance for various pruning
rate for without retrain and retrain iteratively.

mentioned above, pruning is a kind of regulariza-
tion to prevent overfitting. Given a small dataset,
we can train it on a large model and then iteratively
prune and retrain it.

There are several other techniques which dis-
card connections for regularization for example
dropout and L1 regularization. Pruning is different
with these methods. First for dropout, it is statisti-
cally discard the connections between neurons in a
random way. But in pruning, we are discarding the
connections in a deterministic way, which connec-
tion is pruned depends on the weights. Therefore,
we are discarding weights more effectively.

L1 regularization is another regularization
which tries to make the weights matrix sparse.
But L1 regularization will not iteratively prune the
weights matrix and can not make the weights ex-
actly zero.

Therefore, pruning based method is able to
learn both weights and connections as well as pre-
vent overfitting.

3.6 Example image captioning

In this part, we will give some example image cap-
tioning results to show some interesting results the
pruning model given. We choose the pretrained
model and the model with 90% weights pruned
and retrained iteratively as well as 95% pruned
model.

Figs. 7-10 shows some good examples between
pretrained model and 90% pruned model. We can
find that the generated captioning is exactly or al-
most the same with only some synonyms replaced.

However, in some other cases, the 90% pruned
model fails to capture some detailed information



Figure 7: Generate sentence with pretrained model
and 90% pruned model
Pretrained: a brown dog is running through a
grassy field
Pruned: a brown dog is running through a grassy
area

Figure 8: Generate sentence with pretrained model
and 90% pruned model
Pretrained: a white bird is flying over water
Pruned: a white bird is flying over water

in image compared with the original pretrained
model, as Figs. 11 and 12 show. In Fig. 11 the
90% pruned model fails to capture the phrase ”a
red and white uniform” compared with the pre-
trained model. While in Fig. 12, the 90% pruned
model generates unrelated phrases ”on a beach” in
addition to the words in original pretrained model.

If we take a look at the 95% pruned model
which has a worse performance, most of the sen-
tences has no semantics meaning. Fig. 13 is an ex-
ample. Here the 95% model is confused with the
group of people in the images and fails to identify
a single person from a group of people.

4 Conclusion

In this project, we developed a pruning based
method to learn both weights and connections in
LSTM. Based on the results, we have found that
the nearly 90% of the connections can be dis-
carded in the pretrained LSTM, and the weight

Figure 9: Generate sentence with pretrained model
and 90% pruned model
Pretrained: a basketball player in a white uniform
is playing with a ball
Pruned: a basketball player in a white uniform is
playing with a basketball

Figure 10: Generate sentence with pretrained
model and 90% pruned model
Pretrained: a man is standing on a rock overlook-
ing the ocean
Pruned: a man is standing on a rock overlooking
the ocean

matrix is very sparse, which will save a large
amount of storage and memory. We also find that
without retrain the model, pruning will degrade
the performance a lot. The iteratively pruning
and retrain has a better performance than directly
pruning and retrain only once in the high pruning
rate. This method also prevents overfitting when
the dataset is relatively small.

Our future work includes prune the three gating
functions in LSTM separately, to explore which
gates is more sensitive and important for LSTM.
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Figure 11: Generate sentence with pretrained
model and 90% pruned model
Pretrained: a motorcycle racer in a red and white
uniform is riding a motorcycle
Pruned: a motorcycle racer is riding a motorcycle

Figure 12: Generate sentence with pretrained
model and 90% pruned model
Pretrained: a man is riding a surfboard on a wave
Pruned: a man in a wetsuit is riding a wave on a
beach

and discussion from the people in this group.
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