Exploring Adversarial Learning on Neural Network Models for Text

Classification
Isaac Caswell Onkur Sen Allen Nie
Stanford University Stanford University Stanford University

Dept. of Computer Science

Dept. of Computer Science

Symbolic Systems Program

{icaswell, onkursen, anie}@stanford.edu

Abstract

In this paper, we examine the applica-
tion of adversarial learning, which first
gained recognition in image classification,
to natural language processing. In partic-
ular, we train a recurrent neural network
with long short-term memory by modify-
ing its objective function to simulate train-
ing on adversarial examples. We also visu-
alize the perturbed sentence matrices us-
ing a nearest-neighbor, augmenting dis-
tance with a bigram cost. We discuss var-
ious techniques in visualization and offer
interpretations of perturbed sentences as
well as perturbation as relations between
words. Our results do not indicate that ad-
versarial training helped, which fact we at-
tribute to a dearth of computing resources.

1 Introduction

Deep neural networks have recently achieved
state-of-the-art performance in many tasks, most
notably image recognition. However, many mod-
els are also notoriously difficult to train. Over the
years, people have used different data augmen-
tation techniques to artificially simulate possible
data, and various training techniques such as pool-
ing and dropout are used to help with this particu-
lar issue. Adversarial learning is a reaction to the
observation that many models are susceptible to
images perturbed by adversarial noise. Such im-
ages can fool a trained neural network into predict-
ing a wrong label with high confidence (Nguyen et
al., 2014).

Adversarial learning combats this problem. It
bears similarity to the aforementioned techniques,
but instead of simulating what could realistically
happen, it focuses on helping the model to explore
the landscape near the decision boundary, lead-
ing to a more accurate model, as demonstrated by

(Miyato et al., 2015). Adversarial learning can be
treated as an a priori optimization technique that
can be generalized on all neural network mod-
els by directly modifying the objective function.
Training may also be done by generating exter-
nal adversarial examples directly, demonstrated in
(Goodfellow et al., 2014).

However, despite its success in image process-
ing, little has been done in the field of natural lan-
guage processing. We investigate whether adver-
sarial learning works in natural language process-
ing, and examine the generated sentences under
the adversarial learning paradigm.

2 Related Work

2.1 Image Processing

Adversarial learning first gained popularity in the
realm of image processing, where the heavy use
of neural networks improved performance across
different corpora. Most of them are established
in Goodfellow et al. (2014). In image processing,
where automatically generating variants of data
points is quite common, Goodfellow made the
distinction between adversarial learning and com-
mon data augmentation techniques such as trans-
formations:adversarial examples are not naturally-
occurring examples that need to realistically hap-
pen in the world.

Adversarial examples add noise to the training
set that is smaller than the precision of the initial
training image. Such noise is undetectable by hu-
man eyes and also cannot be obtained by the im-
age capturing equipment. Goodfellow argues that
training with such perturbations will help neural
networks truly capture concepts and gain accuracy
beyond perceived data. Jin et al. (2015) pointed
out the adversarial examples generated in Good-
fellow’s paper are sampled near a decision bound-
ary, thus making network models particularly vul-
nerable. Miyato et al. (2015) further demonstrated

the theoretical implication that adversarial training
examples will help models to better find non-linear
relationships in data.

2.2 Natural Language Processing

Adversarial learning with neural networks has per-
formed well in image processing. Furthermore,
since neural network architectures are commonly
used for many tasks in natural language process-
ing, we hypothesize this technique would improve
such models as well. Such work has yet to be
done. However, there are two major differences
between these two fields. First, natural language
deals with discrete outcomes whereas images are
easily represented as continuous data points. An
adversarial image can be easily visualized, but an
adversarial sentence is hardly an intuitive concept,
visually or otherwise.

Second, particular neural network models, e.g.,
convolutional neural networks (CNNs), that are
more common in image processing are less com-
mon in natural language processing. Many pre-
vious explorations are based on either a simple
neural network with multiple hidden layers, as
in Goodfellow et al. (2014), or a CNN, as in Jin et
al. (2015).

In our work, we explore the effectiveness of ad-
versarial learning on recurrent neural network and
long short-term memory model, which would be
very different from previous models.

3 Adversarial Learning

Intuitively, it does not makes sense that a classi-
fier should respond to a very small perturbation
to a very small change in an example that is as-
signed some label with high confidence. This is
especially true for images, where the precision of
the features is limited, and certainly also true for
word/sentence vectors, which are inherently ap-
proximate, as they are learned from data. Sym-
bolically, a classifier shouldn’t respond differently
to z than it does to z, if each element in the per-
turbation 7 is sufficiently small:

T=x+nN|nlle < €= class(Z) = class(x),

where € may be the precision of the sensor (in the
case of an image), or the maximum magnitude of
the last update to a word vector (NLP), or an arbi-
trary small number (in our case).

Consider, however, what actually happens to the
activation of such a perturbed example, for some

weight vector w:

wl'd =wlz + an
Notice that a well-chosen 1 (e.g. 7 = w) may
cause the activation to grow linearly with the size
of the weight vector! For our RNN, one sees that
the perturbation will propagate:

ht = O’(W:$t+U}~lt_1)

(Wi, + Wy + Uhy—1)

= U(W&?t + Wi + U(O’(Wi‘t_l + Wne—1 +

UU(W.ZZ’t_Q +Wni—a..)))

To determine the adversarial perturbation 7, we
use the “fast gradient clipping method” proposed
by Goodfellow et al. (2014). Let s be a training
example, W be our word embedding matrix, and
L(0, s,y) be the loss function for s given its true
label y. Adapted to our LSTM architecture, the
perturbation is:

n = esign(VwL(0,s,y))

Rather than actually creating adversarial examples
and training on them, we simulate this training by
modifying the objective function. Let « be the fac-
tor by which we wish to weight the adversarial
versions of the training examples. The modified
objective becomes:

L(#,s,y) = alL(b,sy)+

(1 —a)L(0,s+ esign(VwL(0,s,y))

For each word in the training data, we simulate
the creation of an adversarial example for that sen-
tence, and have the classifier balance the impor-
tance of correctly classifying the untainted exam-
ple and the adversarial example by a.

Implementation note: In order to construct this
cost function, we double the size of the compu-
tation, creating an entirely separate computational
graph for the first and second terms in L(6, s, y),
connected at the bottom by the word embedding
matrix and at the top by the cost function. We for-
ward prop both from the word embedding matrix,
but only backprop through the graph correspond-
ing to the first term.

4 Task Definition

We considered a variety of text classification tasks
such as language modeling, relation extraction,

and sentiment analysis. We settled on sentiment
analysis to avoid focusing on relationships of sin-
gle words, thus giving us more freedom to gen-
erate appropriate adversarial examples. Sentiment
analysis is also a heavily explored field with many
neural network architectures. We experimented
with recurrent neural networks (RNNs), long-
short term memory (LSTM) models, and CNNs.
However, we could not test CNNs.

4.1 Data

We chose the IMDB dataset (Maas et al., 2011)
which contains 50,000 sentences split equally into
training and testing sets. Each training instance
contains an entire review written by one individ-
ual. No post-processing is used; the dataset is used
as is. We also load pre-trained word embeddings
from Google Word2Vec’s Google News vectors of
100 billion words (Mikolov et al., 2013).

5 Methodology

5.1 Recurrent Neural Network

We implemented an LSTM-RNN with mean pool-
ing and softmax layers to map to output labels us-
ing the symbolic mathematical expression engine
Theano (Bastien et al., 2012). Our model is GPU
compatible although alas, the only GPUs availbale
to use did not cooperate.

5.1.1 Hyperparameters

In the ideal world, we would run parallel random
searches for hyperparameters on some cluster with
GPU. However, as this was beyond our research
budget (And the Farmshare machines didn’t coop-
erate), we finally copped out and picked somewhat
arbitrary hyperparameters (excepting alpha and
epsilon, which relate to the adversarial objec-
tive), based on the Theano LSTM example (Pierre
Luc Carrier, 2015). We did a manual search over
alpha and epsilon. The different hyperpa-
rameters for our model are:

1. wemb_init: How to initialize the word em-
beddings. They are either initialized with
word2vec (300D) or with each value drawn
uniformly from [0, 0.01] because of con-
straints mentioned above.

2. wdim: Word embedding dimension. For
word2vec vectors, this must be 300; oth-
erwise, we used 128.

3. max_epochs: Self-explanatory. Our model
terminates early if convergence is reached.
Defaults to 1000.

4. hdim: The hidden dimension of the LSTM.
We default to 128.

5. reg: The regularization on the weight ma-
trix. We default to 0.0.

6. 1rate: The learning rate. This is only used
if the optimizer is stochastic gradient descent.
We default to 0.01.

7. optimizer: The optimization algorithm.
May be stochastic gradient descent (sgd),
rmsprop, or adadelta. We default to
adadelta.

8. maxlen: The maximum length of sentence
to use in the training data. Sentences longer
than this are discarded or truncated. We de-
fault to 100; this results in train on ~10% of
the entire data set.

9. batch_size: The batch size for the batch
gradient descent.

10. weight-init: How to initialize the
weight matrix. We default to orthonormal
initialization, with pseudo-orthonormal ini-
tialization for overdetermined matrices.

11. clip: The magnitude to which to clip the
gradients. Gradient clipping is elementwise.
In a boldly arbitrary move, we default to 5.

12. adv: Whether to use the adversarial cost
function.

13. alpha: o from the adversarial objective
function, i.e. how many adversarial examples
to simulate, as a percentage of the training
corpus.

14. eps: e from the adversarial objective func-
tion, i.e. a constant proportional to the mag-
nitude of the perturbation.

5.2 Travails

As alluded to above, we built a GPU-compatible
system with 14 tunable parameters, and further-
more implemented a script to make random hyper-
parameter sweeps in parallel between adversarial
and non-adversarial models. However, we were

Table 1: Test and development set error given different values of € for o = 0.5.

€ 00 01 02 03 04 05 06 07 08 09 1.0 150
dev 0.14 0.00 0.15 0.12 0.16 0.14 0.14 0.16 0.14 0.16 0.14 0.13
test 0.19 0.00 023 024 0.19 0.18 020 020 0.22 0.18 021 0.17
average | 0.17 0.00 0.19 0.18 0.18 0.16 0.17 0.18 0.18 0.17 0.18 0.15

[Logistic regression|
i

h

Mean pooling

\
Xn

Figure 1: Our LSTM model architecture. (Pierre
Luc Carrier, 2015)

unable to access a machine that was capable of
running this hyperparameter search. Most of our
efforts focused on trying to work with the rye ma-
chines; those morbidly interested in our fate here
may enquire in person. Even the corn machines
tended to randomly cut off a few hours in.

As a result we ran all experiments locally, on
our laptops, with friendly hyperparameter settings
(i.e. the relatively low word embedding, hidden
dimension, and batch size described in the above
section.) Furthermore, due to the constraint on the
computing resources, we switched from a trunca-
tion to a filtering approach with our data, mean-
ing we discarded reviews longer than 100 words,
rather than truncating them, leading to utilizing
only 10% of our data.

6 Results and Discussion

Results for a variety of parameters for the adver-
sarial objective are summarized in Table 1, where
€ = 0.0 corresponds to the non-adversarial case.
Since we were not able to tune our hyperparame-
ters, our validation and test set may be considered
equivalent, and their average is presented in the
third row of the table. As one sees, we discover no
clear evidence that adversarial learning performs

better than the alternative. Our conclusion, how-
ever, is that these results are not sufficient to dis-
credit our approach, as they are flawed in several
senses. There are several reasons why this is the
case, all stemming ultimately from our inability
to sufficiently tune the net, which stems from our
lack of computing power. (See Section 5.2, “Tra-
vails”.)

The most important thing to note off the bat is
that the error is relatively high in all cases. Even
had we demonstrated that adversarial learning per-
formed better in this case, (say, an improvement of
20% to 18% average error), one would have had
trouble giving credence to this result. A support
vector machine could easily outperform either of
these models.

Furthermore, the results are quite noisy. Even
though the best adversarial model does outperform
the non-adversarial version, it is probable that is
by chance alone.

In this respect our results are disappointing.
However, one can still do some analysis of the ad-
versarial examples we spawned, and the coming
sections devote themselves to this. Furthermore
the architecture is in place to do more powerful
analyses, when the computing resources present
themselves to us.

7 Adversarial Visualization

We would like to visualize the adversarial exam-
ples produced by our system to interpret what’s
going on in a human-interpretable way. There is,
however, a hitch to this: when adversarial learn-
ing is applied to vision, it is easy to interpret what
an adversarial example means. A perturbed an im-
age is another image. Natural language, however,
proves to be more difficult. A perturbed embedded
word is some vector in the word embedding space
without any obvious correspondence to an English
word. This section details our approaches towards
dealing with this problem.

Table 2:

Progressively-improving visualization of a positive review.

original love it , love it , love it ! this is another absolutely superb perfor-
mance from the divine miss m. from the beginning to the end ,
this is one big treat ! don ’t rent,buy it now ! [-...]

KNN love conquistadors conquistadors love conquistadors conquista-
dors love conquistadors conquistadors conquistadors conquista-
dors conquistadors conquistadors drama.the daftness from the
conquistadors miss m. from the conquistadors to the con-
quistadors conquistadors conquistadors conquistadors pensacol-
ians conquistadors treat conquistadors daftness 't rent conquis-
tadors conquistadors conquistadors now conquistadors [conquis-
tadors...]

KNN top

5000 love quit , love quit , love quit passing quit quit quit absolutely
quit quit from the quit miss intentions from the quit to the quit
, quit quit quit quit treat passing quit ’t rent quit quit quit now
passing [quit...]

KNN top

5000+ scaled | love it , love it , love it ! quit quit quit absolutely ? quit from the

perturbation | ? miss intentions from the quit to the easily , quit quit one big
treat ! don 't rent UNK quit it now ! [quit...]

KNN top

5000+ scaled

perturbation | love it , love it , love it , this is another absolutely superb per-
+ bigram formance from the audience miss intentions from the quit to the
smoothing | end , this is one , treat ! don 't rent UNK quit it now , [quit...]

7.1 Aside 1: Why do some “original”
sentences look weird?

Occasionally, there are 1. UNK tokens and 2. odd
words in the original sentences in these tables. The
first is because we are looking at sentences from
the validation set, which may contain words not in
the vocabulary seen in the training set. The second
is because of the constriction of vocabulary for vi-
sualization described in 7.4.

7.2 Aside 2: A note on the sentence padding
token

In order to do batch gradient descent on variable
length reviews, we padded the ends of sentences
with a symbolic sentence padding token, which we
visualize as ‘-’. However, a curious thing happens
with this token in our visualizations. For a given
adversarial example, the sentence padding token
will have some nearest neighbor in the word em-
bedding space. Strangely, many perturbations of
normal words in example sentences go to the same
word. As an example, look at row 2 of Table 2.
The sentence padding token gets perturbed to be

closest to “conquistadors”. However, we also see
that the majority of the other words in the sentence
are also perturbed to be closest to “conquistadors’!
Why this happens is not clear to us.

Across all sentences, the sentence padding to-
ken tended to be perturbed in the direction of one
of about four words, which changed depending
on our word-frequency filter. Common examples
of padding-neighbors include ‘vick’, ‘recently’,
‘quit’, ‘horse’, ‘elephant’, ‘starbuck’, ‘scorpio’,
‘plausibility’ and ‘conquistadors’.

7.3 Nearest Neighbor Visualization

The simplest approach is to find the nearest neigh-
bor via cosine distance in word embedding space
to each perturbed example and reconstruct a sen-
tence out of these words. Representative results of
this approach are shown in the first row of the two
demonstration tables, 2 and 3. We see that these
visualizations are quite poor—or at least, it’s hard
to make any sort of sense of them.

There are several reasons why this approach
may yield such odd results:

Table 3: Progressively-improving visualization of a negative review.

original the movie was disappointing . the book was powerful . the views
and the learning of little tree were,portrayed in the book . the
movie just,along and finally,away . still a nice tale for kids . [-...]

knn the art-related was disappointing prohibits the rawls was coerced
prohibits the rawls elephants the prohibits coerced pasteur tree
elephants prohibits elephants recently the rawls prohibits the art-
related elephants prohibits along elephants finally prohibits ele-
phants prohibits prohibits a elephants tale elephants elephants
prohibits [elephants...]

knn top 5000 | the recently was disappointing recently the recently was recently
recently the views recently the — of recently tree recently re-
cently recently recently the recently recently the recently recently
recently along recently finally recently recently recently recently
a recently tale recently recently recently [recently...]

knn top 5000 | the movie was disappointing . the recently was powerful . the

+ scaled per- | views machine the learning of little tree machine UNK por-

turbation trayed in the recently . the movie just UNK along machine fi-
nally UNK recently . recently a nice tale for kids . [recently...
|

knn top 5000 | the movie was disappointing . the book was supposed . the views

+ scaled per- | machine the climax of little tree machine UNK portrayed in the

turbation book . the movie is how along and finally UNK recently . still a

+ bigram | nice tale for kids . [recently...]

smoothing

1. Rare words with mostly random distribu-
tional representations pollute the word space,
and many perturbations end up being closest
to them.

2. Word-by-word translation does not take con-
text into account. Furthermore, in high-
dimensional spaces, the top several neighbors
often have very similar distances. For one
run, for example, the top ten neighbors were
all at distance of around 4.3.

3. The direction of the perturbation may be
more important in terms of a human inter-
pretation of an adversarial example than the
example itself.

To deal with these issues, we made several fine-
tunings to our model.

7.4 Removing Uncommon Words

To address (1) above, we restricted ourselves to the
5000 most common words from the training data.
The second row of Tables 2 and 3 give an example
of how this change affected the decoding of our
adversarial examples. As one sees, this was mildly

helpful, and especially when the nearest neighbor
was the sentence padding token.

7.5 Scaling the Perturbation

To approach (2), we decreased the magnitude of
the perturbation until the reconstructed sentence
began to look more similar to the original sen-
tence. We tended to decrease the magnitude of
the perturbation until it was weighted by about
e = 0.005. This is significantly lower than the e
value we used for training, which was on the order
of e = 0.5.

Amusingly, however, this is very similar to the
differential in adversarial e presented in Goodfel-
low et al. (2014), who train with ¢ = 0.5, but
present the now-familiar panda-becomes-gibbon
with € = 0.007. The moral, one supposes, is that
the interpretation of this modification in the objec-
tive function is more of a heuristic story to explain
in general terms why it works better—the actual
algorithm takes this principle and exaggerates it
until it’s unrecognizable to humans.

Table 4: A plausible adversarial example.

original
sentence

shallow , shallow script ... stilted acting ... the shadows of 1990
UNK mob over the actors * heads in scenes ... worth watching be-
cause kate UNK plays the most selfish mother in tv movie history
and it ’s all before ben stretch got his teeth UNK .

adversarial
sentence

unbelievable , unbelievable script ... stilted acting ... the shad-
ows of nazis UNK intelligent over the actors * heads in scenes ...
worth watching because remarkable UNK plays the most imag-
ination mother in tv movie history and it ’s all before attached
remarkable got his summer UNK .

7.6 Bigram Weighted Interpretation

To deal with (3), we trained a bigram model on the
IMDB training corpus and incorporated it into our
decoder; see Algorithm 1. As seen from Tables 2

Choose first word in the sentence wq as usual;
Add wy as the first word in
decoded_sentence;

for each remaining word w; do

Find 20 closest neighbors to w; in word
embedding space (cosine distance);
Compute scaled log bigram cost

b(word;) =

n * log(bigram_frq(word;—1, ngh;))

for each neighbor ngh;;

Augment cosine distance to each neighbor
by its bigram cost;

Add the nearest word under this scheme

to decoded_sentence;

end

Return decoded_sentence;
Algorithm 1: Algorithm for training a bigram
model on the IMDB training corpus.

and 3, the bigram-weighted interpretation model
can help make the adversarial sentences more
interpretable, often snapping perturbed words
back to what they were before, if the perturbation
would otherwise be too linguistically infeasible.
Often, however, it does more harm than good,
and changes mildly-perturbed words to something
erroneous. As an example,

this movie will always be a broadway and music
classic

gets changed to

this movie will always be a copy and later classic

7.7 Interpretation of Adversarial Examples

Even with our best visualizations, it’s hard to tell a
good story about our adversarial examples. What
does it mean that the sentence padding token is
closest to ‘conquistadors’—how does that allow
the example to conquer our model?

Table 4 gives a pair of sentence and recon-
structed adversarial example into which we can
inject some measure of sense. Words that dif-
fer between the two are bolded in the adversarial
example. The original example is a negative re-
view, meaning that the adversarial review aims to
be classified as a positive review while still being
obviously negative to a human.

The resulting adversarial ‘review’ is highly am-
biguous, and is adversarial in the sense that, to a
human, it still seems moderately negative, while
containing positive words. It calls the script “un-
believable’, which could be a good thing or a bad
thing. The words substituted in tend to be nega-
tive words converted to positive (‘shallow’, ‘self-
ish’, — ‘intelligent’, ‘remarkable’, ‘imagination’;
‘nazi’ probably too in this case as people like to
give good reviews movies about the Nazis), but
none of the words is placed in a context such that
its positive connotation carries to the description
as a whole.

Of course, this may well be because it is mostly
nonsense. A scientist must be careful not to read
too far into this.

8 Understanding perturbations
themselves as relations between words

One of the most entertaining parts of the word-
vector story is how relations between words can
be exposed through simple vector arithmetic. In
the classic example by Mikolov et al. (2013), it

Table 5: Nearest neighbors among 1000 most common words to the adversarial perturbation of a sen-
tence. Each neighbor is the difference between two word vectors.

Sentence

Closest Relations

1 wouldn ’t rent this one even on dollar rental night

0. then-can
1. direction-everyone
2. <-best
3. fan-’ll
4. viewing-doesn

adrian UNK is excellent is this film . he makes a fascinat-
ing woman

0. shown-loved
1. shown-definitely
2. john-before
3. shown-live
4. such-before

this UNK horror film is probably destined to become a cult
classic . much much better than 90 % of the scream,out
there ! i even hope they come up with a sequel !

0. found-before
1. john-hollywood
2. shown-hollywood
3. rest-hollywood
4. such-hollywood

surprisingly well made little movie . short in length at
about 90 minutes . for a low budget movie , very well
made . plot is slow to unravel . cast is excellent especially
elizabeth van UNK as the girlfriend with UNK’s syndrome

0. wooden-lead
1. 3-thought
2. wild-seeing
3. wooden-understand

4. wooden-worse

was demonstrated that:
Vking — Uman =~ VUqueen — Vwoman

where v,, means the word vector corresponding
to word w. Using this as motivation, we posed
the following question: using arithmetic on our
learned word vectors, what can we say about the
relation between a word and its adversarially per-
turbed counterpart? Can we compare it to the rela-
tion between two known words? Mathematically,
we framed the question as: if the relationship be-
tween a word and its perturbed counterpart is sim-
ilar to the relation between some words = and z,
then:

Vo — Vwpgy R Vg — Uy

and from this arises the formulation:

Tw R Mg eV || (Vo — Vw,g,) — (Ve — v2)|[2,
Where r,, is a variable representing the relation-
ship between a word w and its perturbed counter-
part. Since (vy, — vy,) is the adversarial pertur-
bation, we note that this expression becomes:

where W is the word embedding matrix, and s is a
sentence. Note that this expression is constant for
each word in a sentence.

Some example results for this method can be
seen in Table 5. Since computing this relation
exactly is an O(|V|?) operation, we looked only
among words in the top 1000 most common words
in our vocabulary. One notes with regret that noth-
ing about these relations obviously makes sense.

9 Exploring perturbations by adding
them to common words

In a further attempt to bring some sense to these
relations, we thought to do some manual explo-
ration. Namely, since the adversarial perturbation
represents a relation between word vectors, then
by adding it to one word we may find another
word which bears the same relation to it as does
the word to its adversarial counterpart. Specifi-
cally, if we wanted to find the word = which bore
the same relation to “horse” as a sentence does to

Tw & Ming scv||esign(Viy L(8, s, y))—(vz—v;)||2, its adversarial variant, we can discover the closest

Example word | Example positive review Example negative review
good good, its, his it, in,’

bad worst, boring, played script, no, too

shallow importance, silly, summer boy, expect, photographed
fine did, gore, created it, before, movie
excellent world, amazing, perfect story, and, before

superb favorite, gore, though before, it, loved
outstanding gore, favorite, did it, before, movie
wonderful shows, world, perfect story, before, loved
powerful favorite, charming, others story, before, it
disappointing became, truly, truth script, no, getting

horse peace, sword, doomed story, has, he

Table 6: Top 3 nearest neighbors (among 1000 most common words) to artificially perturbed sentiment

words.

Positive review

Negative review

worst (72%)

script (78%)

boring (72%)

no (69%)

actor (15%)

too (30%)

waste (15%)

bad (24%)

awful (15%)

stupid (21%)

Table 7: A closer look at the data from Table 6: the most common nearest neighbors to the perturbation
of the word vector for the word “bad”.for perturbations from positive and negative reviews.

approximation Z to that word so:

Vw — Vwygy ~ Vz — Vhorse

= sign(VWL(G, S, y)) = Uz — VUhorse
= Uz = Uhorse + 51gn(VWL(9, S, y))
= I = argmin

zeV
|2 — (Vhorse + sign(Vw L(6, s,y))||2

In other words, the nearest neighbor to the vector
for “horse” plus the adversarial perturbation.

In our wildest dreams, the adversarial shove
might have captured something like the notion of
oppositeness, or perhaps have been a slight pres-
sure towards positive sentiment for negative re-
views, and vice-versa.

Table 6 demonstrates the results from this foray
on a variety of sentiment-related words. As one
fears, there is no obvious trend. One interesting
thing, however, is that bad gets strengthened to
worst for the positive review. This is mildly in line
with what one had hoped: for a positive sentence,
we hope that the adversarial push makes words
more negative (though hopefully in a non-obvious
way). Investigating this further, we noticed that
certain words tended to be shoved near different

neighbors depending on whether the training sen-
tence from which the adversarial push was gener-
ated was positive or negative.

As a case study, we looked at the word bad. For
100 sentences in the validation set, we recorded
the top three neighbors to its perturbed form. Ta-
ble 8 reports the top five neighbors over these
hundred sentences. The percentage listed beside
each word indicates what percentage of the sen-
tences had that word among their top 3 neighbors.
One sees that 72% of positive reviews contained
worst among the neighbors of the perturbed bad;
and in addition, the other nearest neighbors were
highly negative (excepting “actor”). The neigh-
bors to bad perturbed under a negative sentence,
on the other hand, are much more benign, and of-
ten aren’t a big enough perturbation to get closer
to any other word than bad. This lends credence to
the idea that the adversarial shove, whatever other
subtlety it might encode, serves to intensify the op-
posite sentiment of the review whence it was gen-
erated.

The above analysis is interesting, and proba-
bly has some validity to it. However, it is highly
anecdotal and on a very small sample, so a person
doesn’t feel massively confident putting to much

faith in it. One would love to revisit this sort of
analysis in a more principled, quantitative way.

10 Conclusions and Future Work

Our experiments do not demonstrate a clear ad-
vantage to using the proposed adversarial objec-
tive for sentiment classification, given our archi-
tecture. Our analysis of adversarial examples is
similarly weak. We postulate, however, that both
of these are largely results of the difficulties de-
scribed in section 5.2, and are willing to pursue the
matter further as soon as we have the resources to
do so more effectively. We have a strong frame-
work for testing and analysis, which will allow us
to do much more speedy analysis as soon as we
have something better to analyze.

The first next step, of course, is to run the hyper-
parameter search for both models (adversarial and
non-adversarial), and perform the various analy-
ses already detailed in this paper on the best mod-
els discovered. Following that, there are several
interesting avenues to explore. Using a different
architecture (e.g. CNN) or working on a different
task (e.g. paraphrase detection) would certainly be
useful. If the adversarial visualizations were effec-
tive, comparing adversarial examples from differ-
ent models for the same sentences might be espe-
cially interesting.

Another approach is to explore different ways
of encoding adversariality. One such method is
to create adversarial examples directly, rather than
simulating them with the modified objective func-
tion. As an example, for a training example = with
label y, one could create an adversarial example by
finding the closest vector (either sentence or word)
that would be assigned different label under our
model:

A
vaa = g (L, o) + e~ ol
x

(This formula borrowed from Andrej Karpathy’s
CS231 assignment 3).

11 Acknowledgements

Jon Gauthier not only conceived this idea, but also
helped us wade through Theano syntax, get the
system running on rye, advised us to disconnect
the gradient from the adversarial example, and in
short taught us everything practical that we never
learned as students.

10

Chris Manning, aside from making this entire
experience possible as the professor of the class,
also advised us in our quest to figure out what we
were doing.

And of course, thank you to the swarm of TAs
who either gave useful comments or were just nice
to be around.

References

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed im-
provements. arXiv preprint arXiv:1211.5590.

Tan J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Jonghoon Jin, Aysegul Dundar, and Eugenio Culur-
ciello. 2015. Robust convolutional neural net-
works under adversarial noise. arXiv preprint
arXiv:1511.06306.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 142-150. As-
sociation for Computational Linguistics.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In HLT-NAACL, pages 746—
751.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
Ken Nakae, and Shin Ishii. 2015. Distributional
smoothing with virtual adversarial training. stat,
1050:13.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2014.
Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. arXiv
preprint arXiv:1412.1897.

Kyunghyun Cho Pierre Luc Carrier. 2015. Theano

Istm tutorial.

