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Abstract

We extend existing question answering
(QA) system to deal with words that are
unseen or do not have enough examples
during training. Instead of learning word
embedding from scratch for a specific
QA dataset, we decompose the embedding
into two components: The first captures
the general semantic meaning of a word
and can be trained using readily available
large corpuses. The second component
reweights the general embedding so that
it is optimized for our QA tasks. The ad-
vantage is twofold. First, the number of
parameters to learn using the QA dataset
does not grow linearly with the size of the
vocabulary. Second, the system can be
easily generalized to unseen words by bor-
rowing the knowledge from outside cor-
puses.

1 Introduction

Teaching machines to read and reason on top of
natural language documents remains an elusive
challenge (Hermann et al., 2015). To measure
the progress towards this goal, (Weston et al.,
2015) recently proposed a set of proxy tasks (bAbI
tasks)1 that evaluate reading comprehension via
question answering. While the tasks are well-
defined and based on a unified underlying simu-
lation of a physical world, the tasks remain chal-
lenging as it requires the system to reason on top
of several supporting facts that are automatically
selected. For example, given the story:

John is in the playground.
Bob is in the office.
John picked up the football.

1https://research.facebook.com/
researchers/1543934539189348

To answer the question Where is the football?,
the system need to first infer that the football is
at the same location as John, and answer John’s
location from the story.

An important aspect to answer such questions is
to memorize the story and retrieve the relevant fact
given a question or query. In principle this is pos-
sibly achievable by a language modeler such as a
recurrent neural network (Hochreiter and Schmid-
huber, 1997), as these models are able to encode
a stream of words and use it to generate the de-
sired output. However, its memory is typically
too small to deal with longer story. To address
this problem, (Weston et al., 2014) proposed mem-
ory networks with explicit read and write opera-
tions and achieve significant improvement on the
synthetic bAbI tasks (Weston et al., 2015). This
model is further extended to be trained in an end-
to-end fashion (Sukhbaatar et al., 2015).

In this project, we are interested in bringing the
success of memory networks beyond the limited
vocabulary of the bAbI tasks (about 150 words),
and possibly to a wider range of questions. This
is in line with recent works (Hermann et al., 2015;
Hill et al., 2015) which apply memory networks or
neural network models to larger QA datasets be-
yond synthetic data.

Instead of directly training an existing model
on newer and larger datasets, we propose to ex-
tend the word embedding layers of memory net-
works so that models trained on synthetic dataset
with limited vocabulary can be easily extended to
story and questions composed of unseen words
during training. More specifically, we decompose
the embedding layers of memory networks into a
semantic embedding using GloVe (Pennington et
al., 2014) and another linear projection layer that
adapt the GloVe word representation to the QA
tasks.

As only this linear projection from GloVe to
memory networks is learned during our training,



the number of parameters to learn does not grow
linearly with the size of the vocabulary (already
handled by GloVe), and our model can be easily
applied to words that are unseen at training time
given its GloVe word representation.

2 Approach

The setting of our question answering problem
is as follows: First, the system is given a story
X = {xi} composed of a set of sentences. The
story contains the required information to answer
a question q. For each question q, the answer will
be a single word a in the vocabulary of size V .

2.1 Memory Networks

In this section, we briefly summarize the memory
networks (Weston et al., 2014; Sukhbaatar et al.,
2015).

Input memory. The given story {xi} is first
stored in the input memory as memory vectors
{mi}. This is achieved using an embedding ma-
trix A of size d × V where d is the dimension of
the memory vector. For the simplest bag-of-words
scenario, the memory vector is computed by

mi =
∑
j

Axij , (1)

where xij is the j-th word of the i-th sentence in
the story. Given a question q, it is first also embed-
ded using another matrix B into u.

The relevance pi of each memory vector mi

given the question embedding u can be computed
by

pi = Softmax(uTmi) (2)

comparing the memry vector against the question
embedding.

Output memory. Instead of using the weighted
memory vector

∑
i pimi directly as output repre-

sentation, the memory networks embeds the story
using another embedding matrix C to produce the
output. Again, the output vector ci is computed
by ci =

∑
j Cxij in the simplest bag-of-words

case. The final response from the memory is then
given as o =

∑
i pici. The idea is that the em-

bedding C should capture important information
in the story for output, while the embedding A
should extract informatoin for comparing the story
with the query.

Final prediction. The final prediction â is made
by a fully connected softmax layer

â = Softmax(W T (o+ u)) (3)

where W is the weight matrix of size d× V .
Such memory layer could be further stacked

and combined with temporal encoding instead of
the BoW representation to improve performance.
Please refer to (Sukhbaatar et al., 2015) for details.
Our implementation is based on their full model,
which is available online.2

2.2 Incorporating External Corpus

The embeddings A, B, and C and weight W pre-
viously introduced are all of size d×V , where V is
the size of the vocabulary. Effectively this means
that, given a new QA dataset, the system needs to
learn new embeddings and weight for each word
in the vocabulary from scratch. Without enough
or even any instance of a word in the training data,
the quality of the learned embeddings is limited.
While the synthetic bAbI dataset can potentially
generate infinite example, the vocabulary size is
still limited (about 150 words).

To tackle real world question answering, a
promising direction is to collect QA datasets of
much larger scale (Hermann et al., 2015; Hill et
al., 2015). In this project, we pursue a differ-
ent strategy that tries to incorporate knowledge ac-
quired from other readily available datasets. Take
the embedding A as example, we can decompose
the d× V matrix into

A = PAE, (4)

where E ∈ Re×V is the semantic word em-
bedding that captures the general meaning of the
word, and PA ∈ Rd×e is a linear project that
adapts the general semantic embedding to specific
purpose of A.

The embedding E can be trained using
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014) using large online corpus.
Specifically, we use GloVe trained on Wikipedia
2014 + Gigaword 5, and the dimension e = 100.

The project PA is of a fix size d × e indepen-
dent of the size of the vocabulary. And can be
robustly estimated with more training data in the
QA dataset. This significantly reduces the number
of parameters to learn. Furthermore, As only PA

2https://github.com/facebook/MemNN



is required to be learned during training, the em-
bedding A = PAE can be extended to arbitrary
vocabulary given the embedding E. The embed-
dings B, C and weight W can also be decomposed
simiarly.

Optimization. We derive backpropagation of PA

so that it can be optimized together with the rest
of the network. In this case, we can assume that
the gradient for A is given. Let L be the loss, then
our task is to derive ∂L

∂PA
given ∂L

∂A . For clearer
presentation, we use P as PA in the derivation.
First we have

∂L
∂Pij

=
∑
m

∂L
∂Aim

∂Aim

∂Pij
(5)

because Pij will only contribute to Aim. By defi-
nition we have

Aim =
∑
j

PijEjm (6)

⇒∂Aim

∂Pij
= Ejm (7)

⇒ ∂L
∂Pij

=
∑
m

∂L
∂Aim

Ejm (8)

⇒∂L
∂P

=
∂L
∂A

ET . (9)

The gradient for PB , PC and PW can also be
derived similarly.

3 Experiments

3.1 bAbI Tasks Accuracies

First we compare the performance of our em-
bedding to the original end-to-end memory net-
works (Sukhbaatar et al., 2015). The error rates
are shown in Table 1. MemN2N (Sukhbaatar et
al., 2015) is the original end-to-end memory net-
works with three layers of memory. Here 3 hops
means three layers of memory and 1 hop means 1
layer of memory.

In general incorporating the semantic embed-
ding trained on outside dataset makes performance
worse. This is understandable as some words that
should be discriminated are forced to have similar
word vector in our model. For example, an impor-
tant cue for question answering system to pick the
correct supporting facts is to recognize the subject
in the question. However, most of the subjects in
the dataset, such as “Jeff” and “John”, have simi-
lar GloVe representation, and therefore it is harder

Task MemN2N
1hop

Ours
1hop

MemN2N
3 hops

Ours
3 hops

1: 1 supporting fact 0.8 0.5 0 0.2
2: 2 supporting facts 62 82.5 19.7 69.6
3: 3 supporting facts 76.9 78.1 29.2 70.2
4: 2 argument relations 22.8 25.9 10.5 29.6
5: 3 argument relations 11 15.8 14.4 16.7
6: yes/no questions 7.2 36.9 2.1 36.2
7: counting 15.9 17.4 16.8 22.5
8: lists/sets 13.2 12.4 10.9 16.4
9: simple negation 5.1 26.4 2.4 27.1
10: indefinite knowledge 10.6 41.4 6 40.4
11: basic coreference 8.4 19.9 1.5 14
12: conjunction 0.4 1.2 0 0.8
13: compound coreference 6.3 5.8 0.5 6.3
14: time reasoning 36.9 44.9 5.1 33.6
15: basic deduction 46.4 71.5 8.3 59.9
16: basic induction 47.4 51.2 0.8 51.4
17: positional reasoning 44.4 52 44.2 48.9
18: size reasoning 9.6 37.6 8.7 50.1
19: path finding 90.7 91.5 86.9 89.6
20: agent’s motiation 0 0.5 0.2 0.1
mean error 25.8 35.7 13.4 34.2

Table 1: Error rates for different models. Lower is
better.

for our system to reason on top on sentences in-
volving several subjects.

A closer inspection shows that our 3 hops sys-
tem is performing well for tasks that only involve
one supporting fact, such as “1 supporting fact”
and “conjunction”. This means that it is harder
for our system to have different behavior in differ-
ent layer of the memory. This is verified by the
fact that the learned input embedding of our sec-
ond and third memory layers are much more cor-
related (correlation coefficients 0.4503) than that
of MemN2N (correlation coefficients 0.1280).

It should be noted that our 3 hops performance
with the embedding is indeed similar to our 1
hop performance, which is again similar to 1 hop
MemN2N except a few tasks.

3.2 Handling Unseen Words in Story

3.2.1 Hypothesis
We then conducted the core experiments of our in-
vestigation, changing some of the vocabulary in
the testing dataset such that those changed words
have never occurred in the training corpus and they
share high similarities with the original words in
terms of human common sense. In this sense,
those modified words have never been seen by the
End-to-End Memory network, as a result, we ex-
pected that our improved model would perform
better than the original model using only one-
hot representation because our model tends to
preserve the information of similar words using
Glove. Take a look at the one supporting fact ques-
tion answering task as an example as shown be-



low:

Mary journeyed to the restroom.
Daniel went back to the restroom.
John moved to the bedroom.
Where is Mary? bathroom

We changed the word “bathroom” in the sup-
porting facts to “restroom” in the testing task, such
that in common sense these two words are actu-
ally meaning the same thing, and of course, having
high word similarity in terms of their word vectors
generated by Glove. The original model only us-
ing one-hot representation would fail to identify
this whole new word, resulting in worse perfor-
mance by a significant drop compared to the orig-
inal non-changed testing dataset. And to a hu-
man, we can logically refer the word “restroom”
to “bathroom” due to their identical meaning, so
we can easily verify that the answer in this case
is correct. Our proposed model having knowledge
base from the entire wikipedia as the word embed-
ding is capable of doing this type of task and still
perform well. The word modification experiments
that we conducted and their corresponding numer-
ical results are shown in Table 2.

3.2.2 Experiments
Since the vocabulary for each task is actually rela-
tively small, we could only choose from very lim-
ited words to test our method and verify our hy-
pothesis. After some simple statistics, we picked
words that were fundamental and essential for the
entire question answering task, and replaced them
with very similar or even identical words. Ob-
serving the results, it is easy to notice that, com-
paring to the results from Table 1, the perfor-
mance of MemN2N, the original model, have been
damaged significantly when some essential words
have been modified. We mainly picked the tasks
that even using the orginal training dataset, our
proposed model can still perform relatively well,
even though no better than the original MemN2N,
namely, qa1, qa5, qa12, qa13, qa20. Our model
out performed the original one in task qa1, qa12,
qa13, and qa20. If the words are used as some
of the answers, like bathroom or office, the per-
formance varied a lot between MemN2N and our
model, since they’re exactly the vital information
for in those supporting facts. Those words are
usually noun or noun phrase. Interestingly, even
verbs can affect the overall outcome, in qa20 we

Task word new word Mem2N2N Ours
qa 1 bathroom restroom 12.5 1.21
qa 1 bathroom toilet 14.11 1.01
qa 1 office workplace 15.93 6.45
qa 12 bathroom restroom 17.74 2.22
qa 12 office workplace 10.81 6.35
qa 13 bathroom restroom 12.60 7.56
qa 13 office workplace 15.83 12.5
qa 20 hungry starving 13.21 7.06
qa 3 bathroom restroom 54.53 76.41
qa 5 bathroom restroom 13.01 17.14
qa 5 office workplace 11.59 17.64
qa 2 bathroom restroom 12.5 82.26

Table 2: Error rates for vocabulary modification.

tested if we change hungry to starving, meaning
very much the same situation of a character, and
our model outperformed twice as good as the orig-
inal one. For task qa2, qa3, and qa5, our model
failed to beat the MemN2N, since multiple sup-
porting facts require using longer term memory,
and the exact words are crucial to the overall per-
formance. But if the vocabulary size of the test-
ing dataset is actually as large as our knowledge
base, wikipedia or some equivalent base full of
plenty information, the very limited one-hot rep-
resentation of MemN2N will fail to generalize the
result. We viewed this flexibility for word embed-
ding with different testing task very vital since this
will actualize the real AI-Complete Question An-
swering system.

3.3 Extension to

Our model can actually extend the output matrix
W to output vector of any size, as long as it doesn’t
exceed the total size of the vocabulary we have
from our corpus when training the Glove. In such
sense, we can observe what are the words that the
top k scores of the output vector represent. We ex-
tracted a single self-contained story from the test-
ing dataset, and observe what will be the resulting
output vector for the final question answering task
for such chosen story. We conducted the exper-
iments on qa1, qa12, and qa13, since they show
the largest difference between the performance of
MemN2N and our model in the previous section.
The following blocks show the results correspond-
ing to qa1, qa12, ans qa13, respectively. In the first
block, which extracted a qa task from qa1 test-
ing dataset, with the answer be bathroom in the
particular example. The most accurate answer is
denoted with color blue, the nine other words in
color pink is the top 2 to 10 candidate words in
our output vector W, and it’s interesting to notice



that those words would share similarity with the
answer itself. There are words such as restroom,
lavatory, and toilet. In the second and third blocks,
the results are as well showing the word with high-
est score as the answer, and the following top 2 to
10 words as possible candidate answers. One thing
worth paying attention is that these minor answers
were never occured in the training dataset. In other
words, the memory network have never seen them,
so it’s impossible for the original model only using
MemN2N to generate such results. Our model is
capable of dealing with this task and can be fully
generalized to any size of output vector. This gives
the QA system with much more flexibility and en-
ables possible usages that the training are omitted
with some certain information, making the entire
system more AI-Complete and even smarter.

The following are the mentioned experiments,
blue colored words are the exact answers and ma-
genta colored words are other top2 to 10 candidate
words.

Mary journeyed to the bathroom.
Daniel went back to the bathroom.
John moved to the bedroom.
Where is Mary? bathroom
restroom, lavatory, toilet, bathrooms
cubicle, ensuite, bathtub, cubicles, workroom

QA1

Mary and Sandra went to the bathroom.
Daniel and John journeyed to the hallway.
Where is Mary? bathroom
Mary and John moved to the bedroom.
John and Sandra travelled to the office.
Where is John? office
offices, sub-post, residence, pmo, bureau
municipal, headquarters, deputy, midtown

QA12

Sandra and Daniel journeyed to the garden.
Then they went to the bedroom.
Where is Sandra? bedroom
offices, sub-post, residence, pmo, bureau
municipal, headquarters, deputy, midtown

QA13
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