Classifier Based Machine Comprehension

Qiaojing Yan
SU ID /06000158
giaojing@stanford.edu

Abstract

In this report we implement a machine
comprehension system, and train and test
it on the MCTest dataset (Richardson
et al., 2013). We treat it as a classi-
fication problem. We use baseline fea-
tures and syntactic features to compute the
score for each candidate answers. We also
used a set of NLP techniques, including
word embedding, coreference resolution
and lemmatization to improve the perfor-
mance of our features. We train our sys-
tem using a max-margin loss function with
a latent variable. Our result shows signif-
icant improvement over the original base-
line.

1 Introduction

To understand text as well as human is one major
goal of natural language processing. Traditionally,
Turing test had been used to measure the intelli-
gence of an Al system. However, it over empha-
size the system’s behaviorial similarity compared
to human. Other tasks had been proposed by the
academic community to measure the progress of
machine comprehension, such as information ex-
traction, relation extraction, semantic parsing and
textual entailment. However, these techniques are
evaluated individually and does not show clearly
how much we advance towards real text under-
standing. To provide a better measurement of
NLP intelligent system performance, Richardson
et al. (2013) proposed a MCTest, which tests ques-
tion answering based on short passages. The pas-
sages are fictional stories and their complexities
are limited to those that a young child could under-
stand. A related test, bAbI, had been proposed by
Weston et al. (2015). They proposed a set of pre-
requisite toy tasks which should be solved before
any NLP system can truly understand text. In this

Yixin Wang
SU ID /06047182
wyixin@stanford.edu

paper, we focus on the MCTest, and try to build a
classifier machine comprehension system to do it.

2 Related Work

In the paper introducing the MCTest, Richard-
son et al. (2013) showed two baseline algorithms.
The first baseline used a sliding window and they
matched the words in the window with the bag of
words constructed from the question and a candi-
date answer. To take into account long range de-
pendencies, they added a word-distance based al-
gorithm. Their simple baseline performed surpris-
ingly well on the MCTest.

Smith et al. (2015) improved upon the baseline
by building a multi-pass system which increase
its window size on each pass, from 2 tokens to a
length of 30 tokens. By carefully tuning the de-
tails of the system(For example, they do corefer-
ence resolution selectively.), they achieved an ac-
curacy 5% higher than the baseline.

Sachan et al. (2015) assumed that there is a
hidden structure between the question, correct
answer, and text. They used a latent struc-
tural SVM (LSSVM) to learn the latent answer-
entailing structures that helps answer questions
about a text.

Wang et al. (2015) used a max-margin classifier
to predict the correct answer. Their classifier inco-
operates syntactic features. They transform each
question answer pair into a statement. They com-
pared the dependency tree of the statement to each
sentence in the passage. They also used frame se-
mantics and word embeddings as features. They
stated in their paper that their score is the highest
among published results.

In this paper, we follow the work of Wang et
al. (2015) and build a classifier based machine
comprehension system. Our system focus on the
questions that require only one sentence in the pas-
sage to answer. We incorporate both lexical fea-
tures and syntactic features.

3 Task Description

MCTest is a multiple-choice question answering
task on fictional stories written by human. The
dataset is open-domain. However, the complex-
ity of the story is restricted to concepts and words
that a 7 year old could understand. One example
is shown in figure 1. Each question has four can-
didate answers and there is only one correct an-
swer. Before the question, “one” means the an-
swer is dependent only on one sentence in the pas-
sage, while “multiple” means it needs to be de-
duced from multiple sentences. The dataset con-
sists of two subsets, MC160 which has 160 stories,
and MC500 with 500 stories. Each story has four
questions. Each subset is divided into training set,
development set and test set.

Billy went to the farm to buy some beef for
his brother’s birthday. When he arrived there
he saw that all six of the cows were sad and had
brown spots. The cows were all eating their
breakfast in a big grassy meadow.

(i) One: What did Billy buy at the farm?
A) Beef

B) Chicken

C) Cows

D) Fence

(i) Multiple:What color were the spots on the
cows?

A) Blue

B) Brown

C) White

D) Black

Figure 1: One example from the MC Test

4 Classifier Model

For the MCTest, We denote each story text as a
passage P, and W is the set of sentences in the
passage. w € W denotes one sentence in this
passage. The related questions ¢’s each has four
options denoted as a,,(m = 1,2,3,4). Follow-
ing the work by Wang et el. (2015), we predict the
answer @ using:

G = arg max max 0" f(P,w, q,am) (1)

In the equation, f is the feature extractor, and 6 is
the parameter that is to be learned during training.

To learn the 6, we minimize a max-margin loss
function that is l»-regularized:

n
:)\02 o QT Pz i1
i MO+ 3 (g P ')

(g 0Pl)+)
(2)

In the equation, a’ is the correct answer.
A(a,a’) = 1if a = a’, and equals 0 otherwise.
w is a latent variable indicating which sentence
in the passage the feature corresponds to. This
optimization problem takes the form of structural
SVM with latent variables. Because of this,
gradient descent does not converge. During im-
plementation we originally adopted the gradient
descent approach and encountered some conver-
gence problems, thus we revised the approach
and took the Concave-Convex Procedure (CCCP)
as described in (Yu and Joachims, 2009). In this
case, it can be proved that CCCP is equivalent to
the following procedure:

Algorithm 1 CCCP algorithm
1: procedure CCCP

2: Initialize 6 to random value;

3 for iterationt = 1,2,...,7T do
4: Step1 Holding @ as fixed,
5 optimize the concave term:
6 ming Y ;"4

(_ maXyew eTf(Pl) w, qi7 ai))’

finding optimum w;
Step2 Holding w as fixed, optimize

9: the convex term (which is the rest of
10: this equation) using gradient descent,
11: finding optimum 0;

12: end for

13: end procedure

It can also be proved that in each update of w
and 6, the objective function is decreasing, and
thus it will converge eventually. We fine tune the
hyper-parameter A for regularization term on the
development set. The parameter giving the best
performance varies among feature sets, and will
be discussed later.

5 Features

As stated in section 4, our feature extractor takes
in (P%, w, ¢', a) and produces a set of features. In
our system, some features depend on w, which
means they depend on a particular sentence in the
passage, and are functions of (P?, w, ¢*, a). Other
features do not depend on w, and are functions of
(P, ¢, at).

5.1 Baseline Features

We use the baseline feature reported by Richard-
son et al. (2013). The algorithm has been ex-
plained in section 2. Their original feature was
only a function of (P? ¢’,a’). In our work, we
also use corresponding sliding window and dis-
tance features which set the window to a par-
ticular sentence in combination with their orig-
inal feature. Our new feature are functions of
(P',w,q", a).

5.1.1 Sliding window bag-of-words feature

This feature matches the bag-of-words feature of
the question and proposed answer pair with the
passage (2013), and the intuition is that the more
match the better. Besides this, we have also imple-
mented a slightly modified sliding-window bag-
of-words feature, which is calculated in the same
way as this feature, except that it is calculated
sentence-by-sentence.

5.1.2 Distance punishment

This feature measures the minimum number of
words between any words in question stem and
any words in proposed answer, with stopwords re-
moved. We used the stopword list provided by the
MCTest database which contains 582 stopwords.
Similar to what we did with the sliding-window
bag-of-words feature, we also implemented a
sentence-by-sentence variation of distance punish-
ment feature.

5.2 Syntactic Features

For syntactic features, we first convert each ques-
tion answer pair into a statement. In figure 2 are
some real examples. Then we compare the depen-
dency tree of the statement to that of a sentence in
the passage.

5.2.1 Statement

We use a rule based system to transform each
question answer pair into a statement. The system
work as follows:

Question: Who is the character that is fat
and is being bullied?

Choice: Alex

Statement: Alex is the character that is fat
and is being bullied.

Question: ~ Why did James stand up to the
bullies?

Choice: He wanted to protect himself.

Statement: James stand up to the bullies be-
cause He(he) wanted to protect
himself.

Question: What does the main character
say her dad looks like on the
ground?

Choice: A bear

Statement: the main character say A bear
her dad looks like on the ground.

Figure 2: Example of converting question answer
pairs into statements

(i) Labeling and parse the question sentence, find
the wh-word c and the root word r in the collapsed
dependency tree. The wh-word that our system
covers are {what, who, why, when, how, where,
which}.

(i1) Use a set of rules to transform question answer
pair into statement. The original rules reported in
(Wang et al., 2015) sometimes does not generate
the correct statement. We improved upon their
system and developed our rules:

e ¢ =what, POS(r) € {VB, VBD, VBP}
If dobj(r, c): Find word w that satisfies
nsubj(r, w). Delete ¢ and insert answer a af-
ter r.
If nsubj(r, ¢): Replace ¢ with a;

e ¢ =what, POS(r) = WP
Replace c with a.

e ¢ =what, POS(r) = NN
If nsubj(r, ¢): Replace c with a.

e ¢ =which
Delete the word after c. Replace ¢ with a.

e ¢ =where, POS(r) € {VB, VBP}
If advmod(r, ¢): Find word w that satisfies
dobj(r, w). Delete ¢ and the word after it.

Insert a after w, or insert a after r if w is not
found.

e ¢ = where, POS(r) = NNP
If advmod(r, c), delete ¢ and the word after
it. Insert a after r, and insert the word after ¢
between 7 and a.

e ¢ = who, POS(r) € {VB, VBD, VBG} If
nsubj(r, ¢), replace c with a.

e ¢ =who, POS(r) = WP
Replace ¢ with a.

e ¢ =how many
Replace ¢ with a.

e c=how, POS(r) = VB
Find word w that satisfies nsubj(r, w). Delete
words before w. Insert answer a after w. In-
sert “to” between w and a.

e c=why
Delete ¢ and the word after it. Append an-
swer a after the question sentence. Insert “be-
cause” between question sentence and a.

The above set of rules can transform a wide range
of questions into statements. However, due to the
variaties of the form of questions and answers,
sometimes our StatementFactory produce gibber-
ish, such as the last example in figure 2.

5.2.2 Feature

For syntactic feature, we use dependency parsing
on both the statement and each statement in the
passage. We count the common dependency arc
that are used both in the statement and passage
sentence as our feature. We denote each edge in
the dependency tree as r(u, v). Here u is the root
word, v is a child word, and r is their dependency
relation. Suppose the dependency tree of the state-
ment has an edge r(u, v), and the dependency tree
of a sentence in the passage has r’'(u’,v"). These
two edges are equal if u = v/, v = vandr’ = r.
For the syntactic feature, we count the number of
edges that the statement and sentence both have.

5.3 Enhancing Features

To make our features better, we use a set of tech-
niques to improve their performance.

5.3.1 Coreference Resolution

Because of the inherent nature of our classifier that
it assumes the answer of a question is based on a
single sentence in the passage, it is hard for our
system to answer questions depending on multiple
sentences. The intuition is that coreference reso-
lution could bring in some information from other
sentences to improve performance. We use the
rule-based multi-pass coreference resolution sys-
tem implemented in (Lee et al., 2011), and substi-
tute words in the passage with the cluster center
of a coreference chain. For example, the sentence
”But before he did anything he had to fix the toi-
let.” becomes “But before Tom did anything Tom
had to fix the toilet.” after substitution.

5.3.2 Lemmatization

Word in passage and word in question may have
different forms. For example, “came” in a pas-
sage sentence ’Soon her friend Lion came over”,
and “come” in the question "Who didn’t come to
the party?”. So we use lemmatization to capture
words that have the same base form.

5.3.3 Word Embeddings

To capture the meaning of the word and to recog-
nize words that are close in meaning, we also use
word vector to represent word. The word vector
has dimensionality of 300. We calculate the in-
ner product cos(word;, wordsy) between word vec-
tors. If two words are same, their inner product
is 1. Otherwise, it is less that 1. The inner prod-
uct reflects how close two words are. For the slid-
ing window feature, the sum of all word vectors in
the window is v, and the sum of word vectors in
the question and candidate answer is v,. We use
cos(vs, vq) as our feature.

5.3.4 Dealing with Negations

Sometimes the question has the form of negation.
For example, the first question in figure 4. In this
case, we need to negate the score of each option.
Following the method of Wang et al. (2015), if a
question contains “not” or "n’t” and does not begin
with "how” or why”, we identify it as negation.

6 Experiments

We use the Stanford CoreNLP API (Manning et
al., 2014) in our program to do

(1) tokenization and lemmatization,

(2) sentence splitting,

(3) part of speech tagging,

(4) constituent parsing,
(5) dependency parsing,
(6) coreference resolution.

To obtain the word vector, we use the pre-
trained word embedding data from the word2vec
site! . This set of pre-trained word vectors has a di-
mensionality of 300.

Our source code can be found on github?.
The TaskReader class object reads both the
training and development dataset. Then the
training set and correct answers are fed into a
ClassiferBased MC system to train the pa-
rameters. After that, development set are fed to the
trained classifier and predicted answers are pro-
duced. The classifier has a list of Featurizer
objects, which is used to derive features. The
StatementFactory class is used to con-
vert question answer pair to statement, which is
then used in SyntacticFeaturizer. The
WordEmbeddingDict is used to find the word
vectors.

6.1 Training

For training, we combined the data in MC160
training set and MCS500 training set. We then
tune our parameters using the MC160 and MC500
development set. The final test is performed on
the MC160 test set and MC500 test set. We fine
tuned parameters on the dev set. The learning rate
a = 0.0001.

1326 - T - - — . - —

1924 1

. L L n 1 —
1500 2000 2500 3000 3500 4000 4500 5000
iteration

Figure 3: Minimization of Loss function as the
number of iteration times grows during training,
until convergence

Figure 3 illustrates the decrease of loss function

'https://code.google.com/p/word2vec/
*https://github.com/qiaojingy/MC

during training. There are some discontinuities as
the loss reduces. These discontinuities are yielded
by step I of Algorithm 1, i.e. optimizing the con-
cave term. The CCCP algorithm guarantees that
loss function is decreasing in every step until con-
vergence.

7 Analysis

In this section, we describe the accuracy of
different feature combinations on development
and test set, then we do error analysis to see how
each feature works.

We denote sliding window bag-of-words fea-
ture as B, distance punishment as D), syntactic
features as S, bag-of-words similarity mea-
sured by word vector cosine similarity as BY,
sentence-by-sentence bag-of-words feature as
B?, sentence-by-sentence distance feature as
D?, bag-of-words feature with lemmatization as
B!, and distance feature with lemmatization as D'.

7.1 Performance result summary

The performance of different feature sets on devel-
opment and test set is listed below. ”One” refers to
the performance on questions that depend on one
sentence, "Multiple” refers to the performance on
questions that depend on multiple sentences, and
”All” refers to the performance on the entire set.

7.2 Successes

7.2.1 Feature Set 1

Feature set: {B,D}

With bag-of-words and distance punishment fea-
tures, the accuracy is 0.5781 on dev set, and
0.5333 on test set(A = 0.1). The feature weights
are [0.7431,—0.3298] for B and D features, re-
spectively, which makes perfect sense because for
B feature, the larger the matching set, the more
likely it is to be the desired answer, and thus it
bears a positive weight. On the other hand, for D
feature, the fact that a question word and an an-
swer word have a large distance in the passage is
not a good sign because it usually indicates that
they are less related, and thus it bears a negative
weight.

Feature set 1 can answer many easy questions
right.

e.g.

what was Sammy barking at?

A.a dog; B.a cat; C.a bug; D.a toad”

One Multiple All

Feature Set dev test dev test dev test
B+ D 0.6259 | 0.5390 | 0.5414 | 0.5328 | 0.5781 | 0.5333
Bl + D! 0.5899 | 0.5964 | 0.5690 | 0.5373 | 0.5781 | 0.5643
B+ D'+ 8 0.6115 | 0.6250 | 0.5912 | 0.5548 | 0.6000 | 0.5857
B'+ D'+ S+ B 0.6187 | 0.6224 | 0.6022 | 0.5417 | 0.6093 | 0.5786
B+ D'+ S+ B*+D° 0.6403 | 0.6588 | 0.5525 | 0.5636 | 0.5906 | 0.6071
B+D+ S+ B'+D'+BY [0.6331 | 0.6250 | 0.6022 | 0.5504 | 0.6156 | 0.5845
B'+ D'+ S+ B*+ D+ B" | 0.6536 | 0.6380 | 0.5570 | 0.5329 | 0.6012 | 0.5810

Table 1: ClassifierBased perf. on dev and test set

(gold answer: D)

This question corresponds to the sentences in the
passage:

“When they got to the fishing hole Sammy ran
over to a rock and started barking with his hair
standing up. Tommy ran to see what Sammy had
found. Under the edge of the rock was a huge
green toad”.

The matching of “’barking” and “’toad” makes an-
swer D more likely, however, the word ”dog” also
appeared in the passage, making answer A more
likely. But because the word distance from ~’dog”
to ”bark” is farther than that of ”bark™ and "toad”,
the distance punishment pulls the score of answer
A down, reavealing the correct answer. How-
ever, this baseline feature set has lots of problems,
which will be discussed later as we add more fea-
tures.

7.2.2 Feature Set 2

Feature set: {B',D'}

Feature set 2 uses the same set of features as
feature set 1, but uses lemmatization to cope
with the issue of mismatch of two words because
of word forms when they are indeed the same
word if converted to base form. The accuracy is
0.5781 on the dev set and 0.5643 on the test set
(A = 0.1). The weights of B! and D' features
are [0.8777,—0.1798] respectively, which makes
sense based on the same reasons as described in
section 7.1.

Feature set 2 works better than set 1 when there is
a change in word form.

e.g. What color are our plates?

A.red; B.white; C.blue; D.green”

(gold answer: C)

This question corresponds to the sentence in the
passage “Each plate is blue”. Feature set 1 gives
the incorrect answer B. It regards plate” and

“plates” as totally different words, and because
both “white” and ’blue” appeared in the passage,
it picks “white” which appears earlier. However,
Feature set 2 is cleverer on this, for it knows
”plate” and “plates” are the same by comparing
them in base form, thus reaching the correct an-
SWer.

7.2.3 Feature Set 3

Feature set: {B',D',S}

Feature set 3 adds syntactic feature which cap-
tures the structure of sentences. the accuracy is
0.6000 on the dev set and 0.5857 on the test set
(A = 1). The weights of B!, D! and S features
are [0.7743,—0.1928, 0.1445] respectively, which
makes sense because the more similar the stem-
option statement is in dependency structure to an
original sentence in passage, the more likely it is
the correct option.

Feature set 3 works better than set 2 especially
when there are "wh-" questions of which the re-
sponse is a sentence.

e.g. Why did the boy pick an instrument?

A.His brother played an instrument;

B.He thought guitars were cool;

C.His parents thought it was important;

D.He wanted to join the school band.

(gold answer: C)

This question corresponds to the sentence in
the passage “His parents wanted him to pick a
good one because playing an instrument was very
important to them”, the StatementFactory
class returns a new statement which gets rid of
word “why” and glues stem with options adding
the word “because”. The new statement is sim-
ilar to the corresponding sentence by both having
prepositional “because” arc, auxpass arc with ’is”,
etc. Thus system with Feature set 3 was able to re-
turn the correct answer C. On the other hand, fea-

ture set 2 incorrectly returned D because the word
”band” frequently appeared in the passage. In this
type of cases as described above, syntactic features
can improve accuracy.

7.2.4 Feature Set 4

Feature set: {B',D',S,B"}

Feature set 4 uses word embedding, and adds
measurements of word distance using the co-
sine similarity of two vectors so as to better
compare between words. The accuracy is
0.6156 on the dev set and 0.5786 on the test set
(A = 10). The weight of B!, D!,S,B" features
are [0.6996, —0.1434,0.1454, 0.46426, 0.0344]
respectively (where B" feature has 2 dimen-
sions), which makes perfect sense because for
BY feature, the closer the stem-option summation
vector is to the target sentence summation vector,
the better, and for other features, the reasons has
been discussed above.

Word vector embedding enables us to measure
the distance in meaning between two words. It
models meaning better than any other features
here, and thus it can capture some surprisingly
subtle implications in comprehension, as is shown
in the example below.

e.g.Did Ashley and Ethan catch any fish?If so how
many?

A.Two; B.One; C.Three; D.No

(gold answer: D)

Surprisingly, Feature Set 4 is able to find the exact
corresponding sentence in passage "w = 19 :
Even if they didn’t catch anything”, and return the
correct answer! This might be because ”anything”
and “no” are close to each other in terms of word
vector similarity, but are completely different
words for other features. In this example, Feature
set 3, which does not have word embedding,
returns some random sentences “w = 0 : The day
was sunny and warm”. However, in general word
embedding feature has caused slight decrease
in accuracy, which might be caused by some
confusion caused by word vector.

7.2.5 Latent variable w

The latent variable w in our classifier model de-
notes which sentence in the passage can tell us
the answer to a question, i.e., the sentence in the
passage that a stem-option pair correspond to, and
during testing, we found that our system is able
to find the right sentence in many cases. Because

only Syntactic feature .S is relevant to finding op-
timum w.

e.g. The girl and her dog went walking into what?
A A field; B.The woods; C.A park; D.A garden
(gold answer: D)

Sentence found: w = 1 : The young girl and her
dog set out a trip into the woods one day.

This indicates that syntactic feature, as well as B*
and D,, features have been successful in capturing
the similarity between passage sentence and ques-
tion answer pair.

7.3 Failures

When dealing with dev and test set of MCTest
dataset, we found that the test set is generally more
difficult than the dev set, and that some features
that has brought considerable improvement of per-
formance on the dev set could even lead to depre-
ciation of performance on the test set.

7.3.1 Coreference Resolution failure analysis

We found out that adding coreference resolution
decreases accuracy by around 5% for almost ev-
ery set of features. This might be because corefer-
ence resolution is not always correct, and that its
mistakes might have cascaded to mistakes of de-
pendency parsing used by syntactic feature .S and
word distance feature D.

7.3.2 Systematic Errors

Our design does not have sepcial technics to deal
with multisentence reasoning. To answer ques-
tions that requires multiple sentences in the pas-
sage, the system needs to have a memory, and a
working model of the world. For example, con-
sider the passage and question in figure 4. To
answer the second question in figure 4, the sys-
tem needs to have a “sense” of time sequence and
causality. Also, it also needs to remember the se-
quence of events that has happened. It even needs
to know that we eat cake at birthday.

It was Jessie Bear’s birthday. She was having a
party. She asked her two best friends to come to
the party. She made a big cake, and hung up some
balloons.

Soon her friend Lion came over. Then her friend
Tiger came over. Lion and Tiger brought presents
with them.

(i) Who didn’t come to the party?

A) Lion

B) Tiger

C) Snake

D) Jessie Bear

(i1) How did Jessie get ready for the party?
A) made cake and juice.

B) made cake and hung balloons.

C) made juice and cookies.

D) made juice and hung balloons.

Figure 4: Another example in the MC Test

8 Discussion and Future Work

As discussed in section 7.3.2, to truly understand
the text, a machine comprehension system needs
to have a memory component and a basic model
of the world.

A number of researchers tried in this direction.
Narasimhan and Barzilay (2015) capture discourse
information by modeling relation between sen-
tence. However, their system does not keep mem-
ory of want happened and it can only keep track of
at most two sentences at the same time. Weston et
al. (2015) used memory network to keep a mem-
ory of the world and capture discourse relation.
Though their model showed success showed suc-
cess on the bAbI tasks, these tasks are artificially
sythesised and each tasks are usually less than five
sentences. Memory model currently does not per-
form well on human written texts such as in the
MCTest. For the word model, some effort is done
by Wang et al. (Wang et al., 2015) to incorporate
frame semantics. However, this is far from a good
world model. So building a true machine compre-
hension system is currently still a great challenge.
The author thinks building a more robust memory
network on bAbI test may be a good start point.

References

Matthew Richardson, Christopher JC Burges,
Erin Renshaw 2013. MCTest: A Challenge Dataset

for the Open-Domain Machine Comprehension of
Text. EMNLP. Vol. 1. 2013.

Jason Weston, Antoine Bordes, Sumit Chopra,
Tomas Mikolov 2015. Towards Al-complete ques-
tion answering: a set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698 (2015).

Karthik Narasimhan, Regina Barzilay 2015. Machine
comprehension with discourse relations. 53rd An-
nual Meeting of the Association for Computational
Linguistics. 2015.

Hai Wang, Mohit Bansal, Kevin Gimpel,
David McAllester 2015. Machine comprehen-
sion with Syntax, Frames, and Semantics. In
Proceedings of ACL: Short papers (2015): 700.

Mrinmaya Sachan, Avinava Dubey, Eric P.Xing,
Matthew Richardson 2015. Learning answer-
entailing structures for machine comprehension. In
Proceedings of ACL (2015).

Smith Ellery, Nicola Greco, Matko Bosnak, An-
dreas Vlachos 2015. A Strong Lexical Match-
ing Method for the Machine Comprehension Test.
In Proceedings of the 2015 Conference on Empiri-

cal Methods in Natural Language Processing, pages
16931698.

Marie-Catherine De Marneffe, Christopher D. Man-
ning 2008. Stanford typed dependencies manual.
In Technical report, Stanford University, 2008.

Christopher Manning, Mihai Surdeanu, Johb Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pp. 55-
60. 2014.

Chun-Nam John Yu and Thorsten oachims. 2009.
Learning structural SVMs with latent variables. In
Proceedings of the International Conference on Ma-
chine Learning, pp. 18, 2009.

Heeyoung Lee, Yves Peirsman, Angel Chang,
Nathaneal Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. 2011. Stanfords Multi-Pass Sieve Corefer-
ence Resolution System at the CoNLL-2011 Shared
Task. In Proceedings of the Fifteenth Confer-
ence on Computational Natural Language Learning:
Shared Task. Association for Computational Lin-
guistics, pp. 2834, 2011.

