
CS224N Project: Let Computers Do Reading Comprehension

Jiyue Wang
jiyue@stanford.edu

Ye Tian
yetian1@stanford.edu

1 Introduction

In this work, we want to teach the computers to
do reading comprehension. More specifically, the
task is to let computers read a short passage and
then answer some simple questions based on the
passage.[1] proposes an end-to-end, RNN-like ap-
proach which, according to them, needs signif-
icantly less supervision but performs compara-
tively good to benchmarks for many applications.
However, we found that their Q&A result is based
on a small synthetic data set defined in [2]. We
could see that the dataset is quite small and simple
with a vocabulary size of 177. Here is a sample
from the dataset.

Article. Brian is a lion. Julius is a lion.
Julius is white. Bernhard is green.

Question. What color is Brian?

Answer. White

In this work, we try to experiment their method on
a much larger and complicated dataset from [2].

2 Dataset

We use the question answering corpus from [2].
Although this dataset is generated automatically,
it is based on real CNN and Daily Mail articles
and thus, more realistic and complicated. Here is
a sample from the dataset:

Article. @entity0 (@entity1) – sen-
ate majority leader @entity2 announced
tuesday the appointment of the first
woman parliamentarian in the chamber
since that position was created in the
1930s . @entity8 will replace retiring
parliamentarian @entity9

Question.@placeholder will replace
@entity9 , who was parliamentarian for
18 years

Answer.@entity8

Entities.

@entity31:Frumin

@entity2:Reid

@entity1:CNN

@entity0:Washington

...

As we move forward, we found that this dataset is
much more difficult to process than we expected
in the following aspects.

2.1 Corpus Size

We only consider the CNN dataset in this work.
The CNN dataset alone has 2.27G, with 326,193
training data, 3,537 validation data and 2,803 test
data. Morever, the vocabulary size of CNN dataset
is around 50k if we exclude words with frequency
less than 5.

2.2 Entity Number

As is shown above, the question and answer are
only related to entities in the article and the same
entity could appear in different articles. Also, the
distortion from uniform distribution of the answers
may well influence the training of an end-to-end
model.

3 Approach

3.1 Data Representation

We represent language as three levels, that is,
word, represented as an index in a vocabulary, sen-
tence, represented as a list of words, and article,
represented as a list of a sentences. The training
data has three parts, the context, which is an ar-
ticle, represented by a list of sentences x1, ..., xn,
the question q, a single sentence and the answer a
an entity, represented as a word or noun phrase.

3.2 The Original Model
Our model basically follows the architecture pro-
posed in [1], as described in Figure 1 (a). Firstly
it uses an embedding matrix B to embed the word
indices in q as word vectors. Then embed the sen-
tence to a vector u by combining the word vectors
in some way. Similarly, every sentence xi is em-
bedded as a sentence vector mi in the input matrix,
and a sentence vector ci in the output matrix. Ap-
plying SoftMax to the inner product of u and each
mi produces a score for each xi, which represents
the “correlation” between q and xi. And then use
these scores as weights to give a weighted sum of
ci, producing an output vector o, which encodes
the information in the context correlated with q.
Finally, it adds o and q together as the input of a
fully connected layer, and output a score for every
candidate, that is, every word in the vocabulary;
the one with largest score is considered to be the
answer. In addition, we can also stack the layers,
which is called hops, as in Figure 1 (b), and use
ui+1 = oi + ui

The logic behind is that it simulates the process
of how human beings deal with such problems –
first select context information according to ques-
tion, and then infer the answer with this informa-
tion and the question.

Figure 1: The Original Architecture [1]

There are some points to mention. Firstly, to
avoid data sparsity, we filter out the words whose
frequency is less than a threshold. Secondly, since
we cannot guarantee that the vocabulary generated
by our training set will contain all the words in
test set as well as the filtered words, we use a
special index to represent UNKOWN. Finally, be-
cause we need to input tensor data to our model,
the sentence length and article length must be
equal, both in and between data samples. So we
set two parameters sen len and atc len. For
sentences longer than sen len or articles longer
than atc len, we simply cut them off. For sen-
tences shorter, we append a symbol EOS, repre-

senting “End of Sentence”, to the ends. For arti-
cles shorter than atc len, we append sentences
filled with EOS to the ends.

3.3 Sentence Encoding
There are several methods to encode word vectors
into a sentence vector. The most simple way is to
add word vectors together. Two problems with this
method are

1. It cannot capture the information of word or-
der and when sentence length varies in a large
range.

2. There will be a lot of EOS at the tail of some
sentences. As EOS is also encoded as a word
vector, this method will introduce a lot of
noise into the model.

To capture word order information, [1] pro-
posed a position encoding method, which applies
an element wise production between the word vec-
tors and a position vector before they are added
together. To eliminate the EOS noise, we add a
mask for each sentence to indicate its end, and we
can only add up the vectors before the end.

3.4 Improve with RNN layer
RNN is widely used to encode sequential informa-
tion and deal with varied sequence length. Thus
we think it suitable for our sentence encoding
problem. So we try to improve the model by
adding a RNN layer after the output word vec-
tors from the embedding layer, as shown in Fig-
ure 2. To restrict model complexity, the RNNs are
designed to share weights. Except for the inner-
sentence order information, RNN can also capture
inter-sentence order information, which is an ad-
vantage to the position encoding method in [1].

Figure 2: Improve with RNN

3.5 Shrink Candidate Categories
When producing the final output, the original
model tries to give scores to every member in the

vocabulary. This is a huge work for a large vo-
cabulary size. Moreover, we already know that the
true answers are all entities, which implies that the
other labels will never be learnt. So we modify the
last fully connected layer to produce scores only
for entity candidates.

3.6 Randomize Entities

Even though we shrink the class number from the
vocabulary size (around 20k) to the entity number
(around 300), the answers are restricted to a small
portion of the categories. This heterogeneity na-
ture of data makes the model hard to train. We
noticed that what we really care about is the struc-
ture of the sentence, not the actual word behind
the @entity mark. Specifically, we could re-
place an @entity representing Markwith Jack
and the computer should give an answer of Jack.
Thus, it is reasonable to restrict the entity num-
ber to a smaller set as long as we can distinguish
entities within one article. We first manually set
a threshold (equals 100) for the maximum entity
MAX ENTITY NUMBER in one article. Then, for
each article, we encode the entity with a random
number drawn from 1 to MAX ENTITY NUMBER.
For most of the dataset, the entity number is
smaller than MAX ENTITY NUMBER; however,
we do find that very few test cases contain an ex-
tremely large entity number (over 200) and we
drop these test case for simplicity.

4 Analysis

A layer end-to-end neural network model is hard
to tune.

In this section, we compare our work with [1]
in several aspects.

4.1 Corpus Size

[1] gives result on both 1k data and 10k data, while
we have a much larger dataset. At the very begin-
ning, we planned to train on the whole CNN data
set. Thus we first implemented a parallelized pro-
gram to collect the vocabulary of the whole cor-
pus. However, we soon found that we could not
feed the whole corpus into memory to train the
model. Due to limited time, we decided to experi-
ment on 1k data to avoid the memory problem. A
model trained on 1k data is certainly less powerful
than the one on the full corpus, but we think that it
should be a good indicator.

4.2 Vocabulary Size

During the experiment, we found that the vocabu-
lary size is critical. The vocabulary size in [1] is
only 171, while we have a large vocabulary size
(50k). We found that the model can hardly learn
even without regularization term because the em-
bedding matrix would be very sparse with the in-
crease of vocabulary size. This raised a question:
does the information in 1k training data sufficient
to infer the embedding matrix? To reduce the spar-
sity of the embedding matrix, we use a vocabulary
collected from the 1k training data with frequency
≥ 5.

4.3 Downside of End-to-End Architecture

The advantage of end-to-end structure is that it
requires significantly less supervision. However,
this is exactly what makes training hard. For the
model, it only takes a series of number as input
and a single number as output. The price of this
simplicity is a complicated neural network archi-
tecture, which requires more data and fine tuning.
As both of us are new to deep learning, we only
managed to overfit the data set with 0 regulariza-
tion and cannot get a satisfactory result with regu-
larization.

4.4 Problems and (Potential) Solutions
during Training

The first problem we met is that our learning rate
causes either a loss explosion or a extremely low
learning rate. So we use a relatively large learning
and keeps saving snapshots of weights, and inter-
rupt training, reset learning rate, load weights and
go o to train. Then we found we cannot overfit
even with a small data set of 100 samples. The av-
erage sentence length in the small data set is more
than 40, and the largest is more than 100. So we
set sen len = 40, 50, 60, etc. However,
whatever inputed, the model always produces the
same answer, as shown in Figure 4.

Figure 3: Different-input-same-output phe-
nomenon

But if we set sen len = 10, the model will
be able to overfit. This is obviously not what we
want, since we threw away too much information.

But it noticed us that EOS noise may be a prob-
lem. So we added word mask to tell the model
which word vectors to be included in the sentence
vectors. After doing this, the model overfit a small
data set with 100 samples. And at this time, we
can set sen len larger, like 100 or so. One thing to
be noticed is that, whether we use sen len = 10
or sen len = 100 with word mask, we need to
stack the hops to at least 5 to overfit the data.

When applied it to a data set with 1000 sam-
ples, it cannot overfit again, and phenomenon is
the same as before, that is, same output with any
input. Interestingly, when we use the vocabu-
lary of the former 100-sample data set, it overfit
again. So we assume it is a problem of low pa-
rameter/data ratio. Moreover, some of the entities
appear much more frequently than others. This
bias may also be a reason of the different-input-
same-output phenomenon. Therefore, to settle this
problem, we first constrain the output to be only
entities, and then shuffle and reduce the number
of entities, this makes our model overfit the 1000
dataset, as shown in Figure 4.

Figure 4: Different-input-same-output phe-
nomenon

The log of loss and accuracy is shown in Figure
5

Figure 5: loss log and accuracy log

The hyperparameters at this time are shown in
the following table:

Table 1: Hyperparameters to overfit 1000 dataset

optimization method nesterov momentum
learning rate 0.0001
momentum 0.95
batch size 10
sen len 100
atc len 100
embedding size 40

5 Future Work

We spent a lot of time tuning the model but did not
get a satisfactory result. This is partially because
we are both new to neural network. However, we
do have learnt a lot during the process. We found
that for an end-to-end task as complicated as this
one, we need more hidden layers and more com-
puting power as well as time to train the model.
We would try transfer learning to give a better ini-
tialization to the embedding layers. Moreover, af-
ter overfitting, we utilize L1 and L2 regulariza-
tion, but these only produce a near 0 training ac-
curacy and near 0 test accuracy. We can fine tune
the penalty parameter or use drop-out to regular-
ize our model in the future. If possible, we could
further refine the embedding of sentence. Instead
of a plain RNN layer, we could try LSTM-RNN
model[3] and even take advantage of the parsing
tree like the recursive auto-encoder [6].

References
[1] Sukhbaatar, Sainbayar, et al. End-to-end memory

networks. arXiv preprint arXiv:1503.08895 (2015).

[2] Hermann, Karl Moritz, et al. Teaching ma-
chines to read and comprehend. arXiv preprint
arXiv:1506.03340 (2015).

[3] Palangi, Hamid, et al. Deep Sentence Embedding
Using Long Short-Term Memory Networks.

[4] J. Weston, A. Bordes, S. Chopra, and T. Mikolov.
Towards AI-complete question answering: A set of
prerequisite toy tasks. arXiv preprint: 1502.05698,
2015.

[5] Bottou, Lon. From machine learning to machine
reasoning. Machine learning 94.2 (2014): 133-149.

[6] Socher, Richard, et al. Semi-supervised recursive
autoencoders for predicting sentiment distributions.
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Association for
Computational Linguistics, 2011.

