
CS224N Final Project:
Exploiting the Redundancy in Neural Machine Translation

Abi See
Stanford University

abisee@stanford.edu

Abstract

Neural Machine Translation (NMT) has
enjoyed success in recent years, but like
many other deep learning domains, typi-
cally suffers from over-parameterization,
resulting in overfitting and large storage
size. We demonstrate the efficacy of
weight pruning as a compression and reg-
ularization technique. In particular we find
that our baseline model can be immedi-
ately compressed to 40% of its previous
size with no performance loss, indicating
a high level of redundancy, and that with
retraining, our baseline model can be com-
pressed to 10% of its previous size with
some performance improvement. In addi-
tion, we investigate the distribution of re-
dundancy in the NMT architecture and the
interaction of pruning with other forms of
regularization such as dropout.

1 Introduction

Neural Machine Translation (NMT), although
a very recent approach, has matched the per-
formance of more established methods such
as phrase-based Statistical Machine Translation
(Jean et al., 2014; Luong et al., 2015; Sutskever et
al., 2014). The advantages of NMT over phrase-
based SMT are its simplicity (there is just one sys-
tem to be optimized, rather than a pipeline of sev-
eral components) and its smaller storage require-
ment (NMT does not require the storage of large
phrase-tables or language models).

Nonetheless, the storage requirement of NMT,
and of deep neural networks in general, is rela-
tively large. For example, the state-of-the-art sys-
tem described in (Luong et al., 2015) requires over
200 million parameters, resulting in a storage size
of hundreds of megabytes. For the potential goal
of running neural networks on mobile devices, this

is prohibitively large, as an average smartphone in
2015 has a storage size of 16GB or 32GB, with
little of that to spare. In addition, deep neural net-
works tend to be over-parameterized, resulting in
long running times, overfitting, and the large stor-
age size described above. Thus a solution to the
over-parameterization problem could potentially
aid all three issues.

In this paper we investigate the efficacy of
weight pruning on NMT, concentrating on its po-
tential as a means of regularization and compres-
sion. We also investigate the nature of redundancy
in NMT, yielding domain-specific observations re-
garding the distribution of redundancy in a NMT
model.

2 Related Work

Weight pruning is essentially a simple concept,
though it can be performed in a variety of ways.
It was proposed over two decades ago, for exam-
ple by (Hassibi and Stork, 1993) in their ‘Opti-
mal Brain Surgeon’ technique. With the recent
resurgence of deep neural networks has come a re-
newed interest in pruning, both of weights (Han
et al., 2015b; Collins and Kohli, 2014), and of
neurons (Murray and Chiang, 2015; Srinivas and
Babu, 2015).

Other compression techniques have also seen
renewed interest, such as weight binarization (Lin
et al., 2015) and low-precision multiplications
(Courbariaux et al., 2014). (Chen et al., 2015) de-
scribe a weight-sharing scheme called HashedNets
that randomly groups weights into hash buckets.
(Hinton et al., 2015) describes a technique called
‘distillation’ by which a compact neural network
is trained on the output of a larger neural network.

We closely follow the approach of (Han et al.,
2015b) to pruning, though while that work (and
indeed most of the work mentioned in this sec-
tion) focuses on Convolutional Neural Networks
and their applications to image-processing, we fo-



student	  a	  am	  I	   Je	  

Je	   suis	  

suis	   étudiant	  	  

étudiant	  	   _	  

_	  

source	  language	  input	   target	  language	  input	  

target	  language	  output	  

Figure 1: Simplified diagram of NMT architec-
ture.

cus on Long Short-Term Memory and its applica-
tion to Neural Machine Translation.

3 Neural Machine Translation

The NMT model of (Luong et al., 2015) uses a
recurrent neural network architecture to translate
sentences to sentences (see Figure 1 for a simpli-
fied representation). During training, the source
and target sentence pair are fed in as input, and the
target output sentence produced by the network is
used to evaluate the performance of the model, and
perform stochastic gradient descent. During run-
time, just the source sentence is fed in—the ‘tar-
get language input’ depicted in Figure 1 is simply
the output of the network shifted by one. That is,
each word emitted by the network is fed back into
the network on the next timestep. The network
stops when it emits the end-of-sentence symbol—
a special ‘word’ in the vocabulary, represented by
a dash in Figure 1.

Figure 2 shows the same system in more de-
tail, and in particular highlights the different pa-
rameters, or weights, used to describe the model.
We will describe it bottom to top. First, a vo-
cabulary is chosen for both the source and target
languages (we assume these vocabularies have a
common size, V ). Thus every word in the source
or target vocabulary can be represented by a one-
hot vector of length V (actually V + 2, to accom-
modate the ‘unknown word’ and ‘end of sentence’
symbols). The source input sentence and target in-

put sentence, represented as a sequence of one-hot
vectors, are transformed into a sequence of word
embeddings by the embedding weights. These em-
bedding weights, which are learned during train-
ing, are different for the source words and the tar-
get words. The word embeddings are vectors of
length n, the dimension of the network.

The word embeddings are then fed as input into
the main network, which is two Recurrent Neu-
ral Networks (RNN) ‘stuck together’—one for the
source language and one for the target language,
each with their own weights. In this example there
are two layers. The RNNs have Long Short-Term
Memory architecture, which has shown to aid in-
formation retention over long sequences (Hochre-
iter and Schmidhuber, 1997); for more detail, see
Section 8. The feed-forward weights connect the
hidden unit from the layer below (or the word em-
beddings) to the next LSTM block, and the re-
current weights connect the hidden unit from the
previous word to the LSTM block. Finally, for
each target word, the top layer hidden unit is trans-
formed by the top layer weights into a score vec-
tor of length V . The target word with the highest
score is selected as the output translation.

4 Evaluation metrics

We evaluate our models by two measures: BLEU
score and perplexity. BLEU score compares the
output target sentence with the gold target sen-
tence, and is measured on a scale from 0 (worst)
to 100 (best). Perplexity is the exponential of the
average cost per word, measured on a scale from
1 (best) to infinity (worst). For each output target
word, the model produces scores for each word in
the vocabulary, which are converted to a probabil-
ity distribution over the vocabulary. The cost is the
negative log probability of the gold word—that is,
the lower the system’s certainty in choosing the
correct word, the higher the cost.

Both evaluation metrics are valuable. BLEU
measures a system’s performance on the end-
goal of machine translation, translation quality,
whereas perplexity is the quantity minimized dur-
ing training. BLEU is a ‘hard’ measure of per-
formance, as it is calculated based on the sen-
tences produced by the network, whereas perplex-
ity is a ‘softer’ measure that takes into account not
just whether the correct target word was produced,
but the probability of producing the correct target
word. For scaled-down systems such as our base-



student	  a	  am	  I	   Je	  

Je	   suis	  

suis	   étudiant	  	  

étudiant	  	   _	  

one-‐hot	  vectors	  
length	  V	  

word	  embeddings	  
length	  n	  

hidden	  layer	  1	  
length	  n	  

hidden	  layer	  2	  
length	  n	  

scores	  
length	  V	  

one-‐hot	  vectors	  
length	  V	  

_	  

source	  language	  input	   target	  language	  input	  

ini9al	  (zero)	  states	  

target	  language	  output	  

embedding	  weights	  (source	  and	  target)	  
size:	  n	  ×	  V	  

layer	  1	  feed-‐forward	  weights	  (source	  and	  target)	  
size:	  4n	  ×	  n	  

layer	  2	  feed-‐forward	  weights	  (source	  and	  target)	  
size:	  4n	  ×	  n	  

layer	  2	  recurrent	  weights	  (source	  and	  target)	  
size:	  4n	  ×	  n	  

layer	  1	  recurrent	  weights	  (source	  and	  target)	  
size:	  4n	  ×	  n	  

top	  layer	  weights	  
size:	  V	  ×	  n	  

Key	  to	  weight	  classes	  

Figure 2: Neural Machine Translation architecture. The eleven weight classes are indicated by arrows
with different formatting (the black arrows in the top right represent simply choosing the highest-scoring
word, and thus require no parameters). As there are three weight classes of size V n, and eight classes
of size 4n2 (see Section 8 for more explanation), it follows that for our baseline with V = 10, 000 and
n = 500, each of the three large classes has 5 million weights, and each of the eight small classes has 1
million weights, for a total of 23 million weights overall.

line, the BLEU scores are quite low, so perplexity
is useful to capture a more fine-grained measure
of performance. We use both BLEU and perplex-
ity in this paper.

5 Our Baseline

Our models are trained and tested on the WIT3
Vietnamese-to-English dataset (Cettolo et al.,
2012), which consists of transcribed and translated
TED and TEDX talks. We took a training set size
of approximately 133,000 training sentences, and
a validation set size of 1553 sentences.

We closely follow the state-of-the-art approach
of (Luong et al., 2015) in all aspects, though we
make the following changes for practicality. While
(Luong et al., 2015) uses a training set with 4.5
million sentence pairs, a vocabulary size V of
50,000, 4 layers, and dimension n of 1000, our
baseline has a training set size of 133,000, V =
10, 000, 2 layers, and n = 500. We also omit
the ‘attention’ mechanism described in (Luong et
al., 2015). Consequently our models have 23 mil-
lion parameters (see Figure 2), compared to the

approximately 214 million parameters of the state-
of-the-art model described in (Luong et al., 2015).

5.1 Dropout

We trained our baselines with the regularization
technique dropout (Zaremba et al., 2014), which
temporarily sets some random subset of a hid-
den unit to zero during the forward propagation
phase of training. We trained two baselines: one
with a more aggressive dropout rate of 50%, and
one with a less aggressive rate of 20%. The less-
aggressively regularized model achieved a better
BLEU score (9.83 compared to 9.61) but the more-
aggressively regularized model achieved a better
perplexity (19.99 compared to 19.88). We se-
lected the more-aggressively regularized model as
our baseline, so all results in this paper are with
respect to this baseline unless otherwise stated.
However, we did repeat our experiments with the
alternative baseline, with interesting results (see
Section 9).



10 20 30 40 50 60 70 80 90
10−3

10−2

10−1

100

101

102

percentage pruned

pe
rp

le
xi

ty
ga

in

Figure 3: Immediate effect of different prun-
ing schemes on perplexity. We see that delete-
smallest pruning (blue) has a smaller impact on
performance than either uniform pruning (red) or
standard-deviation pruning (yellow), at all pruning
percentages.

Figure 4: Absolute size of largest deleted parame-
ter in each weight class, when pruning 90% of pa-
rameters using uniform pruning. The distribution
is similar for other pruning percentages.

6 Choosing a pruning scheme

Before investigating the effect of pruning on per-
formance, we must decide how to prune the
weights from the eleven weight classes of our
model (illustrated in Figure 2). That is, suppose
we want to prune x% of the parameters. There are
several possible schemes:

1. Delete-smallest pruning: Prune the x% of
parameters with smallest absolute value, re-
gardless of weight class. (So some classes
are pruned proportionally more than others,
though x% of total parameters are pruned).

2. Uniform pruning: For each class, prune the
x% of parameters with smallest absolute
value. (So all classes have exactly x% of their
parameters pruned).

Figure 5: ‘Breakdown’ of perplexity gain (i.e. per-
formance loss) when deleting 90% of parameters
using uniform pruning. Equivalently, perplexity
gain resulting from deleting 90% from each class
separately. The distribution is similar for other
pruning percentages.

Figure 6: ‘Breakdown’ of perplexity gain (i.e. per-
formance loss) when deleting 90% of parameters
using delete-smallest pruning. The distribution is
similar for other pruning percentages.

3. Standard-deviation pruning: Find some qual-
ity parameter λ > 0 such that if within each
class, all parameters with absolute value less
than λσ are pruned (where σ is the standard
deviation of that class’s weights), then in to-
tal x% of all parameters are pruned. This
method is used by (Han et al., 2015b).

All these schemes have their seeming advantages.
Delete-smallest pruning is the simplest, and ad-
heres to the principle that pruning weights with
smallest absolute value should least impact perfor-
mance. Uniform pruning and standard-deviation
pruning both seek to prune proportionally within
each weight class, either absolutely, or relative
to that class’s standard deviation. However, we
find that delete-smallest pruning outperforms both
other schemes in terms of immediate effect on per-
formance after pruning (Figure 3).

The poor performance of uniform pruning can
be explained by Figure 4, which illustrates the



10 20 30 40 50 60 70 80 90
5

6

7

8

9

10

11

percentage pruned

B
L

E
U

sc
or

e

Figure 7: BLEU scores of pruned models (blue
line), and of retrained pruned models (red line).
The dashed line indicates baseline performance.
The plot for perplexity is similar.

sizes of the largest weights deleted by the uni-
form pruning scheme, and Figure 5, which gives
a ‘breakdown’ of the performance loss of uni-
form pruning by weight class. The two are highly
correlated—in fact, the ordering of the weight
classes is almost the same in the two figures. This
indicates that, as some weight classes clearly have
significantly larger weights than others at the same
percentile, pruning them creates a greater per-
formance loss. The standard-deviation pruning
scheme suffers from the same problem.

Figure 5 also shows that for uniform prun-
ing, the performance loss breakdown by weight
class is highly uneven; the effect of pruning one
class dominates the others. In comparison, Figure
6 shows that for delete-smallest pruning, perfor-
mance loss is much more equally distributed be-
tween the weight classes. However, it is not com-
pletely uniform, indicating that factors other than
absolute weight size may have an impact when
pruning.

7 Effect of pruning on performance

Pruning has an immediate negative impact on per-
formance (as measured by BLEU score), that is
exponential in pruning percentage; this is demon-
strated by the blue line in Figure 7. We also ob-
serve that for up to 60% pruning percentage, per-
formance is slightly increased, indicating a regu-
larizing effect on the model. While it may seem
that we are getting away with throwing away over
half the model, it is likely that the information of
the model is stored in the weights with large abso-
lute value, whereas the weights close to zero con-

0 0.5 1 1.5 2 2.5

·104

100.6

100.8

training iterations

va
lid

at
io

n
se

tc
os

t

Figure 8: Cost minimization during training, prun-
ing, and retraining. The vertical dotted line marks
the point when 50% of parameters are pruned;
the switchover from baseline training to retrain-
ing. The horizontal dotted line marks the baseline
lowest cost, which is surpassed during retraining.

stitute noise, thus they can be safely (and in fact
advantageously) pruned. So, though we are indeed
reducing the model storage size by 60%, we are
not deleting 60% of the important information. In
any case, this is evidence for the large amount of
redundancy and over-parameterization in NMT.

The red line in Figure 7 shows that after retrain-
ing the pruned models, baseline performance is
both recovered and improved upon, even for the
most pruned model (90%). This may seem sur-
prising, as (notwithstanding the small improve-
ment from noise-canceling discussed above) we
might not expect a sparse model to significantly
out-perform a model with ten times as many pa-
rameters. There are several possible explanations
of this, two of which are given below.

Firstly, we observe that the less-pruned models
perform better on the training set than the vali-
dation set, whereas the more-pruned models have
more similar performance on the two sets. This
indicates that pruning has a regularizing effect on
the retraining phase, though clearly more is not
always better, as the 50% pruned and retrained
model performs better than the 90% pruned and
retrained model. Nonetheless, this regularization
effect may explain why the pruned and retrained
models significantly outperform the baseline.

Alternatively, pruning may serve as a means for
the model to escape a local optimum. Figure 8
shows the validation set cost over time during the
training, pruning and retraining process. The orig-
inal baseline is trained to convergence—the gradi-



50 60 70 80 90

9

9.5

10

10.5

percentage pruned

B
L

E
U

sc
or

e

Figure 9: Comparison of the performance of
sparse-from-scratch models (blue line) and the
pruned and retrained models (red line). The
dashed line indicates baseline performance. The
plot for perplexity is similar.

ent at the end of training is zero. Pruning causes
an immediate increase in cost, but the gradient be-
comes negative again, allowing the retraining pro-
cess to find a new, better local optimum. It may be
that the disruption caused by pruning is beneficial
in the long-run.

7.1 Starting with sparse models

The favourable performance of the pruned and re-
trained models raises the question: can we get
a shortcut to this performance by starting with
sparse models? That is, rather than train, prune,
and retrain, what if we simply prune then train?
We took the sparsity structure of our pruned mod-
els, and trained new models from scratch with
the same sparsity structure. Figure 9 shows that
the sparse-from-scratch models do not perform as
well as the pruned and retrained models, but they
do, for smaller pruning percentages, outperform
the baseline. This implies that in a trained and
pruned model, the sparsity structure itself (even
without the values of the remaining weights) con-
tains important information.

8 Distribution of redundancy in NMT

In Figure 10, we see the location of small weights
(i.e. redundancy) within the weight classes of
our NMT baseline model. Black pixels represent
weights near to zero; white pixels represent large
weights.

First we consider the embedding weights and
top layer weights. Recall that the embedding
weight matrices and top layer weight matrices

have rows (or columns) corresponding to words in
the vocabulary. Unsurprisingly, in Figure 10 we
see that the parameters corresponding to the less
common weights are more dispensable. In fact, at
the 90% pruning rate, for many uncommon source
words we delete all source embedding parameters
corresponding to that word, giving the word a con-
stant zero embedding. This is not quite the same
as removing the word from the vocabulary—true
out-of-vocabulary words are mapped to the em-
bedding for the ‘unknown word’ symbol, whereas
these ‘pruned-out’ words are mapped to a zero em-
bedding. However, given that the pruned weights
were already very small, in the original unpruned
model these words already had near-zero embed-
dings. This is perhaps an indication that for the
less common words in our vocabulary, the model
was unable to learn sufficiently distinctive repre-
sentations.

To understand the pictures in Figure 10 cor-
responding to the feed-forward and recurrent
weights, we must first refer to the Long Short-
Term Memory forward-propagation equations, for
which we follow (Graves and others, 2012). Each
LSTM block is indexed by time t (which flows
left to right in Figure 1) and layer l (bottom to
top). The main output of the LSTM block is the
hidden state hlt (a vector of length n), which is
passed to the LSTM blocks one layer above, and
one timestep forwards. In addition, each LSTM
block has a memory cell clt (also length n), which
is intended to store the ‘long term’ memory of the
network. Finally, the hidden state hlt and cell clt are
calculated from hl−1

t , hlt−1 and clt−1 with the use
of three ‘gates’ that control the flow of information
into and through the LSTM block, like so:

i
f
o

ĥ

 =


sigm
sigm
sigm
tanh

T2n,4n

(
hl−1
t

hlt−1

)
(1)

clt = f ◦ clt−1 + i ◦ ĥ (2)

hlt = o ◦ tanh(clt) (3)

where T2n,4n is a 4n×2n weight matrix, the func-
tions sigm and tanh are applied element-wise, i is
the input gate, f the forget gate, o the output gate
and ĥ is the input.

Equation (1) describes how the feed-forward
connections and recurrent connections define the
gates and the input ĥ, from previous hidden states
hl−1
t and hlt−1. Equation (2) describes how the



top	  layer	  weights	  

target	  embedding	  weights	  

source	  embedding	  weights	  

least	  common	  word	  most	  common	  word	  

source	  layer	  1	  weights	   source	  layer	  2	  weights	  target	  layer	  1	  weights	   target	  layer	  2	  weights	  

recurrent	  feed-‐
forward	  

input	  gate	  

forget	  gate	  

output	  gate	  

input	  

Figure 10: Graphical representation of the location of small weights in the model. Black pixels represent
weights with absolute size in the bottom 90%; white pixels represent those with absolute size in the
top 10%. Equivalently, these pictures illustrate which parameters remain after pruning 90% using our
delete-smallest pruning scheme.

the input ĥ ‘passes through’ the input gate and the
previous memory cell ‘passes through’ the forget
gate to define the new memory cell. Equation (3)
describes how the memory cell ‘passes through’
the output gate to describe the hidden state.

Returning to Figure 10, we now see that the four
pictured weight matrices correspond to the 4n×2n
weight matrix T2n,4n in Equation (1). In all four
matrices, we can observe that the weights connect-
ing to the input ĥ are most crucial, followed by the
input gate i, then the output gate o, then the forget
gate f .

For layer 1, the feed-forward input is more im-
portant than the recurrent input, whereas for layer
2 the recurrent input is more important. This
makes sense: layer 1 concentrates on the low-level
information from the current word embedding (the
feed-forward input), whereas layer 2 concentrates
on the higher-level representation of the sentence
so far (the recurrent input).

For layer 2, there is more redundancy in the
source weights than the target weights. In particu-

lar, for target layer 2, the weights connecting to the
gates are as important as those connecting to the
input ĥ. The gates represent the LSTM’s ability
to add to, delete from or retrieve information from
the memory cell. Figure 10 therefore shows that
these sophisticated memory cell abilities are most
important at the end of the NMT pipeline (the top
level of the target RNN). This is reasonable, as we
expect higher-level features to be learnt later in a
deep learning pipeline.

9 Generalizability of our results

Though we endeavored to choose a well-
regularized baseline with sensible choices of hy-
perparameters that could be considered ‘repre-
sentative’, the usefulness of our results depends
nonetheless on their generalizability to other NMT
models. Some are easily generalizable: for exam-
ple, the distribution of weight sizes as illustrated
in Figures 4 and 10, and the effect of each weight
class on uniform pruning as illustrated in Figure
5, are very similar across models with one or two



layers, with varying dimension n, varying embed-
ding size, and varying dropout rates.

Other results require more expensive tests and
are therefore less quickly verified. In Section 7
we found that up to 60% of our baseline can be
pruned without retraining with no loss of BLEU
score (see Figure 7). While we found that other
models (with different dropout rates, and with n
increased and decreased from our baseline) some-
times benefitted immediately from pruning, it was
not always consistent, and not usually as much as
60%. In addition we found that BLEU tends to
immediately benefit from pruning more than per-
plexity.

We successfully repeated our central result—
that we can prune 90% of parameters then recover
baseline performance through retraining—on a 1-
layer version of our baseline (obtaining a perplex-
ity of 19.81 for the compressed model vs baseline
20.78). The same is true for our ‘alternative base-
line’ described in Section 5.1, which was trained
with a gentler dropout rate of 20%. However, we
found that for this gently-regularized baseline, we
could improve even more by using a more aggres-
sive dropout rate of 50% for the retraining. This
raised the question: was the performance increase
due to the pruning, or the change in dropout? To
find out, we trained a new model with a dropout
rate of 20%, pruned nothing, then retrained with
a dropout rate of 50%. This model (perplexity
17.54) out-performed the models trained with ei-
ther dropout rate alone (19.99 and 19.88). This is
an interesting discovery that is orthogonal to prun-
ing.

10 Future Work

To properly establish the efficacy of weight prun-
ing for NMT, the results of this paper should be
repeated on a state-of-the-art NMT model, for ex-
ample (Luong et al., 2015). Secondly, the pruning
method described in (Han et al., 2015b) includes
several iterations of pruning and retraining. Im-
plementing this would likely result in further com-
pression and performance improvements. Thirdly,
if possible it would be highly valuable to exploit
the sparsity of the pruned models to speed up train-
ing and runtime.

This work uncovered several unexpected dis-
coveries that merit further investigation, orthog-
onal to pruning. In Section 9 we observed that
training with a gentle dropout rate followed by a

more aggressive dropout rate resulted in signifi-
cantly better performance than from using either
dropout rate alone. If this is generally true, it could
form an improvement to the dropout technique,
or help us to understand the technique better. In
Section 7.1 we observed that, for smaller pruning
percentages, pruning models before training (i.e.
training sparse models from scratch) performs bet-
ter than the densely-trained baseline. This could
potentially be a useful compression or regulariza-
tion technique, alongside or as an alternative to
the train-prune-retrain method explored in this pa-
per. Lastly, in Section 7 we hypothesized that
the disruption caused by pruning may enable the
model to escape local optima during training, thus
reaching better performances. This could be tested
by performing other types of ‘disruption’ to con-
verged models, and observing whether the imme-
diate performance loss is recovered and improved
upon, as we observed here.

11 Conclusion

We have shown that weight pruning (with retrain-
ing) is a highly effective method of compression
and regularization on our NMT baseline, and have
some evidence to indicate that our results are gen-
eralizable to other NMT models. We have found
that the absolute size of parameters is of primary
importance when choosing which to prune, and
have gained insight into the distribution of redun-
dancy in the NMT architecture. In addition the in-
vestigation has uncovered several unexpected re-
sults that challenge, and may deepen, our under-
standing of related topics such as dropout, sparse
models and stochastic gradient descent.

Acknowledgments

Thanks to my advisor Christopher Manning for his
guidance during this project, and to Thang Minh
Luong for the use of his NMT code, and extensive
help in using it.



References
Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. Wit3: Web inventory of transcribed
and translated talks. In Proceedings of the 16th Con-
ference of the European Association for Machine
Translation (EAMT), pages 261–268, Trento, Italy,
May.

Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q
Weinberger, and Yixin Chen. 2015. Compress-
ing neural networks with the hashing trick. arXiv
preprint arXiv:1504.04788.

Maxwell D Collins and Pushmeet Kohli. 2014. Mem-
ory bounded deep convolutional networks. arXiv
preprint arXiv:1412.1442.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2014. Low precision arithmetic for deep
learning. arXiv preprint arXiv:1412.7024.

Alex Graves et al. 2012. Supervised sequence la-
belling with recurrent neural networks, volume 385.
Springer.

Song Han, Huizi Mao, and William J Dally. 2015a.
Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huff-
man coding.

Song Han, Jeff Pool, John Tran, and William J
Dally. 2015b. Learning both weights and connec-
tions for efficient neural networks. arXiv preprint
arXiv:1506.02626.

Babak Hassibi and David G Stork. 1993. Second or-
der derivatives for network pruning: Optimal brain
surgeon. Morgan Kaufmann.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On using very large tar-
get vocabulary for neural machine translation. arXiv
preprint arXiv:1412.2007.

Zhouhan Lin, Matthieu Courbariaux, Roland Memi-
sevic, and Yoshua Bengio. 2015. Neural net-
works with few multiplications. arXiv preprint
arXiv:1510.03009.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Kenton Murray and David Chiang. 2015. Auto-sizing
neural networks: With applications to n-gram lan-
guage models. arXiv preprint arXiv:1508.05051.

Suraj Srinivas and R Venkatesh Babu. 2015. Data-free
parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.


