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Abstract

We describe a natural extension of deep
learning to the multi-sentence text analy-
sis domain – in particular, we construct a
novel recurrent convolutional architecture
by drawing inspiration from video analysis
to exploit the hierarchical and sequential
nature of text. We provide not only a high-
performing and general model, but also a
more linguistically plausible text classifi-
cation scheme than bag-of-n-grams or av-
eraged word-vector based approaches.

1 Introduction

Text classification has always been an important
topic for both the natural language processing and
machine learning communities. Recently, with
the advent of social networks and social media,
vast amounts text are available for analysis. This
has led to an increase in interest and demand for
text classification, in particular sentiment analysis,
which can be used to easily gauge the public opin-
ion and is invaluable to marketers.

Classically, the problem of text classification
has been solved by methods that find words and
combinations of words that are representative of
a certain category. For instance, in a text senti-
ment task, it is relatively easy for a simple classi-
fier to track words that convey positive or negative
meaning and use those to predict whether the text
is positive or negative. While this approach works
surprisingly well, it is not hard to find examples
that will be misinterpreted and wrongly classified
(such as varying scopes of negation irony, and hy-
perbole).

To build linguistically richer models, re-
searchers in NLP are turning to deep learning so
as to exploit lower level, structured information.
Deep learning has been successfully applied to
many tasks in natural language processing rang-

ing from named entity recognition to neural ma-
chine translation. However, we note that in terms
of text classification, most work in the NLP com-
munity has been focused on word (Pennington et
al., 2014) (Mikolov et al., 2013) and sentence level
models (Socher et al., 2013) and representations.

While the clear linguistic shortcomings of clas-
sic methods for classification are less problematic
when applied to long texts (which have more in-
formation), interest in applying new deep architec-
tures to general, multi-sentence text has very re-
cently arisen, and is still seen as an area relatively
untouched by the huge boosts in performance usu-
ally likened with deep learning.

In this paper, we review some basic deep learn-
ing models and architectures than can be adapted
to perform text classification. In particular, we
consider mean of word vectors, recurrent neural
networks (RNNs) and convolutional neural net-
works (CNNs). Then, we present a novel deep ar-
chitecture based on recurrent convolutions of sen-
tences that takes advantage of structure in text in
order to perform classification of long documents.
Finally, we test our model in two classifications
tasks: sentiment analysis in IMDB reviews and
humor detection in Yelp reviews.

2 Review of deep learning models for
text classification

2.1 Average of word vectors

Word embeddings, such as Word2Vec (Mikolov et
al., 2013) and GloVe (Pennington et al., 2014), are
one of the most important recent advances in nat-
ural language processing. The representation of
words in a semantic vector space offers many ad-
vantages to using the previous atomic representa-
tions. Given a text, one option to perform classi-
fication is to take all the word vectors and average
them into a text vector that can be be used as in-
put for a general classifier. As experienced by the



authors in (de Oliveira and Lainez, 2015), this ap-
proach performs surprisingly well when combined
with deep neural network architectures, but not so
well when used with other classifiers such as SVM
or Random Forests.

2.2 Recurrent neural networks
The average of word vectors approach heavily re-
sembles the classic bag of words models in that
word order is totally disregarded. One option to
take this order into account is to use recurrent neu-
ral networks. Recurrent neural networks (RNNs)
operate over a sequence of inputs and produce an
output for each time step, with the goal of enabling
the propagation of context information through the
sequence. The sequential structure of text makes
RNNs a strong candidate method to model lan-
guage. Furthermore, more advanced architectures
have been developed to better capture long-term
dependencies, such as LSTMs (Long Short-Term
Memory) and GRUs (Gated recurrent units).

Recurrent neural networks can be adapted for
text classification. Feeding the sequence of to-
kens that constitute a text, we can train a net-
work by taking the last output of the sequence as
the classification result. This approach looks ap-
propriate as a way to model text. However, the
difficulty of the network to keep long-term rela-
tionships and the existence of problems like van-
ishing gradients make it difficult for the architec-
ture to correctly capture the important characteris-
tics of long texts. As we saw in (de Oliveira and
Lainez, 2015), for the particular problem of hu-
mor detection, RNNs performed similarly to the
linguistically-unmotivated model of taking the av-
erage of word vectors.

2.3 Convolutional neural networks
Finally, we examine convolutional neural net-
works (CNNs) à la (Kim, 2014). These networks
can bridge many levels of abstraction, and so they
may be able to capture higher order structures con-
stituting classification labels.

In order to apply CNNs to text, we let
⊕

be
the horizontal-wise concatenation operator. The
model takes as input a word vector matrix over
a vocabulary of size V and provides word vec-
tors of size w. We let this matrix be defined as
U ∈ RV×w, where U [i] is the word vector (a row
vector) for word i. Note that we set U [0] to be the
zero vector for the padding. So, for a given sen-
tence s = (t1, t2, . . . , tL), we define the sentence

image as

Xs =
L⊕
i=1

U [ti]
T

Where now the ith column of Xs is the word
vector associated with the ith word (ti) in s. For a
given n-gram size n, we can construct convolution
filters of shape (w × n) followed by pooling of
shape (L− n + 1× 1).

A way of using this architecture, as described
in the paper, is using n-grams of different sizes,
where each filter has many features. We then ap-
ply dropout, and have a fully connected layer that
feeds into a final classification layer, which de-
pends on the classification task in hand.

Although originally intended for sentence clas-
sification, the CNN architecture described here
can be equally applied to full texts. However, apart
from being computationally expensive when ap-
plied to long texts, it makes less sense due to the
fact that a lot of information might be lost when
max pooling across sentences. Similarly to what
happens with recurrent neural networks, we hy-
pothesize that at some point the higher order struc-
tures and contextual information captured by the
network are lost when classifying a big document.

3 Recurrent Convolutional Architecture

As seen in (de Oliveira and Lainez, 2015), the
three approaches yielded good results and showed
improvements over classical classifiers, at least in
the task of humor detection. However, since these
architectures were not created for long sequences
of text, they have some common limitations apart
from the ones already mentioned for each one in
particular. First of all, and due to practical con-
siderations for GPU batching, one must select a
predefined text size and cut down or zero-pad the
sequence to get the desired length. In domains
with high variance of text size, a trade-off be-
tween training time and information loss must be
decided.

Furthermore, and more importantly, these mod-
els are not based on the language structure of long
text. While RNNs and CNNs take into consid-
eration word order and context, they do not ac-
count for natural language organization. When us-
ing the previously explained models, we hope that
the text will be short and clear so that the model
will capture the characteristics of the classes that



we are interested in classifying. However, writ-
ten language is transmitted in the form of com-
positional elements that convey different levels of
information. Paragraphs have a concrete theme,
which is expressed by means of several and in-
terrelated sentences. Sentences, in turn, aim to
transmit a simpler concept by means of a sequence
of words. Complex transmission of ideas such as
contrasts between sentences or dependencies be-
tween not consecutive phrases will be irremedi-
ably lost when using models based on word se-
quences and on a vague context of the sequence.

To solve this problem, we expand on the ideas
of (Kim, 2014) and draw inspiration from video
analysis (Srivastava et al., 2015). In particular, we
recast sentences as frames in a video, and use re-
current neural networks to model time evolution.
Formally, as in 2.3, suppose our vocabulary is of
size V and provides word vectors of size w. We
further define a matrix U as U ∈ RV×w, where
U [i] is the word vector (a row vector) for word i.
Note that we set U [0] to be the zero vector for the
padding. We define a text T to be some sequence
of sentences

T = (s1, s2, . . . , sT )

where each sentence si is a sequence of tokens

si = (t1, t2, . . . , tLi)

For a given sentence si, we define the sentence
image, once again, as

Xsi =

Li⊕
j=1

U [tj ]
T ∈ Rw×Li

Note that the choice of U is arbitrary. We can
use multiple sentence images per sentence, lead-
ing us to the notion of multiple word vector chan-
nels.

Zooming out, we see that for a text T , we have
a sequential, convolved representation

(Xs1 , Xs2 , . . . , XsT )

for each channel of word vectors considered.
For each sentence image, we apply many n-gram
convolutions, For a given n-gram of size n, we
can construct convolution filters of shape (w × n)
followed by pooling of shape (L − n + 1 × 1).
If we do this across channels, we obtain a fixed
vector representation for each timestep, or in this

case sentence. We note that the application of a
max-pooling operator is less problematic here than
in the case of a CNN directly applied to a longer
piece of text without sentence separation. This is
due to the fact that the pooling is applied across
one sentence rather than many, meaning that less
information is lost due to the down-sampling that
it produces.

At a higher level, after convolutions and max-
pooling at the sentence level with various n grams
sizes, we apply dropout, flatten, and concatenate
to obtain a sequence of fixed length inputs, which
we then feed into a bi-directional GRU. We then
concatenate the two directions, and attach a fully
connected, maxout unit in top. Finally, we attach
a logistic regression unit on top of the outputs of
the maxout. The visualization of our global archi-
tecture is in Figure 1.

To fully parametrize our model, we have the fol-
lowing list of architectural decisions / constraints.

• GloVe size, w

• Number and source of word vector channels,
k, and whether or not they are trainable

• Set of convolved n-gram sizes, N

• Number of feature maps per convolution fil-
ter size, m

• Max-pool size, though this is fully deter-
mined by sentence length

• Post-convolution + maxpool dropout rate

• Gated Recurrent Unit representation size +
dropout rate upon bi-directional concatena-
tion

• Number of maxout units and associated
choice of the number of piecewise compo-
nents + dropout rate

4 Implementation

For any given text, the first step prior to applying
our deep architecture is perform sentence recogni-
tion and word tokenization. At first glance, find-
ing sentences might seem to be a trivial task, but it
is actually a difficult problem due to the fact that
punctuation marks are often ambiguous (a period
might denote an abbreviation, a decimal point,
an email address, etc.). To solve both sentence
boundary detection and word tokenization, we use
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spaCy (Honnibal, 2014), a lightweight cythonic li-
brary for natural language processing. Our pre-
processing, which is easily parallelizable, takes a
given text and converts it into a list of lists, or-
ganized in such a way that each outer list is a
sentence in the text, and each sublist contains the
words associated with that sentence. Due to prac-
tical considerations for GPU efficiency, both num-
ber of sentences and number of words per sen-
tence must be predefined for a specific text prob-
lem, leading to the need of zero-padded or cut-
down texts. As mentioned before, a trade-off be-
tween information loss and training time must be
decided, although here we assume that we are
dealing with multi-sentence texts. For our specific
datasets, we computed histograms of sentence and
paragraph sizes to find a point that allows us to
lose less than 1% of trailing words across sen-
tences.

Once we have a list of sentences consisting of
word tokens, we transform these tokens to word
vectors. For this project we used GloVe (Pen-
nington et al., 2014). In particular, we consid-
ered the general 100 and 300-dimensional word
vectors, trained on Common Crawl. After initial
experiments, we settled on using 300 dimensional
vectors, and we leave a thorough examination of
the effect of word vector dimension to later stud-
ies. Using the original implementation from (Pen-
nington et al., 2014), we also train dataset-specific
glove vectors for our datasets, allowing us the op-
portunity to exploit multi-channel models. In all
cases, we allow for a trainable <unk> token.

To implement our architecture, we utilize the
Keras (Chollet, 2014) library, a Theano-based
(Bastien et al., 2012) neural network library. In ad-
dition, we make heavy use of the CuDNN (Chetlur
et al., 2014) library, extensively using heuristics to
choose both forward and backward convolutional
implementations suited to our uniquely shaped
convolutional filters. Through our studies, we
found that for our architecture, usage of CuDNN
led to a factor of 3 speedup for training time per
epoch.

We now provide a walk-through of data flow
through our framework.

1. Data is initially ingested as a 2D uint8 ten-
sor, flattened across the paragraph dimension.
Note that a separate stream is used for inges-
tion across each word vector channel to allow
for differences in vocabulary coverage. At

this stage, tensor is of shape (n samples,
n words)

2. Data is passed through a lookup 1 table. As a
result, we have k 3D float32 tensors (one
for each channel) of shape (n samples,
n words, w), where w is the word vector
dimension.

3. The 3D tensors from each channel are joined
together to make a 4D tensor of shape
(n samples, n words, k, w)

4. We reshape the resultant 4D tensor into
a 5D tensor of shape (n samples,
n sent, n words sent, k, w). Fi-
nally, we roll across the 3rd and 4th axes,
and we have our final tensor shape for
ingestion: (n samples, n sent, k,
n words sent, w)

After data manipulation, we use our cus-
tomized, CuDNN-aware temporally distributed
convolutional layer to act on the final three axes
of our 5D tensor.

5 Experiments

To test our architecture, we utilize two datasets
– the humor detection task in the Yelp Challenge
Dataset, first outlined in (de Oliveira and Lainez,
2015), and the IMDB Large Movie Review dataset
(Maas et al., 2011). These datasets represent two
tasks that rely on the ability to deal with long term
relationships in text that span across multiple sen-
tences and even across paragraphs.

All experiments were run on NVIDIA GRID
K520 and Titan X graphics cards, with CUDA
7.5, CuDNNv3, and bleeding-edge installations of
Keras and Theano. As reference, we list the fol-
lowing timings for one epoch on the IMDB dataset
(20000 samples with a batch size of 32).

• On a 2.6 GHz Intel Core i7 CPU, with
a custom-compiled OpenBLAS installation,
one epoch of IMDB training takes ∼ 3.25
days

• On a GRID K520 with CuDNN, one epoch of
IMDB training takes ∼ 30 minutes

• On a GRID K520 without CuDNN, one
epoch of IMDB training takes ∼ 1 hour

1An Embedding layer in Keras



• On a GTX Titan X with CuDNN, one epoch
of IMDB training takes ∼ 11 minutes

5.1 IMDB Dataset

5.1.1 Data description
The IMDB dataset is a repository of movie re-
views together with a binary sentiment polarity la-
bel. Negative reviews are associated with scores of
less than 4 out of 10, while positive reviews have
scores from 7 to 10. There is a total of 50,000
labeled reviews, divided into two balanced train-
ing and test sets, each with 25,000 reviews. The
dataset includes an additional 50,000 unlabeled
documents for unsupervised learning purposes.

5.1.2 Setup
For word vectors, we use two channels – one from
the pre-trained 300D common crawl vectors (Pen-
nington et al., 2014), and the other custom trained
on the IMDB unlabelled partition using the C-
based GloVe package released in (Pennington et
al., 2014). For practical purposes, we only con-
sider the first 120,000 most frequent words ob-
tained by Common Crawl.

We consider convolved n grams N =
(2, 3, 4, 5, 7), and for each convolutional unit, we
allow for 96 feature maps.

For our input streams, we zero-pad (or truncate,
as necessary) to ensure a sentence length of 50 to-
kens (including punctuation). We also blank-pad
sentence images to ensure that there are 50 sen-
tences per review.

We allow the word vectors to be trainable, but
we train them with respect to the constraint that
each word vector must have unit `2 norm. For each
convolutional unit, we apply an `2 norm penalty of
10−5 to each kernel2. We apply the ReLU activa-
tion function, with a dropout of 0.10 applied be-
fore a temporally distributed flattening operation.

We then take the flattened representations from
each convolved n-gram unit and concatenate
them, feeding into both forward and backward
pass GRU layers (Chung et al., 2015), each with
64 units. We apply a dropout fraction of 0.7 to
each direction after concatenation along the last
axis.

With a fixed representation in hand, we then
use a fully connected maxout (Goodfellow et al.,
2013) unit with 64 output units and 16 degrees of

2Tuned and included to combat observed large filter
weights.

freedom. Finally, we connect this to a simple lo-
gistic regression output, and train against negative
log likelihood (cross entropy). To optimize the pa-
rameters of our architecture, we use the RMSProp
algorithm (Tieleman and Hinton, 2012) with early
stopping and 30 periods of patience. We split
the training set into 20000 training and 5000 dev
points, and we retain the full 25000 testing points
as per the original partition.

5.1.3 Results

We compare our model with the state of the art
– in particular, against Paragraph Vectors (Le and
Mikolov, 2014) and their enclosed results from
(Wang and Manning, 2012). We are comparing
against simpler models that either use an order-
independent representation of words or a learned
vector representation of a paragraph that is not rep-
resentable as a function. In Table 1, we see that
our Sequential Convolutional Network achieves
nearly state-of-the-art results, and lags behind
only Paragraph Vectors. We note that a key ad-
vantage of our model is that a Sequential CNN
is a function, which allows application to unseen
paragraphs – something which a Paragraph Vector
based model cannot do trivially.

Model Error rate
BoW (bnc) () 12.20 %
BoW (b∆t’c) (Maas et al., 2011) 11.77%
LDA (Maas et al., 2011) 32.58%
Full+BoW (Maas et al., 2011) 11.67%
Full+Unlabeled+BoW (Maas et al., 2011) 11.11%
WRRBM (Dahl et al., 2012) 12.58%
WRRBM + BoW (bnc) (Dahl et al., 2012) 10.77%
MNB-uni (Wang and Manning, 2012) 16.45%
MNB-bi (Wang and Manning, 2012) 13.41%
SVM-uni (Wang and Manning, 2012) 13.05%
SVM-bi (Wang and Manning, 2012) 10.84%
NBSVM-uni (Wang and Manning, 2012) 11.71%
NBSVM-bi (Wang and Manning, 2012) 8.78%
Paragraph Vector (Le and Mikolov, 2014) 7.42%
Sequential CNN 8.43%

Table 1: Performance of Sequential Convolutional
Networks compared to other approaches on the
IMDB dataset. The error rates of other methods
are reported in (Wang and Manning, 2012) and
(Le and Mikolov, 2014).



5.2 Yelp Dataset
5.2.1 Data description
The data set consists of 147,444 English reviews
of businesses extracted from the Yelp Dataset
Challenge data with two labels: funny or not
funny. Funny reviews are selected as those that
have three or more “funny” votes, while not funny
reviews do not have any vote. Both classes are bal-
anced and divided into a train, dev and test sets.

5.2.2 Setup
We use a very similar setup to the one described
for the IMDB dataset. The main difference is that
we use only one channel for training due to poor
results when adding more than one. Similarly to
the previous case, we compute specific word vec-
tors for Yelp reviews and allow them to change
during training. We present results for a convo-
lution over n grams N = (1, 2, 3, 4, 5, 6) and 21
feature maps, with a GRU of size 20 and an in-
put of 30 words per sentence and 30 sentences per
review.

Model Error rate
Logistic Classifier (BoW) 27.71%
SVM (BoW) 26.76%
Random Forest (BoW) 24.58%
Average of word vectors 21.79%
RNN (GRU) 21.80%
CNN 21.72%
Sequential CNN 21.63%

Table 2: Performance of Sequential Convolutional
Networks in the task of predicting humor, com-
pared with previous results as seen in (de Oliveira
and Lainez, 2015)

5.2.3 Results
As we can see in Table 2, our Sequential CNN
obtains improved results over classic classifiers,
while it is in line with the other deep learning clas-
sification methods commented on in this project,
showing a slight improvement over them when us-
ing a larger testing sample than in our original
work. However, we note that the model does not
present significantly better results than other deep
learning approaches, or even a simple average of
word vectors. As we hypothesized in our previ-
ous work, sequential structures that constitute hu-
mor – if any – may be too complex for any gen-
eral model to leverage. It is encouraging, however,

that our Sequential CNN architecture obtains very
good performance with minimal parameter tuning,
indicating that we have a model that can be gener-
ally applied to multi-sentence text samples.

6 Conclusion and Outlook

We have presented a general framework and novel
convolutional architecture for multi-sentence text
classification, building upon natural text structure
and the latest developments in deep learning for
natural language processing. Despite little tun-
ing of hyperparameters, we obtain very competi-
tive results in a well-studied problem in sentiment
analysis, as well as in a complex and open problem
such as humor detection.

For the future, we plan on testing the model in
other common classification tasks and work on ar-
chitectural changes and extensions. In particular,
we would like to examine extensions involving an
external memory unit, which we hypothesize will
help with longer term text relationships. We would
also like to test the model in the information re-
trieval domain. Finally, we would like to experi-
ment with the inclusion of additional layers over
the outputs of all the GRU sequences, in essence
stacking the bidirectional recurrent layers.
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