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Abstract

I introduce a novel method for disam-
biguating word senses using a semi-
supervised approach. I contrast this
method with the current state-of-the-art
approaches and show that my approach
performs well and could potentially lead to
fully unsupervised approaches with high
accuracy.1

1 The Problem

In all or nearly all natural languages, there are
words with several possible meanings or senses.
These words are referred to as polysemic. For
a polysemic word, the context within which an
instance of the word appears disambiguates the
intended sense for that instance of the word.
For example, the following instances of the verb
“missed” all have different senses:

• I missed the children.

• I missed my calling.

• I missed the target.

• I missed the period

• I missed the point.

• I missed the flight.

For many languages, polysemy is surprisingly
common. For example, the most frequent 500
words in English have an average of over 23
distinct definitions in the Oxford English Dictio-
nary. Yet, humans are typically capable of ef-
fortlessly determining the meanings of polysemes
given context.

Multiple senses of a word can arise in many dif-
ferent ways. One way is the metaphorical use of

1This paper represents a work in progress.

a literal sense of a word. For example, “missed”
is literally used to convey a situation in which the
path of one entity does not intersect with the path
or position of another entity, such as in “I missed
the target.” “I missed my calling” uses this literal
sense in a metaphorical way through the life-is-
a-journey metaphor, which linguists annotate as
a distinct sense. Other examples of metaphorical
senses of words include “She is a warm person”
and “We had a deep discussion.” Another way in
which multiple senses of a word could arise is that
words with originally different written forms and
completely different meanings evolve to have the
same written form, e.g., “bass,” which could mean
the lowest pitch range or a kind of fish.

Automatically determining the intended mean-
ing of an ambiguous word is called word sense
disambiguation (WSD), and is a core problem in
natural language processing. WSD is necessary
for many natural language processing tasks. For
example, the meaning of the word “goal” in “He
scored a goal” and “It was his goal in life” de-
termines whether to use “gol” or “meta” for au-
tomatic translation into Spanish (Pal and Saha,
2015). Although many word sense disambigua-
tion techniques have been shown to moderately
improve performance for some tasks, none have
been accurate, general, and fast enough to become
common tools for NLP tasks.

2 Sense Labels

Much of the work on WSD aims to classify each
instance of an ambiguous word into a WordNet
synset (Fellbaum, 1998). Each WordNet synset
represents a possibly singleton set of synonyms,
and is annotated with a part of speech, a dictio-
nary definition, and possibly links to hypernyms,
hyponyms, and sister terms.

WordNet’s senses have been criticised for be-
ing overly fine-grained to the point where even
humans cannot distinguish between certain pairs



of senses. For example, the WordNet entry for
the word “bass” lists eight definitions for the noun
form. Three of these definitions are for the fish
sense, and five are for the musical sense. Some of
the definitions are nearly identical, making it ex-
tremely difficult to automatically distinguish be-
tween them.

In order to mitigate this issue, some WSD
systems use more coarse-grained senses, either
by clustering senses in WordNet and choosing a
canonical sense for each cluster (Navigli et al.,
2007), or using OntoNotes senses, which were
designed to achieve high inter-annotator agree-
ment, ensuring that the sense distinctions are not
overly subtle (Hovy et al., 2006). Unfortunately,
OntoNotes does not attempt to create senses for
parts of speech other than nouns and verbs.

Finally, some recent work on WSD uses Ba-
belNet senses. BabelNet senses integrate Word-
Net senses and Wikipedia articles, and contain a
mapping between words from multiple languages
and its ontology. Unfortunately, BabelNet only
contains nouns (which tend to be easier to disam-
biguate).

Because different papers report their accuracies
with respect to different sense categories and cor-
pora, it is usually not possible to compare accuracy
measures directly.

3 Related Work

3.1 Early Research

Warren Weaver is credited for having first intro-
duced word sense disambiguation as a computa-
tional problem in his 1949 memorandum on ma-
chine translation (Weaver, 1949), in which he dis-
cussed several impediments to machine translation
and possible ways to overcome them.

Early techniques from the 1970s were rule-
based and not very successful, and will not be
summarized here. Later methods mainly fell
into three categories: dictionary-based, supervised
learning, and unsupervised or semi-supervised
learning.

3.2 Dictionary Methods

In 1986, Michael E. Lesk introduced a dictionary-
based approach that counts the number of over-
lapping words between the context of an instance
of a polyseme and each of the polyseme’s dic-
tionary definitions, choosing the definition with
the greatest number of overlapping words (Lesk,

1986). Recent analysis of Lesk’s algorithm places
its accuracy at about 42%. Extensions of Lesk’s
algorithm that use all relevant text from Word-
Net, lemmatization, and smart back-off to the most
common sense are able to achieve 58%2 accuracy
(Vasilescu and Lapalme, 2004). These so-called
dictionary-based methods are convenient because
they allow any word in the dictionary to be disam-
biguated, unlike supervised learning approaches
that require a tagged corpus of contexts for every
sense of every ambiguous word.

3.3 Supervised Learning Methods

The most accurate word sense disambiguation sys-
tems use supervised learning. Although these sys-
tems are accurate, they are impractical for most
applications because they can only disambiguate
polysemes that have sense-labeled context cor-
pora.

To the best of my knowledge, the state-of-the-
art system for supervised WSD trains a naı̈ve-
Bayes classifier on top of latent Dirichlet allo-
cation (LDA) topic features (Cai et al., 2005),
narrowly beating the competition in the super-
vised section of SemEval-2007 with an accuracy
of 88.7%3.

3.4 Unsupervised and Semi-Supervised
Learning Methods

More recent work has focused on unsupervised
leanring methods because they do not require
training on labeled data for every polyseme.

From the SemEval-2007 results, the state-of-
the-art semisupervised learning method for WSD
was (Chan et al., 2007). The authors make use
of Chinese-English parallel corpora which they
align for creating pseudo-labeled data upon which
the authors train an SVM model. The authors
method requires that every English polyseme to
be disambiguated be manually tagged with one or
more appropriate Chinese translations. The au-
thors manually entered such translations for the
top 730 nouns, the top 326 adjectives, and the top
190 verbs. The system falls back to the most fre-
quent sense baseline for cases in which they do not

2The accuracies reported are highly dependent on the par-
ticular evaluation rules. The numbers reported for (Vasilescu
and Lapalme, 2004) are from the SENSEVAL2 English All
Words task. For reference, the best system for that track
achieved 69% accuracy.

3SemEval-2007 task 17, subtask 1 used OntoNotes
senses, for which the baseline using the most frequent sense
was 78.0%.



have sense translations. Their approach achieves
an accuracy of 82.5% on the course grained word
senses4. Though their performance was not sub-
stantially above the baseline, this technique for
generating training data has become a standard
trick in many more recent works.

The authors of (Trask et al., 2015) show that
the performance of dependency parsers can be im-
proved using sense specific word vectors. They
show that their disambiguated vectors have the
highest cosign similarity with synonyms of the
same sense. Unfortunately, the authors train their
vectors only after disambiguating their corpora
and the methods used to disambiguate the words
are weak. The authors mention part-of-speech
tagging each word and using the POS to disam-
biguate, however this would be unable to distin-
guish between senses of the same POS. Alterna-
tively they mention using the inferred sentiment
of the document to disambiguate between certain
senses of certain words, but most senses of most
words have neither positive nor negative senti-
mate.

3.5 Progress

Much of what we know about the performance of
WSD systems comes from the various SemEval
and Senseval contests that have been run over the
years. Unfortunately, the setups change dramati-
cally with every new contest, making it difficult to
track the progress of WSD systems. The cordina-
tors of the SemEval-2007 Coarse-Grained English
All-Words task note that at the least the improve-
ment over the most frequent sense (MFS) base-
line can be tracked (Navigli et al., 2007). Unfor-
tunately the baseline-to-winner delta did not im-
prove between 2004 and 2007, and actually de-
creased between 2007 and 2013. One explanation
could be waning interest in the problem. In 2013
only six contest entrants representing three teams
competed. Another possibility is that the general
trend towards courser senses and fewer parts of
speech (in 2010 and 2013, only nouns were con-
sidered) lead to increased baseline performance,
but not increased winner scores.

It is clear, however, that progress has not dra-
matically improved in the past decade despite the
advent of big data, deep machine learning, and
continued work on linguistic resources such as

4For comparison, the WordNet first sense baseline score
was 78.9%.

I misplaced my glasses. I misplaced the game. I misplaced their trust.
I gained my glasses. I gained the game. I gained their trust.
I won my glasses. I won the game. I won their trust.

Table 1: Using substitute words to disambiguate
the verb ‘lost’ in three different contexts. Bold in-
dicates the most likely semantic for each context
(column).

WordNet.

4 My Approach

I approach this problem with the following in-
sight: the semantics of certain substitute words
seem likely in the context of some senses of a pol-
yseme, but unlikely in other senses. For example,
we see that the word ‘won’, makes semantic sense
in the context of ‘lost’ in ‘I lost the game’, because
you can win a game, but the semantics of replacing
‘lost’ with ‘won’ don’t seem very likely in the con-
text of ‘I lost my glasses’ because glasses aren’t
typically the type of thing you win.

In Table 1 I present a more complete example.
Here we try to discern the sense of the word ‘lost’
with respect to the three different contexts, ‘I lost
my glasses’, ‘I lost the game’, and ‘I lost their
trust’. We see that we can use the substitute words
‘misplaced’, ‘won’, and ‘gained’ to classify each
usage of the word ‘lost’ into a different sense cat-
egory, thereby disambiguating the meaning of the
word given the context.

In order to run this procedure, we need a way of
telling how likely a given word is in a certain con-
text, and a way of finding the most representative
word or words for each sense.

4.1 Contrastive Estimation

We are in need of a computable function
f(word, context) ∈ [0, 1] for determining how
well a word semantically works in a context.

We train our function f() using a special case
of Contrastive Estimation (CE). (Smith and Eis-
ner, 2005). This process requires no labeled data,
but can be trained on a large corpus of natural
language text. We generate training examples of
the form (word, context, label ∈ {true, false})
from this corpus in the following way. For each
sentence in the corpus, we generate a single ex-
ample. First, we determine if the example should
be positive or negative by flipping a coin. If
we decide the example should be positive, we
pick a random word to be the word, and use the
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Figure 1: Our recurrent neural network architec-
ture. The left and right recurrent structures are
stacked GRU nodes (Chung et al., 2015) with 256
hidden units each. The middle node is made up of
densely connected rectified linear units with two
hidden layers. The output is a sigmoid unit. The
model has only 2.3 million parameters total.

rest of the sentence as context. If we decide to
generate a negative example, we choose a ran-
dom word to replace, and our training example
becomes (random word, context, false). Us-
ing the Gigaword corpus of newswire text (Parker
et al., 2011), we can generate unique examples un-
til the training converges (i.e. we never have to
re-use training examples).

At both training and test time, I restrict the con-
text to at most 30 words on either side of theword.

We use a recurrent neural network as our func-
tion approximator. The architecture is described
by Figure 1. Training takes about 24 hours to
converge and achieves a 87.5% accuracy in deter-
mining whether the example word was replaced.
100-dimensional pretrained GloVe vectors (Pen-
nington et al., 2014) are used as our embedding
layer. We do not propagate gradients back to the
embedding layer.

4.2 The Substitute Words
For the example in Table 1, we use the substitute
words ‘misplaced’, ‘gained’, and ‘won’ to disam-
biguate between the three senses for ‘lost’. ‘mis-
placed’ is a synonym and ‘gained’ and ‘won’ are
antonyms, however, under this framework, other
word relations could work just as well. For ex-
ample when trying to disambiguate between the
musical form and the fish form of ‘bass’, we could
use a different kind of fish, such as ‘trout’, and a
different but related musical term such as ‘tenor’.

By choosing a single word for each sense, I
would be limiting my accuracy. Instead, my sys-
tem chooses several words for each sense and av-
erages their resulting probabilities for each con-

text. Concretely, instead of determining whether
f(trout, context) > f(tenor, context) to dis-
ambiguate a use of ‘bass’, I can check if .25 ∗
f(trout, context) + .25 ∗ f(salmon, context) +
.25 ∗ f(tuna, context) + .25 ∗ f() > .5 ∗
f(tenor, context) + .5 ∗ f(soprano, context),
which leads to superior results.

The challenge becomes picking the right words
for each sense. I can think of four categories of
methods to go about this. First, we can hand pick
the words. Second, we could harvest the words
from a dictionary or database like WordNet. Third,
we could use unlabeled clustering. And finally, we
can do supervised training on labeled data.

My current work focuses on the last option,
learning from labeled data, but in the future, I
think the second option is most promising, pos-
sibly augmented with labeled data and supervised
clustering.

4.3 Supervised Training

In order to find the best set of words for each sense,
I simply score each word in a list of words, and
choose the best n words by score. The score for
each word for each sense is simply the average f()
value for that word over all the contexts labeled for
that sense, less the average f() value for that word
over all the contexts for other senses.

More concretely, given a set of training exam-
ples t for a polyseme of the form (s, c), where s is
a sense, and c is a context, the score for a word w
is given by the Equation 1.

score(s, w) =mean({f(w, c) : (s, c) ∈ t})−
mean({f(w, c) : (s′, c) ∈ t ∧ s′ 6= s})

(1)

Choosing the top 30 words from a list of the
8000 most used English words with the same POS
as the polyseme seems to work well, although this
parameter hasn’t been tuned.

5 Tricks

On its own, this method performs well enough to
beat the baseline in our experiments, but not well
enough to be compelling. I use two main tricks
to improve performance drastically. The first is
a method for taking into account how common a
sense is for a particular word. The second is pre-
venting the network from learning grammar.



5.1 Sense Frequency
The most effective trick for improving perfor-
mance is taking into account the natural frequency
of each sense. The quality of the most-frequent-
sense baseline (MFS) is surprisingly high, and
many systems use MFS as a fallback when the sys-
tem doesn’t have enough information. Instead of
using the sense frequencies as a fallback, my sys-
tem assigns a score to each sense at test time and
chooses the sense with the best score. The score as
described above is simply average f() score of the
top n words chosen for that sense. However, aug-
menting the score s with the frequency F of the
sense from the training data helps tremendously.

Concretely, the augmented score s′ = sλF per-
forms much better than the unaugmented score.
The parameter λ was chosen to maximize the
score on the training set.

Choosing the sense that maximizes the aug-
mented score improves the system’s accuracy by
9.2 percentage points and is therefore invaluable.

5.2 Preventing the Model From Learning
Grammar

Another trick I use to improve performance is how
I generate the CE data. First, I use the Stanford
POS tagger (Toutanova et al., 2003) to tag each
word in a training example. Next I lemmatize the
randomly chosen pivot word. Finally, if the ex-
ample is to be a negative example, I make sure to
replace it with the lemma of a random word with
the same part of speech.

Without these changes, the network can learn
grammar instead of semantics in order to tell if
the pivot word is an impostor. Early experiments
showed a 2% improvement in system accuracy as
a result of this change.

6 Experimental Results

Experiments were run using the Senseval-3 En-
glish Lexical Sample task fine-grained framework.
My solver achieves an accuracy of 70.9% com-
pared to a most frequent sense baseline score of
55.2% and a winning score of 72.3%5. Though
this contest is not the most recent one on WSD,
it seems that not much progress has been made
by winning solvers in subsequent years. There-
fore, I suspect that my solver’s accuracy represents
nearly state-of-the-art performance. Furthermore,

5Note that the winning entry used a voting scheme from
an ensemble of independently developed classifiers.

most of my parameters were not carefully tuned,
so higher performance can probably be achieved
after tuning the parameters.

7 Implementation

The code for the project is written in Python. I
use Keras (Chollet, 2015) to do the neural net-
work training. The implementation is in several
scripts. The first script preprocesses the unlabeled
corpus, adding POS tags. The next script learns
the function f() with contrastive estimation. The
next script reads the Senseval-3 contest files, finds
the appropriate replacement words, and classifies
the test set. Finally the last script post processes
the sense weights, taking into account the sense
frequency. The last script reports the score, and
outputs a file for the Senseval-3 scoring code to
analyze (though the scores reported are the same).

Finally, to ease testing, I create a wrapper class
that loads the Keras models and keeps them in
memory. This way I don’t have to re-compile
the model to test subsequent changes to the third
stage.

8 Future Work

The most promising direction for taking this work
is to the fully unsupervised realm. Currently, the
only supervised process is in the finding substitute
words step. It seems that the next thing I should try
should be automatically choosing suitable words
from WordNet.

Unsupervised context clustering is also a
promising direction. By clustering contexts by
which words work best in them, the proper senses
could be induced without a dictionary. Better
yet, modifying the M step for EM clustering so
that unlabeled contexts are more likely to clus-
ter into WordNet categories with respect to the
above method could provide not only a mapping
into canonical WordNet senses, but also serve to
approximately label data for training.

It’s also important to compare to non-neural CE
baselines and to test my framework on other WSD
contest data.

Finally, the network architecture I chose is
problematic for a number of reasons. First it
requires relevant long term context to propagate
through a long recurrent chain, degrading its im-
pact. A better architecture might only use a small
window of context, and then summarize the rest of
the context words in some other way (perhaps con-



volutional max pooling, or more simply, just a nor-
malized average of their GloVe vectors). Second,
I think the center node is too deep, slowing train-
ing. Finally, the network doesn’t contain many pa-
rameters, but still trains slowly. I think the archi-
tecture could be improved drastically, leading to
better performance and faster learning.

9 Conclusion

This paper describes the general problem of word
sense disambiguation and previous attempts to
solve it. A novel method for solving WSD is in-
troduced, based on the combination of contrastive
estimation and word substitution. This method
achieves nearly state-of-the-art performance and is
promising in its simplicity (only a single model),
novelty, ability to combine with other methods,
and potential to lead to fully unsupervised WSD.
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