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Preface

From social networks to academic publications, information technologies have enabled

companies, organizations, and governments to collect huge datasets about the world.

Many of these datasets have major textual components organized by human-applied

labels or tags, promising to improve our understanding of large scale topical and social

phenomena through the words people write. Doing so requires tools that can discover

and quantify word usage patterns that are interpretable, trustworthy, and �exible.

In particular, the discovered patterns should exploit the implicit domain knowledge

embodied in tags, labels, or other categories of interest, when they are available, and

lend themselves to visual exploration and interpretation.

This dissertation presents studies of topical structure of the tagged web, social

language in microblogs, and innovation in academia through statistical analyses of

text. Several new probabilistic topic models of metadata-enriched document collec-

tions are introduced, facilitating domain speci�c studies of words associated with tags,

emoticons, library subject codes, and other human-provided labels. I �nd that tags

improve high-level clustering of web pages; that language on Twitter can be quanti�ed

with respect to its role as substance, status, social, or style; and that interdisciplinary

research consistently uses language that looks like academia's future. These results

are evaluated both quantitatively, with gold standard and task driven metrics, and

qualitatively with visualizations of the textual patterns discovered by the models.
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Chapter 1

Introduction

Information retrieval and web search technologies have been tremendously successful

at indexing large text collections. But today, so many traces of society are indexed

that the kinds of questions we want to ask go beyond the capabilities of systems

designed to retrieve individual documents. For example, how are individuals' social

roles re�ected in the language they use in communicating with friends? How should

we design social networks in light of this? What environments foster innovative ideas

to take hold in academia or corporations? How do these ideas spread, and what are

the implications for resource allocation?

Answers to high level questions like these can only be made by informed human

judgment supported by computational tools to help collate and summarize relevant

textual data. Text is uniquely suited to shed light on such questions because it is

available in great quantity, is semantically richer than demographic information or

network links, and is accessible to computational analysis. From �nancial statements

to aircraft design, people depend on empirical statistics and computational models

to develop informed judgment when numerical data is available. But how can we use

the data in text collections for insight into social science questions about the nature

and behavior of people, organizations, and ideas?

Traditional approaches from the humanities and social sciences develop the re-

searcher's domain expertise directly: for a small enough collection, a researcher can

simply read the text. Existing domain experts can be consulted to provide context.

1



2 CHAPTER 1. INTRODUCTION

Field studies can be run to give a researcher �rst-hand experience. Such approaches,

however, simply do not scale to document collections numbering in the millions.

Gaining insight into large collections requires the help of computational tools to aide

researchers seeking meaningful insight.

General-purpose text analysis tools have been developed over the last decades,

designed to discover and quantify patterns in text. These have become indispensable

to text mining practitioners, whose goal is to develop quantitative, numerical measures

of patterns in text collections that can be trusted and meaningfully interpreted. These

tools include automatic classi�cation and clustering techniques [87, 84], latent topic

models that discover weighted sets of words that tend to co-occur across documents

[16, 48], and custom gloss lists of words designed to measure speci�c phenomena [105,

104]. The challenge of text mining is translating these broadly applicable techniques

to speci�c studies of phenomena in the world.

Recent research has taken �rst steps in combining general purpose text analysis

tools with in-depth domain expertise to develop novel insight into macro-scale phe-

nomena in the world. These studies range from models of politics [101] and mood

on Twitter [44] to the study of research communities [12, 50] or types of political

communication [49]. What many of these approaches have in common�above and

beyond the application of one or more of the text mining techniques listed above�

is the extent to which they rely on domain expertise to develop and interpret the

quantitative output of models. For example, consider the focused study of a single

academic �eld: understanding the adoption of statistical methodologies in natural

language processing. Hall, et al., [50] combined topic models with domain expertise

to track the rise of statistical methodologies to a single workshop where in�uential

researchers from the NLP and speech processing communities interacted for the �rst

time. As in [12] and [49], the authors' expertise in the subject area is critical to

the study's success. In particular, studies that use unsupervised topic models [50],

dimensionality reduction techniques [12], or clustering algorithms [49], demand that

the text mining practitioner employ expert knowledge of the domain in order to in-

terpret the trends in context. It is the domain expertise of the authors themselves

that enable a model's output to signify trends in the real world.
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However, many domains of interest are e�ectively devoid of domain experts. For

instance, if we want to study how interdisciplinarity has a�ected academia as a whole

(as in Chapter 7), we cannot hope to develop the necessary expertise in all areas of

academia. Traditional methods from sociology and history of science based on liter-

ature reviews and expert interviews are overwhelmed by the number of combinations

of �elds to pursue and documents to read. But without the kind of domain exper-

tise demonstrated in [12, 50, 49], purely unsupervised data-driven methods cannot

be meaningfully interpreted. As the scale of data or scope of questions expands, we

need a methodology based upon the data we have that can be interpreted with only

minimal domain knowledge.

The approach I take in this dissertation is to leverage the implicit expertise lurking

in the data: human-provided labels. There is no shortage of human-provided labels

on many modern text collections. Curated databases, such as the PhD dissertations

analyzed for in Chapter 7, often contain standardized classi�cation codes maintained

by taxonomic experts. On sites like Wikipedia, we might use category page links

as a de-facto consensus vocabulary of many volunteer editors. And even in open-

domain text collections, we can often �nd rich user-generated tags, free-form text

annotations designed to aid human information seeking. Tags are applied to web

pages (through sites like Delicious1 and StumbleUpon2) and found in user-generated

content on microblogs like Twitter.3 Each kind of label space super-imposes a human-

interpretable organization upon a slice of the world's electronic text, and each has

the potential to act as a proxy form of domain expertise.

But how can label spaces be used as proxies for domain experts? The approach I

take in this dissertation is to move away from purely unsupervised textual analysis to

statistical models of labeled text collections. Much information exists in the implicit

associations between words in documents and the label spaces people use to organize

those documents. Consider a dissertation categorized as both Genetics and Computer

Science. From only this one document, we could not hope to discern which words

1http://delicious.com/
2http://stumbleupon.com/
3http://twitter.com/ � Roughly 11% of posts in Twitter's November 2009 spritzer feed contain

a hashtag.
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are from Genetics and which are from Computer Science. But by looking at the

distribution of words and labels across the entire collection, we might discover that

words such as �genome� and �sequence� are statistically more likely to occur together

in Genetics documents, whereas terms like �algorithm� and �complexity� are more

likely to occur in Computer Science. I build upon this intuition in developing several

statistical text models throughout this dissertation.

Not every text mining model will support meaningful quantitative insight shed-

ding light on questions like those posed above. I identify three properties a model

must exhibit in order to succeed: trustworthiness, interpretability, and �exibility. A

model is trustworthy if its output leads to reasonable conclusions across a variety of

conditions. A model is interpretable if its output has meaning that can be commu-

nicated externally without undue reliance on the model's internal state. Finally, a

model is �exible if it can accommodate supervised input from domain experts or text

mining practitioners without demanding that every potential pattern of interest be

fully labeled.

This dissertation progressively develops models designed to have the properties

of trustworthiness, interpretability, and �exibility. Any model of text that ignores

human-provided labels is at a disadvantage in its trustworthiness. So in Chapter 3,

I present a novel topic model called Multi-Multinomial Latent Dirichlet Allocation

(MM-LDA) that incorporates human provided labels to improve the quality of latent

topics. This chapter, based on work �rst published in [113], uses tags as a source of

information analogous to words for a high-level organizational task of web page clus-

tering. While MM-LDA outperforms traditional LDA at clustering, its latent topic

assumption is an obstacle for the model's interpretability. The next model in Chap-

ter 4, based on work �rst published in [112], is designed to avert this shortcoming.

Labeled LDA (L-LDA), changes the relationship of labels to topics, constraining each

topic to align with exactly one label. I demonstrate the model's interpretability ad-

vantages over latent topics and its competitiveness at a tag prediction task. However,

the model's strong one-to-one assumption of labels to topics limits its �exibility with

regard to modeling unlabeled patterns in the data. Chapter 5, based on work �rst

published in [114], introduces Partially Labeled Dirichlet Allocation (PLDA) and the
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Partially Labeled Dirichlet Process (PLDP). These models introduce new kinds of

modeling �exibility: PLDA and PLDP are hybrid �partially-supervised� models that

generalize both supervised techniques such as L-LDA and unsupervised techniques

like LDA. They learn latent sub-topics of labels while still allowing for the presence

of unlabeled, corpus-wide background topics.

The broader goal of this dissertation is to advance our ability to use text as a

lens for studying human social systems. Chapter 5 of this dissertation acts as bridge

between the statistical models of the preceding chapter and the research method-

ologies demonstrated in the case studies of Chapters 6 and 7. The methodologies

speak to three major categories of questions that social scientists often explore: those

about people, organizations and ideas. These categories are re�ected in the litera-

ture published by practitioners of the other major computational approach to large

scale social systems: social network analysis [39]. Social network analysis techniques

examine networks of formal variables like �X communicates with Y� or �X published

with Y,� i.e. networks concerning people and the organizations in which those people

participate [67]. They also consider variables like �paper A cites paper B� or �web

page A links to page B,� i.e. networks connecting ideas [20]. While I do not directly

compare to these techniques in this dissertation, the case studies in Chapters 6 and

7 illustrate the richer characterizations that textual analysis makes possible, versus

techniques limited to the presence or absence of ties.

Chapter 6, based on work �rst published in [111], presents a study of the largely

social domain of people's communication through a popular microblogging social net-

work. We �nd that some interesting patterns of language use can be characterized

with known labels (emoticons, hashtags, etc.) and other patterns can be discovered

automatically without labeling. In Chapter 7, I study organizations and ideas in an

in-depth look at interdisciplinarity in academia: while science does have a social side,

it is the organizational structure of universities and departments, as well as the ideas

themselves, that best characterize intellectual output. We study this output through

the lens of one million PhD dissertation abstracts �led since 1980. Taken together,

these studies o�er substantial coverage of the kinds of questions that computational

social science can and should study, and we demonstrate how aspects of both can be
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expressed in terms of the general labeled text modeling framework developed in the

preceding chapters.

This dissertation develops four broadly applicable computational models of text

collections in the presence of human-interpretable metadata in Chapters 3, 4, and 5.

The central theme of these models is to exploit the human-interpretable labels to im-

prove the trustworthiness, interpretability, and �exibility of the models. The studies

of social and intellectual phenomena in Chapters 6 and 7 show how these methods

can inform our analyses of semi-structured text collections at multiple scales: from a

birds-eye view of patterns in the data, to how groups, individuals, and documents �t

into these patterns, all the way down to the meaning and usage of individual words.

I conclude with some re�ections on the future of interpretable text mining in Chap-

ter 8: how can we build upon the methods developed here to better study the world

through the text people write.



Chapter 2

Preliminaries

Computational models of meta-data enriched text, such as those developed and ap-

plied in this dissertation, must �rst address a question of representation. What com-

putational framework can adequately describe the meaning of words and their role

in a discourse or document collection? The simplest answer to this question is the

bag-of-words (BoW) assumption: the meaning of a collection of words is taken as the

histogram of the counts of its words. This assumption should sound crazy. We know

that the composition and context of words cannot be divorced from their counts if

meaning is to be retained. Linguist Zellig Harris argued as much in one of the �rst

usages of the phrase �bag of words� in 1954 [52]: �And this stock of combinations of

elements becomes a factor in the way later choices are made ... for language is not

merely a bag of words but a tool with particular properties which have been fashioned

in the course of its use.�

Indeed, the �eld of Natural Language Processing since Harris has developed nu-

merous computational approaches to language representation that are more nuanced

than a bag of words. Statistical language models [46] use multi-word n-grams as

linguistic context and are a part of modern state of the art machine translation [70]

and speech recognition [110] systems. Formal models of syntax such as PCFGs [86],

HPSGs [106], LFGs [34], and dependency grammars [72] have found roles in natural

language understanding tasks, from textual entailment [33] to paraphrase discovery

[80].

7
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Nonetheless, models of text based on the bag-of-words assumption have shown

lasting value in natural language processing and related �elds due to a perhaps not-

too-surprising fact. Which words are in a text is highly representative of what the

discourse is about, even if the structure of the discourse is destroyed. For exam-

ple, a text about Shakespeare will use the bard's name as well as words like poem,

iambic, and comedy far more often than will articles about the structure of DNA

or professional sports. As a result, models based on the BoW assumption can be

e�ective at retrieving [131, 120], discovering [90], classifying [77], and clustering [125]

documents by content area. In general, the BoW assumption works poorly for �ne-

grained analysis of linguistic content within documents, but is surprisingly e�ective

at describing the large-scale organizational structure of a document collection. The

large-scale corpus analysis questions that this dissertation addresses are instances of

the latter.

In the remainder of this chapter, I introduce the concepts and notation for two

popular classes of models that often make the BoW assumption: vector space models

and statistical models of text. Vector space models (Section 2.1) almost always start

with the BoW assumption and are widely used as feature vectors for information

retrieval and machine learning. Bayesian statistical models of text do not always

make the BoW assumption, but two popular models do: the naive Bayes classi�er

(Section 2.2.1) and statistical topic models (Section 2.2.2). The VSM, naive Bayes,

and statistical topic models will all be revisited in later chapters.

2.1 Vector space models of text

Despite the limitations of the BoW assumption, the Vector Space Model (VSM) of

word and document meaning is a widely used technology and a core component of

modern web search engines. The VSM was introduced by Salton and McGill for use in

the System for the Mechanical Analysis and Retrieval of Text (SMART) [120], a pio-

neering Information Retrieval system built in the 1960s. The intended use of the VSM

was as a basis for measuring the similarity of document pairs and of query-document

pairs, where queries are treated as short documents. The intuition is simple: if we
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count the number of occurrences of each term into its own dimension of a vector�and

then weight these dimensions appropriately�we can quantify the similarity of doc-

ument pairs by the similarity of their vectors. Several techniques exist to e�ciently

compute vector similarities, and many of these are quite e�ective when applied to

document vectors. In essence, the VSM transforms the challenge of language similar-

ity into straightforward vector algebra. Document retrieval, SMART's original goal,

is achieved by returning the closest documents to a target query in the vector space.

The VSM's in�uence is not limited to information retrieval: it has proven to be

a powerful representation for text clustering and classi�cation. In text clustering,

the goal is to automatically discover groups of related documents based on their

similarities. The discovered clusters can illustrate high-level structure in a document

collection. In text classi�cation, the goal is more targeted: predict a label for a

given document, such as spam versus non-spam email messages. The prediction is

based on training examples where the class label is known. In both cases, algorithms

that use VSM vectors as features are strong baselines that can outperform more

complex models. I will return to text clustering and classi�cation in Chapters 3 and

4, respectively.

One class of clustering algorithms warrants speci�c mention: those based on di-

mensionality reduction. Once we represent a document as a vector in a vector space,

it is natural to represent a collection of documents as a matrix D ∈ RN×V where N

is the number of documents and V is the size of the vocabulary. The entry Dd,v is

a weighted count of the number of times term v occurs in document d. (Counts in

the VSM are often re-weighted, such as by down-weighting terms common in many

documents via the tf-idf [120] weighting scheme, which we will return to in 3.2.1.)

We can reduce the dimensionality of this matrix by making use of the singular value

decomposition (SVD), a standard technique in linear algebra [45] �rst developed in

the 1960s. When applied to the term-document matrix, it is known as Latent Seman-

tic Indexing (LSI) or Latent Semantic Analysis (LSA) [37] because of its ability to

derive latent usages of words that tend to co-occur in many documents and to group

documents based on the usage of these word clusters.

LSA represents the contents of D as the product of three matrices D ≈ UΣV T :
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the document-topic matrix U ∈ RN×K , a diagonal weight matrix Σ ∈ RK×K , and a

topic-term matrix V ∈ RV×K . U represents how much each document uses each topic

K and V represents how much each topic uses each word. Often, the reconstruction

of D as the product of these matrices is very close to the original D when using only

a small number of topics K.1 For example, a document-speci�c mixture of some 300

topics may be a reasonable summary of a much larger term space with a size in the

tens or hundreds of thousands.

The singular value decomposition assumes that the values in the input matrix

are normally distributed [85, p. 565]. Counts in the term-document matrix most

de�nitely are not�even after common re-weighting schemes like tf-idf�resulting in a

mismatch of the mathematical technique of SVD with its linguistic application LSI.

An implication of this assumption is that elements of the returned decomposition

may be negative: a document may assign negative counts to some topics, and topics

may assign negative counts to some words. In practice, this often occurs and leads

to interpretation di�culties. Later, probabilistic Latent Semantic Indexing (pLSI)

[60] was introduced to restrict the document-topic matrix and topic-term matrix to

non-negative values that sum to one: i.e., to probability distributions over topics for

each document and over words for each topic. pLSI is e�ectively an application of

non-negative matrix factorization [76] to the term-document matrix. I will return

to pLSI in Section 2.2.2, where I describe probabilistic topic models that do make

explicit generative distributional assumptions about the nature of the input data, in

contrast to pLSI. Chapters 3 and 4 revisit the VSM in more detail.

2.2 Statistical Models of Text

The in�uence of the bag-of-words assumption is not limited to the VSM. Many sta-

tistical models of text take the assumption literally as a statement of conditional

independences among random variables. One large class of such models are Bayesian

1This is accomplished by setting smaller singular values in Σ to 0. Technically, this is known as
�reduced SVD��see [129, p. 17].
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graphical models that represent the words in a document collection as observed ran-

dom variables ~w drawn from some distribution(s) represented by unobserved random

variables and parameters.2 In these models, the bag of words assumption can be

concretely instantiated to mean that the probability of a given word wd,i at posi-

tion i in document d is independent of the other words in the document given some

parameters, such as which topics the document participates in. Common notation de-

scribing variables in statistical text models as included in this dissertation are shown

in Table 2.1.

In contrast to the VSM, statistical text modeling techniques ask us not to think

of words as simply data for counting or manipulation, but rather as evidence. The

words in the document collection are the observable output of some random process

whose general form we assume but whose parameters we do not know. The words we

observe suggest the values of these parameters. Formally, we can estimate the model's

parameters by picking the values that maximize the likelihood of the observed words

under our model.

Thinking of words as evidence instead of data opens up a wide range of well

founded probabilistic modeling approaches. One particularly large class of statistical

text models are those that make a generative process assumption. These models

describe the origin of the observed words with a simple narrative: we �rst instantiate

corpus-wide general random variables (such as the likelihood of spam vs non-spam),

then pick values for more speci�c random variables (such as the particular distribution

over words for spam and non-spam), and then �nally generate the word variables from

these more general random variables (select words from the chosen spam or non-spam

distribution). All generative models are simplistic approximations of the real process

by which documents are generated�a human author's e�orts�but even surprisingly

naive assumptions can e�ectively address some applications. I will describe two such

2The di�erence between unobserved random variables and model parameters is often subtle: by
convention, if an unknown value has a prior and shares a structural position with observed random
variables, we call it an unobserved random variable; else we call it a parameter. In general, we
know the value of neither in advance. In many speci�c models such as LDA, the distinction is more
relevant in that we set the values of parameters explicitly (or tune them with either held out data or
a maximum likelihood technique) but we must necessarily infer or integrate out the values of hidden
random variables as part of learning and inference.
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V Vocabulary indexed by v ∈ 1 . . . V

D Documents indexed by d ∈ 1 . . . D

Nd Length of document d

wd,i Word in V at word position i ∈ 1 . . . Nd

Table 2.1: Common notation for graphical models of text.

cases in the sections that follow: the Naive Bayes text classi�er in Section 2.2.1,

analogous to algorithms like logistic regression that can classify documents in the

VSM, followed by Latent Dirichlet Allocation in Section 2.2.2, a probabilistic topic

model that adds extensible probabilistic semantics to LSA/LSI.

2.2.1 Naive Bayes

The simplest widely used generative process for text classi�cation is the multinomial

naive Bayes event model [87]. Naive Bayes has been extremely in�uential in spam

email detection since 2002 [47] and is still used in several popular desktop email

applications as of 2011. One of the main reasons for the model's continuing popularity

is that it is an e�ective [94], tweakable [121] text classi�er. And, in its most basic

form, naive Bayes serves as a favorite baseline for more powerful machine learning

models in classi�cation papers.

Naive Bayes assumes that each document is generated by some label l from a

space of labels L of size L (e.g. {spam, non-spam} with size 2). The labels are not

necessarily equally likely, so the probability of picking a label l is assumed to come

from a multinomial probability distribution π over labels. Each label is associated

with a multinomial distribution βl over words in the vocabulary V. Like in the VSM,

these multinomial distributions can be represented numerically as a vector whose

length is the size of the vocabulary. However, unlike the VSM, the elements of βl

are constrained to be non-negative and sum to one. A document d is generated by

�rst picking a label l from π (and a document length Nd) and then drawing Nd words

from βl.

Term draws in Naive Bayes are repeated without respect to ordering and so are a

concrete manifestation of the BoW assumption. In particular, the probability of any
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Figure 2.1: The multinomial naive Bayes event model represented as a standard
Bayesian graphical model for a single document (top) and as a plate diagram for D
documents (bottom). Plates (rounded boxes) represent repetition of indexed vari-
ables.

L Labels indexed by l ∈ 1 . . . L

ld Class label for document d

π Prior distribution over labels L
βl Per-label distribution over words V

Table 2.2: Summary of variables used in Naive Bayes, in addition to those in Table 2.1.

two words occurring in a given document are conditionally independent given their

class label. Formally, the conditional independence assumption allows the probability

of the observed word sequence P ( ~wd|ld, ~β) = P ( ~wd|βld) = P (wd,1, . . . , wd,Nd
|βld) to be

factorized as simply
∏Nd

i=1 P (wd,i|βld). Using Bayes rules to incorporate the probability

of picking our particular label ld results in a �nal probability of a document's observed

words as simply P (ld|π) · P (~wd|ld, ~β) = πl ·
∏Nd

i=1 βl,wd,i
.

During training, the values of π and ~β are estimated to maximize this likelihood.

During testing, the value of ld that maximizes the likelihood of an individual docu-

ment is the label that is chosen to describe that document. In practice, the optimal

estimates for π and ~β can be evaluated by simply counting the fraction of docu-

ments with each label (for π) and the fraction of words within each label (for ~β). A

derivation of these rules can be found in [87].

Figure 2.1 shows the Bayesian graphical model representation of the Naive Bayes
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generative story described above, with notation in Table 2.2. In the top half, rela-

tionship between the variables used to generate a particular document d (inside the

box) is shown with respect to the model parameters (outside the box). Each word is

assigned its own random variable w1 . . . wn which are shaded to indicate that these

variables are observed. The document's label l is considered observed during training

but unobserved during classi�cation. Each w is dependent on βl and hence depends

on both the value of l and the value of the β1..L variables. In the bottom half, mul-

tiple instantiations of the same variable type are collapsed using plate notation: the

contents of each box are repeated by the number of times written in the bottom-right

corner of the plate. In practice, additional hyperparameters are often included on the

values of π and β1..L to allow the model to better �t the data [87].

2.2.2 Latent Dirichlet Allocation

While the VSM and Naive Bayes have been around since the 1960s, it wasn't until

2003 that a fully generative account for modeling text content with unsupervised

topics was presented in the form of Latent Dirichlet Allocation (LDA) [16]. LDA

is a generative model of text that is based on the BoW assumption and an event

model similar to that of the multinomial naive Bayes classi�er. However, LDA is an

unsupervised algorithm that does not assume the presence of any labels. Instead,

LDA assumes the presence of K latent topics, each of which is associated with a

multinomial distribution over words βk. Each document has its own mixture of topics

θd, a document-speci�c multinomial over topics drawn from a Dirichlet prior α. Each

word wd,i in the document is generated by �rst selecting a topic zd,i from θd and then

a word from βzd,i . Because the topics are latent�only the values of the words wd,i

are observed�practical di�culties in working out learning and inference in the model

contributed to the long gap between LDA and the earlier generation of supervised

models like naive Bayes.

The development of LDA can be traced through pLSI to LSA[60]. Like these

earlier dimensionality reduction techniques, LDA learns how much each document

likes each topic and how much each topic likes each word. LDA's major contribution
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Figure 2.2: Bayesian graphical model for Latent Dirichlet Allocation.

is that, unlike earlier models, it provides fully generative probabilistic semantics to the

generation of the corpus, and therefore opens itself up to extensions, customizations,

and assumption modi�cations that are straightforward to express in the language of

probabilistic graphical models. As a result, LDA has proven a fertile basis for the

development of new models�e.g. [74, 14, 35, 63, 144, 95]�by a widely distributed

community of researchers. The models presented in Chapters 3, 4, and 5 can be seen

as part of this tradition.

Figure 2.2 shows the Bayesian graphical model for LDA and Table 2.3 makes its

generative process explicit with variables described in Table 2.4. Unlike Naive Bayes,

inferring the best possible values of the hidden parameters θ and β is computationally

intractable. However, approximate inference techniques such as variational inference

(as in [16]) and Gibbs sampling (as in [48]) are e�ective at estimating the values of θ

and β from only the values of the observed words ~w. E�cient [107], online [59], and

distributed [5] inference for LDA has been studied explicitly. A friendly introduction

to the mathematics of LDA can be found in [57], and a deeper exploration of the

relationship between smoothing parameters and inference techniques in [4].

2.3 Summary

The BoW assumption is, at its core, a simplifying assumption about the nature of lan-

guage that enables e�cient computation on textual data. However, the value of the

assumption bears out in its usefulness. A wide variety of high performing models of

text are based on the BoW assumption and succeed at tasks from spam classi�cation

to topic discovery. The reason for the success of these models is a simple observation

about language: large-scale thematic patterns of word usage are often captured at
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1. For each topic k ∈ {1, . . . , K}:

(a) Generate βk = (βk,1, . . . , βk,V )T ∼ Dir(·|η)

2. For each document d:

(a) Generate θd = (θd,1, . . . , θd,K)T ∼ Dir(·|α)

(b) For each i in {1 . . . Nd}:

i. Generate zi ∈ {1 . . . K} ∼ Mult(·|θ(d))

ii. Generate wi ∈ {1 . . . V } ∼ Mult(·|βzi)

Table 2.3: Generative process for Latent Dirichlet Allocation.

K Set of hidden topics indexed by k ∈ 1..K

θd Per-document distribution over topics K
βk Per-topic distribution over vocabulary V
α Dirichlet hyperparameter for θ1...D

η Dirichlet hyperparameter for β1...K

zd,i Latent topic assignment at word position i in document d

Table 2.4: Summary of variables used in LDA in addition to those in Table 2.1.
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least as well by word choice as by sentence structure. As the BoW assumption is

relaxed in various ways�from n-gram language models to syntactic parsing�the re-

covered knowledge can be made more �ne-grained for tasks that require structure, like

machine translation or entity extraction. Yet thematic organization is a reasonable

�t for the BoW's assumptions, and many interesting challenges remain in thematic

scope. This dissertation explores some of them.

From a modeling perspective, this dissertation builds upon and uni�es topic mod-

els like LDA as well as supervised classi�cation based on multinomial naive Bayes. In

Chapter 3, I introduce a simple extension of LDA that enables e�ective simultaneous

modeling of tags and words. In Chapter 4, I introduce Labeled LDA, which extends

naive Bayes to multi-label classi�cation by borrowing probabilistic machinery from

LDA. Then, Chapter 5 introduces Partially Labeled Dirichlet Allocation, which uni-

�es Labeled LDA and LDA into a coherent generative model of multi-labeled text that

can simultaneously uncover latent topics associated with each document and latent

word distributions associated with each label. These models are applied to challenges

in mining and understanding the contents of large-scale real-world text datasets in

Chapters 6 and 7.
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Chapter 3

Clustering the Tagged Web

The web's content covers every niche of human interest. If we are to understand the

structure and dynamics of the web, we need better tools for discovering high-level

structure and patterns across multiple web pages. Automatic document clustering is

one such mechanism: its goal is to �nd coherent groupings of web pages based on the

words of those web pages and related signals. An e�ective web document clustering

can, for example, tell us that pages around a particular set of domains are skewed

toward a particular set of interests, what terms web authors use to describe those

interests, and how both may have changed over time.

This chapter considers the task of web page clustering in the presence of tags. Tags

are open-domain labels that human readers apply to web pages on social bookmarking

websites. Sites like Delicious and StumbleUpon collected hundreds of thousands of

keyword annotations per day (in 2008 [58]), and many of the highest quality pages

are quickly tagged many times by many users. These tags are an explicit set of

keywords users have found appropriate for categorizing documents within their own

�ling systems. Thus, tags promise to expose the domain knowledge embodied in each

user's personal indexing vocabulary.

While the larger focus of this dissertation is on tools for exploration and discovery,

it is worth noting that web document clustering is an interesting task in its own

This chapter draws from group work published as �Clustering the Tagged Web� in WSDM 2009
by D. Ramage, P. Heymann, C.D. Manning, and H. Garcia-Molina. [113]
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right. Indeed, it has shown promise for improving several aspects of the standard

information retrieval paradigm. Clustering has long been recognized as having the

potential to improve search results in document retrieval [131, 133, 56] via document

retrieval using topic-driven language models [82, 136], search result clustering [142];

alternative cluster-driven user interfaces [32]; and improved information presentation

for browsing [90]. Others have argued that tags hold promise for ranked retrieval,

[8, 62, 139, 143]. We do not explore these applications here, but rather focus on how

tags can be used to improve the quality of learned clusters across a variety of models

and conditions.

In more detail, we focus in on how best to exploit user-generated tags as a comple-

mentary data source to page text and anchor text for improving automatic clustering

of web pages. We explore the use of tags in 1) K-means clustering in an extended

vector space model that includes tags as well as page text and 2) a generative cluster-

ing algorithm, Multi-Multinomial Latent Dirichlet Allocation (MM-LDA) that jointly

models text and tags. MM-LDA is an illustration of the �rst of three properties for

successful text mining models identi�ed in Chapter 1: trustworthiness. MM-LDA

simultaneously models the words on a web page, the anchor text surrounding links

to that page elsewhere on the web, and tags applied to the page on Delicious. Proper

incorporation of these additional inputs improves the model's ability to discover top-

ics that align with human similarity judgments across a variety of conditions versus

both LDA and k-means. Speci�cally, we evaluate K-means, LDA, and MM-LDA by

comparing their output to an established web directory, �nding that the naive in-

clusion of tagging data improves cluster quality versus page text alone, but a more

principled inclusion can substantially improve the quality of all models with a statis-

tically signi�cant absolute F-score increase of 4%. The generative model outperforms

K-means with another 8% F-score increase. Improvements are found even several

levels deep into the web directory hierarchy, demonstrating how tags can improve

model trustworthiness in a variety of conditions.
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3.1 Problem Statement

Our goal is to determine how tagging data can best be used to improve web document

clustering. However, clustering algorithms are di�cult to evaluate. Manual evalua-

tions of cluster quality are time consuming and usually not well suited for comparing

across many di�erent algorithms or settings [53]. Several previous studies instead use

an automated evaluation metric based on comparing an algorithm's output with a hi-

erarchical web directory [125, 102]. Such evaluations are driven by the intuition that

web directories, by their construction, embody a �consensus clustering� agreed upon

by many people as a coherent grouping of web documents. Hence, better clusters

are generated by algorithms whose output more closely agrees with a web directory.

Here, we utilize a web directory as a gold standard so that we can draw quantita-

tive conclusions about how to best incorporate tagging data in an automatic web

clustering system.

We de�ne the web document clustering task as follows:

1. Given a set of documents with both words and tags (de�ned in Section 3.1.4),

partition the documents into groups (clusters) using a candidate clustering al-

gorithm (de�ned in Section 3.1.1).

2. Create a gold standard (de�ned in Section 3.1.2) to compare against by utilizing

a web directory.

3. Compare the groups produced by the clustering algorithm to the gold standard

groups in the web directory, using an evaluation metric (de�ned in Section

3.1.3).

This setup gives us scores according to our evaluation metric that allow us to compare

candidate clustering algorithms. We do not assert that the gold standard is the

best way to organize the web�indeed there are many relevant groupings in a social

bookmarking website necessarily lost in any coarser clustering. However, we argue

that the algorithm which is best at the web document clustering task is the best

algorithm for incorporating tagging data for clustering.
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3.1.1 Clustering Algorithm

A web document clustering algorithm partitions a set of web documents into groups of

similar documents. We call the groups of similar documents clusters. In this chapter,

we look at a series of clustering algorithms, each of which has the following input and

output:

Input A target number of clusters K, and a set of documents numbered 1, . . . , D.

Each document consists of a bag of words from a word vocabularyW and a bag

of tags from a tag vocabulary T .

Output An assignment of documents to clusters. The assignment is represented as

a mapping from each document to a particular cluster z ∈ 1, . . . , K.

This setup is similar to a standard document clustering task, except each document

has tags as well as words.

Two notable decisions are implicit in our clustering algorithm de�nition. First,

many clustering algorithms make soft rather than hard assignments. With hard as-

signments, every document is a member of one and only one cluster. Soft assignments

allow for degrees of membership and membership in multiple clusters. For algorithms

that output soft assignments, we map the soft assignments to hard assignments by

selecting the single most likely cluster for that document. Secondly, our output is a

�at set of clusters. In this chapter, we focus on �at (non-hierarchical) clustering algo-

rithms rather than hierarchical clustering algorithms. The former tend to be O(kn)

while the latter tend to be O(n2) or O(n3) (see Zamir and Etzioni [141] for a broader

discussion in the context of the web). Since our goal is to scale to huge document

collections, we focus on �at clustering.

In our experiments, we look at two broad families of clustering algorithms. The

�rst family is based on the vector space model (VSM), and speci�cally the K-means

algorithm. K-means has the advantage of being simple to understand, e�cient, and

standard. The second family is based on a probabilistic model, and speci�cally derived

from LDA. LDA-derived models have the potential to better model the data, though

they may be more complicated to implement and slower (though not asymptotically).
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3.1.2 Gold standard: Open Directory Project

We derive gold standard clusters from the Open Directory Project (ODP) [1]. ODP

is a free, user-maintained hierarchical web directory. Each node in the ODP hierarchy

has a label (e.g., �Arts� or �Python�) and a set of associated documents.1 To derive a

gold standard clustering from ODP, we �rst choose a node in the hierarchy: the root

node (the default for our experiments), or �Programming Languages� and �Society�

(for Section 3.4.2). We then treat each child and its descendants as a cluster. For

example, say two children of the root node are �Arts� and �Business.� Two of our

clusters would then correspond to all documents associated with the �Arts� node

and its descendants and all documents associated with the �Business� node and its

descendants, respectively.

A gold standard clustering using ODP is thus de�ned by a particular node's K ′

children. When we give the clustering algorithm a value K, this is equal to the

K ′ children of the selected node. In general, the best performing value of K will

not be K ′. This heuristic is adopted to simplify the parameter space and could be

replaced by one of several means of parameter selection, including cross-validation on

a development set. We sometimes use the labels in the hierarchy to refer to a cluster,

but these labels are not used by the algorithms. When referring to the clusters

derived from the gold standard, we will sometimes call these clusters classes rather

than clusters. This is in order to help di�erentiate clusters generated by a candidate

clustering algorithm and the clusters derived from the gold standard. It is also worth

noting that the algorithms we consider are unsupervised and are therefore applicable

to any collection of tagged documents (as opposed to documents which conform to

the categories in ODP).

3.1.3 Cluster-F1 evaluation metric

We chose to compare the generated clusters with the clustering derived from ODP

by using the F1 cluster evaluation measure [84]. Like the traditional F1 score in

1Documents can be associated with multiple nodes in the hierarchy, but this happens very rarely
in our data. When we have to choose whether a document is attached to one node or another, we
break ties randomly.
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Figure 3.1: An example of clustering.

classi�cation evaluation, the F1 cluster evaluation measure is the harmonic mean

of precision and recall, where precision and recall here are computed over pairs of

documents for which two label assignments either agree or disagree.

3.1.3.1 Example

Consider the example clustering shown in Figure 3.1. Two clusters are shown, and

each document is denoted by its class in ODP: A for �Arts,� G for �Games,� R for

�Recreation.� A2 (for example) denotes a document which is in the ODP class �Arts�

that the clustering algorithm has decided is in the second cluster.

We think of pairs of documents as being either the same class or di�ering classes

(according to our gold standard, ODP), and we think of the clustering algorithm as

predicting whether any given pair has the same or di�ering cluster. The clustering

in Figure 3.1 has predicted that (A1, A2) → same cluster and that (R2, R4) →
di�erent cluster . If we enumerate all of the

(
n
2

)
= 28 pairs of documents in Figure

3.1, we get four cases:

True Positives (TP) The clustering algorithm placed the two documents in the

pair into the same cluster, and our gold standard (ODP) has them in the same

class. For example, (R1, R3). There are 5 true positives.

False Positives (FP) The clustering algorithm placed the two documents in the

pair into the same cluster, but our gold standard (ODP) has them in di�ering

classes. For example, (R1, G2). There are 8 false positives.
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True Negatives (TN) The clustering algorithm placed the two documents in the

pair into di�ering clusters, and our gold standard (ODP) has them in di�ering

classes. For example, (R2, A1). There are 12 true negatives.

False Negatives (FN) The clustering algorithm placed the two documents in the

pair into di�ering clusters, and our gold standard (ODP) has them in the same

class. For example, (R2, R4). There are 3 false negatives.

We then calculate precision as TP
TP+FP

= 5
13
, calculate recall as TP

TP+FN
= 5

8
, precision =

TP
TP+FP

= 5
13

recall = TP
TP+FN

= 5
8
and F1 as:

2×precision×recall
precision+recall ≈ 0.476.

3.1.3.2 Notes on F1

We selected F1 because it is widely understood and balances the need to place similar

documents together while keeping dissimilar documents apart. We experimented with

several other cluster evaluation metrics, including the Rand index [115], and informa-

tion theoretic measures such as normalized mutual information [124] and variation of

information [92], �nding the results to be consistent across measures.

F1 is a robust metric appropriate for our choice to provide the value K to our

clustering algorithms (see Section 3.1.1). In particular, having the number of clusters

K ′ in the gold-standard as input K does not ease the task of placing similar docu-

ments together while keeping dissimilar documents apart. Indeed, there may be many

small, speci�c groupings of the top-level ODP categories�more than the 16 top-level

subcategories�which a clustering algorithm would be forced to con�ate. These con-

�ations come at the expense of introducing false positives, possibly lowering the F1

score.

Because the clustering algorithms we consider are randomized, their output can

vary between runs. To assign a stable F1 score to a particular algorithm, we report

the mean F1 score across 10 runs of the algorithm with identical parameters but

varying random initialization. In our experiments, we report statistical signi�cance

where appropriate. When we refer to a change in F1 score as signi�cant, we mean

that the variation between the underlying runs for two algorithms is signi�cant at the

5% level by a two-sample t-test.
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3.1.4 Dataset

Our tagged document collection is a subset of the Stanford Tag Crawl Dataset [58].

The Tag Crawl consists of one contiguous month of the recent feed on Delicious, a

popular social bookmarking website, collected starting May 25th 2007. Each post on

the recent feed is the result of a user associating a URL with one or more short text

strings, such as web or recipe. Aggregating across posts, we recovered a dataset of

2,549,282 unique URLs. For many URLs, the dataset also includes a crawl of the

page text and backlink page text.

To evaluate the quality of clusterings of the Tag Crawl dataset, we limited con-

sideration to only a subset of 62,406 documents that is also present in ODP. Because

these pages were all tagged by a user within the last year, they include some of

the most recent and relevant pages in the directory. We discarded URLs in ODP's

top-level �Regional� category, as its organizational structure is largely based on the

geographical region pertaining to the site. Of the remaining documents, only 15,230

were in English and had their page text crawled as part of the Tag Crawl dataset.

The documents are distributed as in Table 3.1. The documents were further divided

into a 2,000 document development set for parameter tuning and a 13,230 document

test set for evaluating the �nal con�gurations reported here.

In our discussion, we di�erentiate between types and tokens. A word or tag token

is an instance of a term being observed either in or annotated to a document, respec-

tively. A word or tag type is a single unique term that is observed or annotated to

at least one document in the collection, respectively. For example, a document with

the text �the fuzzy dog pet the other fuzzy dog� and the tags (�dog�, �fuzzy�, �fuzzy�)

has eight word tokens, �ve word types, two tag types and three tag tokens.

Each document in the intersection of Delicious and ODP is represented as two

sets of term occurrence counts�one for words and another for tags. Words were

extracted from the Tag Crawl dataset and were tokenized with the Stanford Penn

Treebank tokenizer, a fairly sophisticated �nite state tokenizer. During processing,

all word tokens appearing less frequently than the 10 millionth most common distinct

word type were dropped as a �rst-cut term selection criterion [81, 140] as well as for

reasons of computational e�ciency. On average, a document contains 425 distinct
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ODP Name #Docs Top Tags by PMI

Adult 36 blog illustration art erotica sex
Arts 1446 lost recipes knitting music art
Business 908 accounting business lockpicking agency
Computers 5361 web css tools software programming
Games 291 un rpg fallout game games
Health 434 parenting medicine healthcare medical
Home 654 recipes blog cooking co�ee food
Kids 669 illusions anatomy kids illusion copyright
News 373 system-un�led daily cnn media news
Recreation 411 humor vacation hotels reviews travel
Reference 1325 education reference time research dictionary
Science 1574 space dreams psychology astronomy science
Shopping 310 custom ecommerce shop t-shirts shopping
Society 1852 buddhism christian politics religion bible
Sports 146 sport cycling n� football sports
World 756 speed bandwidth google speedtest maps

Table 3.1: Intersection of ODP with the Stanford 2007 Tag Crawl dataset. The
�regional� category has been elided.

word types and 1,218 word tokens. The tag occurrence counts make up the other

data of each document. The complete set of tags was crawled from Delicious for

each document without additional processing, yielding an average of 131 distinct tag

types and 1,307 tag tokens out of a tag vocabulary of 484,499 unique tags (including

many non-English tags). Because these documents in the ODP intersection tend to

be generally useful websites, they tend to be more heavily tagged than most URLs in

Delicious [58].

3.2 K-means for words and tags

In this section, we examine how tagging data can be exploited by the K-means [84]

algorithm, a simple to implement and highly scalable clustering algorithm that as-

sumes the same vector space model as traditional ranked retrieval. K-means clusters

documents into one of K groups by iteratively re-assigning each document to its

nearest cluster. The distance of a document to a cluster is de�ned as the distance
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of that document to the centroid of the documents currently assigned to that cluster

[84]. Distance is the cosine distance implied by the standard vector space model: all

documents are vectors in a real-valued space whose dimensionality is the size of the

vocabulary and where the sum of the squares of each document vector's elements

is equal to 1. Our implementation initializes each cluster with 10 randomly chosen

documents in the collection.

A key question in clustering tagged web documents using K-means is how to model

the documents in the VSM. We examine �ve ways to model a document with a bag

of words Bw and a bag of tags Bt as a vector V :

Words Only In step one, V is de�ned as 〈w1, w2, . . . w|W |〉 where wj is the weight
assigned to word j (based on some function fw of the frequency of words in

W and/or Bw). For example, wj can be the number of times word j occurs in

Bw (term frequency or tf weighting). In step two, V is l2-normalized so that

||V ||2 = 1.

Tags Only Analogous to words only, except we use the bag of tags Bt rather than

the bag of words Bw and the tag vocabulary T rather than the word vocabulary

W in step one.

Words + Tags If we de�ne Vw to be the words only vector, above, and Vt to be the

tags only vector, above, then the Words+Tags vector Vw+t = 〈
√

1
2
Vw,
√

1
2
Vt〉.

In other words, we concatenate the two l2-normalized vectors, giving words and

tags equal weight. The intuition underlying this choice is that tags provide an

alternative information channel that can and should be counted separately and

weighted independently of any word observations.

Tags as Words Times n Analogous to words only, except in step one, instead of

Bw we use Bw ∪ (Bt × n). In other words, we combine the two bags, but we

treat each term in the tag bag Bt as n terms. Instead ofW we useW ∪T as our

vocabulary. For example, a document that has the word �computer� once and

the tag �computer� twice would be represented as the word �computer� three

times under the Tags as Words Times 1 model, and �ve times under the Tags
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as Words Times 2 model. This representation is sometimes used for titles in

text categorization [31].

Tags as New Words We treat tags simply as additional (di�erent) words. V is

de�ned as: 〈w1, w2, . . . w|W |, w|W |+1, w|W |+2, . . . w|W |+|T |〉 where wj is the weight
assigned to word j for j ≤ |W | or the weight assigned to tag j−|W | for j > |W |.
This is equivalent to pretending that all words are of the form word#computer

and all tags are words of the form tag#computer. Then V is l2-normalized.

These options do not cover the entire space of possibilities. However, we believe they

represent the most likely and common scenarios, and give an indication of what rep-

resentations are most useful. Nonetheless, it should be noted that one could optimize

the relative weight given to words versus tags to maximize per-task performance.

In addition to deciding to model words or tags or both, we also need to answer

the following questions:

1. How should the weights be assigned? Should more popular tags be weighted

less strongly than rare tags? (Discussed in Section 3.2.1.)

2. How should we combine the words and tags of a document in the vector space

model? Which of the vector representations presented above is most appropri-

ate? (Discussed in Section 3.2.2.)

3. In the VSM, do tags help in clustering? (Discussed in Sections 3.2.1 and 3.2.2.)

3.2.1 Term weighting in the VSM

In this subsection, we study the �rst question above: how should the weights be

assigned? We study this question for the �rst three document models (Words Only,

Tags Only, and Words+Tags). In particular, we consider two common weighting

functions: raw term frequency (tf) and tf-idf. In computing term frequency, each

dimension of the vector is set in proportion to the number of occurrences of the

corresponding term (a word or tag) within the document. For tf-idf, each dimension

is the term frequency down-weighted by the log of the ratio of the total number of
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tf tf-idf

Words .131 .152
Tags .201 .154

Words+Tags .209 .168

Table 3.2: F-scores of the vector space model with pre-normalization on the 2000 doc-
ument development collection (higher is better). Rows correspond to features given to
the K-means model and columns present the weighting normalization function used.

documents to the number of documents containing that term. For the Words+Tags

scheme, we did not bias the weights in favor of words or tags (we normalized the

combined vector with no preference towards either words or tags).

Table 3.2 demonstrates the impact of tf versus tf-idf weighting on the K-means

F1 score for 2,000 documents set aside for this analysis. Note that K-means on

Words+Tags signi�cantly outperforms K-means on words alone under both term fre-

quency and tf-idf. And the best performing model�term frequency weighting on

Words+Tags�signi�cantly outperforms tf-idf weighting on Words+Tags. However,

the performance di�erence of term frequency on both Words+Tags does not signif-

icantly outperform the clustering on tags alone. As in the analysis of Haveliwala

et al., [53], we believe that tf-idf weighting performs poorly in this task because it

over-emphasizes the rarest terms, which tend not to be shared by enough documents

to enable meaningful cluster reconstruction.

The results of this initial experiment suggest that term frequency weighting is an

e�ective and simple means of assigning weights in our document vectors. We next

address the more fundamental modeling questions of how to combine words and tags,

using term frequency to assign weights to each vector element.

3.2.2 Combining words and tags in the VSM

Which of the �ve ways to model a document presented at the beginning of this section

work best in the VSM? Table 3.3 shows the averaged results of ten runs of our best

weighting (tf weighting) on the 13,230 documents not used for selecting the term

weighting scheme. The Words and Words+Tags score are similar to the numbers in
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K-means

Words .139
Tags as Words ×1 .158
Tags as Words ×2 .176
Tags as New Words .154

Words+Tags .225

Table 3.3: F-scores for K-means clustering (tf) with several means of combining
words and tags on the full test collection. All scores are averaged across 10 runs. All
di�erences are signi�cant except Tags as Words ×1 versus Tags as New Words.

Table 3.2�their di�erence re�ects the change in dataset between the two experiments.

The inclusion of tags as words improves every condition over baseline, but all are

signi�cantly outperformed by the Words+Tags model. This suggests convincingly

that tags are a qualitatively di�erent type of content than �just more words� as has

been suggested recently [11]. By simply normalizing the tag dimensions independently

from the word dimensions of the underlying document vectors, K-means can very

e�ectively incorporate tagging data as an independent information channel.

3.3 Generative topic models

In the previous section, we saw the large impact to be had by appropriately includ-

ing tagging information in K-means. This result a�rms the notion trustworthiness

presented in Chapter 1: models of text that ignore label information are disadvan-

taged when it comes to matching human judgment. In this section, we begin to

develop a more re�ned latent variable model of text based on LDA�as discussed in

Section 2.2.2 or [16]�that makes use of human-provided labels in the extensible prob-

abilistic semantics provided by the statistical text modeling approach (Section 2.2).

The clustering model we develop here has explicit probabilistic semantics appropriate

for modeling the nature of words and tags as independent sets of observations, for

the purpose of improving LDA's trustworthiness. We ask three questions about the

LDA-derived model:

1. Can we do better than LDA by creating a model (de�ned in Sections 3.3.1 and
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Figure 3.2: Graphical model of MM-LDA.

3.3.2) that explicitly accounts for tags and words as separate annotations of a

document? (Discussed in Section 3.3.3.)

2. Do the same weighting and normalization choices from the VSM (Section 3.2)

hold for generative models like LDA-derived models, or do they di�er?2 (Dis-

cussed in Section 3.3.3.)

3. Do LDA-derived models better describe the data and hence perform better on

the tagged web document clustering task than clustering algorithms based on

VSM? (Discussed in Section 3.3.4.)

3.3.1 MM-LDA Generative Model

In the context of tagging data, we extend LDA to jointly account for words and

tags as distinct sets of observations. Our model takes its inspiration from a similar

model for text and images proposed by Blei and Jordan [17]. We call our algorithm

Multi-Multinomial LDA. The best way to describe MM-LDA is to outline the process

it assumes has generated the dataset. We then maximize the likelihood of the data

with respect to that process's parameters to reconstruct each document's cluster

association probabilities as well as the probability of each word and tag per cluster.

MM-LDA generates a collection of tagged documents from K topics by the process

below and shown in Figure3.2:

2Note that term weights have no natural interpretation in a conventional LDA-derived model, so
we only compare methods of combining tags and words.
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1. For each topic k ∈ 1 . . . K, draw a multinomial distribution βk of size |W | from
a symmetric Dirichlet distribution with parameter ηw. Each βk represents the

probability of seeing all word types given topic k.

2. Similarly, draw a multinomial γk of size |T | from a symmetric Dirichlet with

parameter ηt to represent the probability of seeing all tag types given topic k.

3. For each document i ∈ 1 . . . D in the collection, draw a multinomial θi of size

|K| from a Dirichlet distribution with parameter α. Each θi represents the

probability of a word in that document having been drawn from topic i.

4. For each word index j ∈ 1 . . . Ni in document i:

(a) Draw a topic zj ∈ 1 . . . K from θi.

(b) Draw a word wj ∈ 1 . . . |W | from βzj .

5. For each tag index j ∈ 1 . . .Mi in document i:

(a) Draw a topic zj ∈ 1 . . . K from θi.

(b) Draw a tag tj ∈ 1 . . . |T | from γzj .

Steps one, three, and four, in isolation, are equivalent to standard LDA. In step two,

we construct distributions of tags per topic analogously to the construction of the

word distributions per topic. In the �nal step, we sample a topic for each tag in the

same way sampling a topic for each word.

3.3.2 Learning MM-LDA Parameters

One of several approaches can be used to learn the parameters βk, γk, θi. Variational

inference [17] and Gibbs sampling [48] are two general techniques that have been used

to learn the analogous parameters in LDA. We chose to extend a Gibbs sampling

algorithm like the one analyzed by Wei and Croft [136] because its running time is

asymptotically competitive with that of K-means. The algorithm is as follows: we

iterate repeatedly through the documents in random order. For each word (and then
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for each tag) in random order, we resample a single topic zj based on the current

topic probabilities for that document and the probability of each proposed cluster

assignment having generated the observed word. The Dirichlet prior parameters

η and α e�ectively become pseudocount smoothing on the β and θ distributions,

respectively, which we do not resample. This process repeats until convergence of

the model's perplexity�a measure of its confusion on its input data�or earlier if a

maximum of 100 iterations is reached. On the development set of 2000 documents,

our LDA implementation runs in about 22 minutes whereas K-means runs in about

6 minutes. This 4:1 ratio holds up for the larger data sets as well.

We tested a wide range of smoothing parameters α, ηw, ηt for the MM-LDA model

over 10 runs on the 2000 document validation set. We found that the model was

fairly insensitive to the chosen values, except if the word or tag smoothing parameter

was substantially smaller than the topic smoothing parameter (less than 2
3
the other

parameter). We chose 0.7 for the smoothing parameter for the word, tag, and topic

distributions and used this value throughout.

3.3.3 Combining words and tags with MM-LDA

Does modeling words and tags separately improve performance in MM-LDA over a

standard LDA model? Just as renormalizing the tag and word vector components

separately improved K-means performance, the inclusion of tags as an alternative

type of observation allows MM-LDA to �exibly model the tags and words that co-

occur in the dataset. As an alternative, we could have employed a standard LDA

model and added tags directly as words (Tags as Words ×1); added them as words

with multiplicity two (Tags as Words ×2); or added them into an expanded region of

the word feature space (Tags as New Words). By contrast, MM-LDA (Tags+Words)

keeps distinct multinomial distributions for the occurrence of tags and words under

a particular topic. Table 3.4 presents F-scores of LDA and MM-LDA under these

model variations.

MM-LDA's Words+Tags model signi�cantly outperforms all other con�gurations.

Interestingly, the addition of tags to the word vectors decreases the performance of
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(MM-)LDA

Words .260
Tags as Words×1 .213
Tags as Words ×2 .198
Tags as New Words .216

Words+Tags .307

Table 3.4: F-scores for (MM-)LDA across di�erent tag feature modeling choices.

(MM-)LDA K-means

Words .260 .139
Tags .270 .219

Words+Tags .307 .225

Table 3.5: F-scores for (MM-)LDA and K-means on 13,320 documents. Including tags
improves both models signi�cantly versus words alone. MM-LDA (bold) signi�cantly
outperforms all other conditions.

the algorithm relative to words alone. We believe this decrease is due in part to the

very di�erent distributional statistics observed for words versus tags. In particular,

for our dataset there tend to be about 4 times as many word types as tag types and

yet a similar number of tokens for each. When combined, the word multinomials

for many topics may become disproportionately peaked around common tags at the

expense of �exibility in modeling either.

3.3.4 Comparing K-Means and MM-LDA

How does the probabilistic model of MM-LDA perform compared to the VSM of

K-means? In this section, we compare MM-LDA to K-means quantitatively and

qualitatively.

3.3.4.1 Quantitative Comparison

We clustered documents using the K-means and LDA models on the 13,320 document

test collection under three conditions: just Words, just Tags, or jointly Words+Tags.
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Tag-Augmented K-means

tags words

1 linux security php opensource vpn unix linux ircd php beware kernel exe
2 games go game sports �refox gaming dmg munsey ballparks suppes racer game
3 music research �nance audio mp3 lyrics music research redirect nottingham meta
4 news business newspaper politics media v business leadership d news j
5 politics activism travel movies law aquaculture terrapass geothermal
6 science physics biology astronomy space science wildman foraging collembola
7 css python javascript programming xml squeakland sql coq css python �ash
8 food recipes cooking shopping tea recipe recipes food cooking recipe stylist tea
9 blog blogs fashion design art politics �f blog comments posted my beuys
10 education art college university school learning gsapp students education school
11 health medical healthcare medicine solar health napkin cafepress.com medical care
12 java programming development compiler java c programming goto code language
13 software windows opensource mac software windows mac download os
14 dictionary reference language bible dictionary english words syw dictionaries
15 internet dns search seo google web internet shutdown sportsbook epra kbs
16 history library books literature libraries library tarot peopling ursula guin

Multi-Multinomial LDA (MM-LDA)

tags words

1 web2.0 tools online editor photo o�ce icons uml powerpoint lucid dreams
2 guitar scanner chemistry military grub outlook bittorrent rendering
3 health medical medicine healthcare exe health openpkg okino dll polytrans
4 bible christian space astronomy religion gaelic bible nt bone scottish english
5 politics activism environment copyright war shall power prisoners their article
6 social community web2.0 humor fun funny press f prompt messages ignoring each
7 reference science education research art science research information university
8 java database programming development java sql mysql schizophrenia testing test
9 dictionary language english reference english writing dictionary spanish words
10 travel search maps google reference map search deadline call �f conference paper
11 time clock timezones world train md5 quantum thu pfb am pm mf
12 food recipes cooking business shopping my food tea wine me recipes
13 news blog music blogs technology system comments blog he posted news pm
14 programming software webdesign web css you can if or not use
15 photography photo compression zip �ash camera eos light e-ttl units
16 mac apple osx games unicode game dmg u x mac b v

Table 3.6: Highest scoring tags and words from clusters generated by K-means (above)
and MM-LDA (below) from one run of the 2000 document development set. The K-
means terms are selected by top tf-idf and the MM-LDA terms are selected by highest
interest value.
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For K-means, we used tf weighting, which includes the best performing model for K-

means, Words+Tags. Table3.5 shows that the inclusion of tagging data signi�cantly

improves the performance of MM-LDA versus tags or words alone. The improvement

from moving from Words to Words+Tags was signi�cant for both models. In contrast

to K-means, LDA's improvement from Tags to Words+Tags was also signi�cant.

MM-LDA's Words+Tags model is signi�cantly better than all other models. From

this we conclude that, under some conditions, MM-LDA is better able to exploit the

complementary information in the word and tag channels.

3.3.4.2 Qualitative Comparison

Qualitatively, both K-means and MM-LDA learn coherent clusters in the document

collections, as demonstrated by the top scoring words and tags associated with each

cluster in Table3.6. In addition to associating documents to topics, each algorithm

outputs per-cluster a�nities to words and to tags. When analyzing the generated

a�nities, it is important to take into account the underlying model assumed by each

algorithm. K-means operates in document vector space, so we extract its top-scoring

words and tags per cluster by selecting those terms with the highest tf-idf weighted

score. By contrast, MM-LDA outputs multinomial probability distributions, which

tend to be highly peaked and inappropriate for tf-idf weighting. For MM-LDA, we

select a term t for cluster c if it has one of the highest values of interest, de�ned as

be p(t|c) − p(t). The interest operator balances the desire to select terms that have

high absolute probability in their cluster with low probability overall.

3.4 Further studies

Lastly, we consider two questions independent of the clustering algorithm family that

provide insight into the model's ability to align with surrogate human similarity scores

across a variety of conditions. Speci�cally:

1. Does the addition of anchor text to regular plain text make tags redundant?

Do our algorithms that take into account tags still outperform anchor text +
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plain text together? (Discussed in Section 3.4.1.)

2. If we look at multiple levels of speci�city of clusters, for example, clustering

programming language documents rather than clustering general documents,

does tagging data help? More or less? (Discussed in Section 3.4.2.)

3.4.1 Tags are di�erent than anchor text

Do the advantages of tagging data hold up in the presence of anchor text? Anchor

text � the text of and around incoming web hyperlinks � has helped in some tasks

that use web document corpora like web search [40] and text classi�cation [42]. Like

tags, anchors act as free-form document annotations provided by a third party. For

each URL in the tag crawl dataset, we extracted words within 15 tokens of hyperlinks

to that URL in up to 60 pages returned by a Google API backlink query. This window

size was consistent with the best results for anchor text window size for similarity

search found in [53].

We experimented with two means of combining page text, anchor text, and

tags. Anchors as Words adds all words in the extracted anchor text windows to

each document's word vector analogously to the Tags as Words model in Section3.2.

Words+Anchors weights anchor text words separately from the document words, like

the Words+Tags model. The results of these model variants on the top-level ODP

clustering task, as well as when Tags are added as an independent information channel

to each of them, are presented in Table3.7.

We found that both MM-LDA and K-means gain from the inclusion of tagging

data as compared to clustering on Anchors as Words orWords+Anchors alone. How-

ever, the results from the inclusion of anchor text are mixed. While performance of

LDA improved when anchors were added as new words (Anchors as Words), K-means

performance was slightly depressed because of the vector space model's sensitivity to

the weights of the now-noisier terms. Neither model did well with Anchors+Words,

re�ecting the di�culty of extracting a high quality anchor text signal for text cluster-

ing, especially from a relatively small web crawl. We believe that these numbers might

be improved by down-weighting anchor words as a function of their distance from the
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MM-LDA K-means

Words .260 .139
Anchors as Words .270 .120

(Anchors as Words)+Tags .281 .214
Words+Anchors .248 .128

Words+Anchors+Tags .306 .224

Table 3.7: Inclusion of tags in (MM-)LDA and K-means increases F1 score on the
test collection even in the presence of anchor text.

URL or exploiting more advanced term weighting techniques as in [53]. However,

even under such transformations, we argue that the inclusion of tagging data would

still improve cluster quality.

3.4.2 Clustering more speci�c subtrees

Does the impact of tags depend on the speci�city of the clustering? Clustering the

top-level ODP subtrees is a di�cult task because many coherent subtopics exist for

each top-level ODP category. We believe real-world applications may bene�t from

clustering either a wide variety of documents, as in the top-level ODP clustering task,

or documents that are focused, such as those returned by a search query.

To investigate the applicability of tag-based clustering for more speci�c document

collections, we selected two representative ODP subtrees that each had a substantial

number of documents in our dataset. The Programming Languages subcategory is the

set of documents labeled with a subcategory of ODP's Top/Programming/Languages

category. The gold-standard labels for this subset of 1,094 documents are: Java, PHP,

Python, C++, JavaScript, Perl, Lisp, Ruby, and C. Documents in this subset tend

to share many speci�c terms related to programming (e.g. words such as loop, and

compile), so clustering this subcategory is not unlike clustering some types of search

results.

The Social Sciences subcategory (SS) is the set of documents labeled with a

subcategory of ODP's Top/Society tree. The 1,590 documents in this subset are

each labeled as one of: Issues, Religion & Spirituality, People, Politics, History, Law,

or Philosophy. This collection represents a diverse set of topics uni�ed by a common
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(MM-)LDA K-means

Programming
Languages

Words .288 .189
Tags .463 .567

Words+Tags .297 .556

Social
Sciences

Words .300 .196
Tags .310 .307

Words+Tags .302 .308

Table 3.8: F-scores for (MM-)LDA and K-means on two representative ODP subtrees.
For these tasks, clustering on tags alone can outperform alternatives that use word
information.

theme with many overlapping terms, but in a broader vocabulary space than the PL

subset.

Both clustering algorithms performed at least as well in these ODP subsections

as they did for the directory as a whole, as shown in Table 3.8. Tags appear to be

better indicators than words in isolation, and, indeed they are so much better that

jointly modeling tags and words can actually depress performance. This surprising

phenomenon stems in part from the fact that users tend to tag pages at a level of

speci�city appropriate for their own information needs, which often correspond to

the types of distinctions made within ODP subsections. For example, within the

Java subcategory of �Programming Languages�, the most common tag, �java,� covers

488/660 = 73.9% of pages. By contrast, in the top-level �Computers� subcategory, the

most common tag �software� covers only 2562/11894 = 21.5% of pages. Because the

size of the tag vocabulary within these ODP subsections is substantially reduced from

the full tag vocabulary, a higher proportion of the remaining tags are direct indicators

of sub-category membership than in the top-level clustering task. We believe that

the extra signal present in the words plays a lesser role and, indeed, can reduce the

quality of the overall clustering. This factor applies to both models, even when K-

means outperforms LDA, as on the Programming Languages cluster, where a smaller

set of focused tags plays to the strengths of the vector space model's independence

assumptions.
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3.5 Related work

The impact of social bookmarking data has been explored in several other contexts

within information retrieval and the web, including in ranked retrieval e.g., [8, 58, 62,

139] and analysis of blogs [23, 55]. Others have used tags in some clustering contexts,

such as Begelman et al. [10] who conclude that clustering of tags should be used in

tagging systems, for example, to �nd semantically related tags.

In modeling, the most closely related work to ours is Zhou et al.'s paper [143],

which (like ours) looks at the potential to generatively model social annotation to

improve information retrieval. That work's evaluation focuses on a speci�c, promising,

application of improving language model based information retrieval. As a result, it

produces evidence that good generative models for social annotation can in fact have

a positive impact on ranked result quality for language model based information

retrieval systems. Our work uses a more general evaluation metric, similarity to a

gold standard (inspired by Haveliwala et al. [53]), and further assumes that search

engines have access to anchor text. We believe our more general evaluation metric

may make our results more applicable to the broader group of applications outlined

in Section 3 while still making them convincingly applicable to language model based

information retrieval, due to Zhou et al.'s work. Lastly, our MM-LDA generative

model is more directly descended from Blei et al.'s work on annotation [17] than is

the model in [143], which we hope makes our work more applicable to the popular

current area of image retrieval with tags (see, for example, [6, 132, 116]).

A host of applications have grown out of the ability to classify web pages into

web directories, including topic-sensitive web link analysis [54] and focused crawling

[27]. Our work is related to this work in that we use ODP as a gold standard for our

evaluation. However, it is di�erent in that our goal is not to predict ODP classes (for

which we might use a supervised method) or to create a hierarchy similar to ODP

(for which we might use hierarchical clustering) but rather to improve information

retrieval through clustering.
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3.6 Discussion

Many of the newest and most-relevant parts of the web are constantly being tagged on

large social bookmarking websites. In this work we have also found that many pages

of interest are often those with the most tags. In fact, the pages that are informative

and relevant enough to be in both the tag crawl dataset and in ODP have, on average,

as many tag annotations as words. And because tagging happens more quickly than

links for new content, tags promise to become an increasingly important signal for

ranking new pages of high static quality. The baseline clustering algorithms extended

in this work are themselves high-performers on traditional document clustering tasks.

By exploiting tagging data when available, these techniques promise to improve web

document clustering in general, and especially so for the most relevant parts of the

web.

As a �nal note, it is perhaps worth contrasting modern tagging with other types

of indexing vocabularies. The traditional comparison in the �eld has been between

controlled indexing languages�characterized by a speci�c indexing vocabulary struc-

tured in advance�and full text indexing, in which the documents themselves provide

all indexing terms. In some ways, tagging sits between these two extremes. As in a

controlled indexing language, human beings select the terms in a tagging system that

characterize a document well. Tags therefore have a level of semantic precision that

full text indexing lacks. Yet in other ways, tagging is more like free text indexing

in that there is no prede�ned vocabulary or hierarchy, tags can freely have multiple

meanings, and di�erent tags can be used for the same topic. Tagging is like free text

indexing in some other important respects, as well: with ample tagging data, tags

have frequency counts, just like words, and the range of tags applied to popular docu-

ments is more exhaustive than what is typical in a controlled vocabulary. In sum, we

can at least hope that because tags represent human semantic classi�cation, tagging

has the potential to improve the precision of searches as well as the quality of inferred

document clusters, while the exhaustiveness of tagging means that the technique will

avoid the biggest limitation of traditional use of controlled indexing vocabularies.
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3.7 Conclusion

This chapter has demonstrated that social tagging data provides a useful source of

information for the general problem of web page clustering. We have shown that

tagging data improves the performance of two automatic clustering algorithms when

compared to clustering on page text alone. A simple modi�cation to the widely

used K-means algorithm enables it to better exploit the inclusion of tagging data.

A novel algorithm�MM-LDA, an extension to LDA for use with parallel sets of

observations�makes even better use of the complementary similarity information

held in a document's words and tags on a general web clustering task. MM-LDA

improves upon LDA's trustworthiness : incorporating human labels allows the model

to discover clusters that better align with surrogate human similarity judgments.

Although we have shown in this chapter how human tagging data is a useful source

of information that can be e�ectively exploited to improve a model's trustworthiness,

we haven't yet demonstrated a way to exploit those annotations to make the discov-

ered topics more interpretable to human beings. Indeed, the topics we see in Table 3.6

seem sensible, but our ability to interpret these topics faces the same limitations fac-

ing any latent topic model. In the next chapter, we move from models that simply use

human-provided labels as an information channel to models that explicitly account

for the alignment between words and labels, presenting an interpretability advantage

that translates into several qualitative advantages.
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Chapter 4

Credit attribution with labeled topic

models

Modern multi-label document collections re�ect the fact that documents are often

about more than one thing�for example, a news story about a highway transporta-

tion bill might naturally be �led under both transportation and politics, with neither

category acting as a clear subset of the other. Similarly, a single web page in Delicious

might be annotated with tags as diverse as arts, physics, alaska, and beauty. However,

these labels do not apply with equal speci�city across the whole of each document.

The reason the article is labeled both transportation and politics, for instance, may

be because it contains some words indicative of politics (�senator� and �committee�)

as well others related to transportation (�road� and �highway�). The mere presence

of both labels should not be construed by a model of multi-labeled text collections as

evidence that every word counts equally to each label.

We call the challenge of discovering the latent alignments between a document's

labels and words the credit attribution problem. One promising approach to the

credit attribution problem lies in the machinery of latent topics models such LDA

[16], described in Section 2.2.2, and MM-LDA described in Section 3.3. These models

This chapter draws from group work published as �Labeled LDA: A supervised topic model for
credit attribution in multi-label corpora� in EMNLP 2009 by D. Ramage, D. Hall, R. Nallapati, and
C.D. Manning. [112]

45
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represent each document as a mixture of unsupervised topics and explicitly assume

that every word is generated from one underlying topic. As a result, latent topic

models are not directly applicable to the credit attribution problem because they leave

no mechanism to distinctively associate the learned topics with the observed labels.

This is true even in MM-LDA, which incorporates tags to improve the trustworthiness

of the model's clustering decisions, but is, nonetheless, a latent topic model.

This chapter presents Labeled LDA (L-LDA), a generative model for multiply

labeled corpora that marries the multi-label supervision common to modern text

datasets with the word-assignment ambiguity resolution of the LDA family of models.

In contrast to latent topic models, L-LDA associates each label with one topic in direct

correspondence. As a result, L-LDA speaks to the second desirable property of text

mining models we identify in Chapter 1: interpretability. The topics learned by L-

LDA can be interpreted directly as models of each label. In this chapter, we show

that L-LDA is a natural extension of both LDA (by incorporating supervision) and

Multinomial Naive Bayes (by incorporating a mixture model). We demonstrate that

L-LDA can go a long way toward solving the credit attribution problem in multiply

labeled documents with improved interpretability over LDA in corpus visualization

(Section 4.4). And we show that L-LDA's ability to perform credit attribution enables

it to greatly outperform support vector machines in a tag-driven snippet extraction

task on tagged web pages (Section4.5). Finally, despite its generative semantics, we

show that Labeled LDA is competitive with a strong baseline discriminative classi�er

when used a multi-label classi�er on two classi�cation tasks (Section4.6).

4.1 Related work

Several modi�cations of LDA incorporating supervision have been proposed in the lit-

erature. Two such models, Supervised LDA [14] and DiscLDA [74] are inappropriate

for multiply labeled corpora because they limit a document to being associated with

only a single label. Supervised LDA posits that a label is generated from each docu-

ment's empirical topic mixture distribution. DiscLDA associates a single categorical

label variable with each document and associates a topic mixture with each label.
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Figure 4.1: Graphical model of Labeled LDA: unlike standard LDA, both the label
set Λ as well as the topic prior α in�uence the topic mixture θ.

The MM-LDA model introduced in the previous chapter, is not constrained to one

label per document because it models each document as a bag of words with a bag of

labels, with topics for each observation drawn from a shared topic distribution. But,

like other latent topic models, MM-LDA's learned topics do not correspond directly

with the label set. Consequently, these models fall short as a solution to the credit

attribution problem and are di�cult to interpret.

4.2 Labeled LDA

Labeled LDA is a probabilistic graphical model that describes a process for generating

a labeled document collection. Like Latent Dirichlet Allocation, Labeled LDA models

each document as a mixture of underlying topics and generates each word from one

topic. Unlike LDA, L-LDA incorporates supervision by simply constraining the topic

model to use only those topics that correspond to a document's (observed) label set.

The model description follows.

Let each document d be represented by a tuple consisting of a list of word indices

w(d) = (w1, . . . , wNd
) and a list of binary topic presence/absence indicators Λ(d) =

(l1, . . . , lK) where each wi ∈ {1, . . . , V } and each lk ∈ {0, 1}. Here Nd is the document

length, V is the vocabulary size andK the total number of unique labels in the corpus.

We set the number of topics in Labeled LDA to be the number of unique labels K

in the corpus. The generative process for the algorithm is found in Table 4.1. Steps 1

and 2�drawing the multinomial topic distributions over vocabulary βk for each topic

k, from a Dirichlet prior η�remain the same as for traditional LDA (see [16], page
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1. For each topic k ∈ {1, . . . , K}:

(a) Generate βk = (βk,1, . . . , βk,V )T ∼ Dir(·|η)

2. For each document d:

(a) For each topic k ∈ {1, . . . , K}

i. Generate Λ
(d)
k ∈ {0, 1} ∼ Bernoulli(·|Φk)

(b) Generate α(d) = L(d) ×α

(c) Generate θ(d) = (θl1 , . . . , θlMd
)T ∼ Dir(·|α(d))

(d) For each i in {1, . . . , Nd}:

i. Generate zi ∈ {λ(d)
1 , . . . , λ

(d)
Md
} ∼ Mult(·|θ(d) )

ii. Generate wi ∈ {1, . . . , V } ∼ Mult(·|βzi )

Table 4.1: Generative process for Labeled LDA: βk is a vector consisting of the
parameters of the multinomial distribution corresponding to the kth topic, α are the
parameters of the Dirichlet topic prior and η are the parameters of the word prior,
while Φk is the label prior for topic k. For the meaning of the projection matrix L(d),
please refer to Equation 4.1.
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4). The traditional LDA model then draws a multinomial mixture distribution θ(d)

over all K topics, for each document d, from a Dirichlet prior α. However, we would

like to restrict θ(d) to be de�ned only over the topics that correspond to its labels

Λ(d). Since the word-topic assignments zi (see step 9 in Table 4.1) are drawn from

this distribution, this restriction ensures that all the topic assignments are limited to

the document's labels.

Towards this objective, we �rst generate the document's labels Λ(d) using a coin

toss for each topic k, with a labeling prior probability Φk, as shown in step 5. Next,

we de�ne the vector of document's labels to be λ(d) = {k|Λ(d)
k = 1}. This allows us

to de�ne a document-speci�c label projection matrix L(d) of size Md × K for each

document d, where Md = |λ(d)|, as follows:
For each row i ∈ {1, . . . ,Md} and column j ∈ {1, . . . , K} :

L
(d)
ij =

1 if λ
(d)
i = j

0 otherwise.
(4.1)

In other words, the ith row of L(d) has an entry of 1 in column j if and only if

the ith document label λ
(d)
i is equal to the topic j, and zero otherwise. As the name

indicates, we use the L(d) matrix to project the parameter vector of the Dirichlet topic

prior α = (α1, . . . , αK)T to a lower dimensional vector α(d) as follows:

α(d) = L(d) ×α = (α
λ
(d)
1
, . . . , α

λ
(d)
Md

)T (4.2)

The dimensions of the projected vector correspond to the topics represented by

the labels of the document. For example, suppose K = 4 and that a document d has

labels given by Λ(d) = {0, 1, 1, 0} which implies λ(d) = {2, 3}, then L(d) would be:(
0 1 0 0

0 0 1 0

)

Then, θ(d) is drawn from a Dirichlet distribution with parametersα(d) = L(d)×α =

(α2, α3)T (i.e., with the Dirichlet restricted to the topics 2 and 3).

This ful�lls our requirement that the document's topics are restricted to its own
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labels. The projection step constitutes the deterministic step 6 in Table 4.1. The

remaining part of the model from steps 7 through 10 are the same as for regular

LDA.

The dependency of θ on both α and Λ is indicated by directed edges from Λ and

α to θ in the plate notation in Figure 4.1. This is the only additional dependency

we introduce in LDA's representation�compare with Figure 2.2 in Section 2.2.2.

4.2.1 Learning and inference

In most applications discussed in this chapter, we will assume that the documents

are multiply tagged with human labels, both at learning and inference time.

When the labels Λ(d) of the document are observed, the labeling prior Φ is d-

separated from the rest of the model given Λ(d). Hence the model is same as traditional

LDA, except the constraint that the topic prior α(d) is now restricted to the set of

labeled topics λ(d). Therefore, we can use collapsed Gibbs sampling [48] for training

where the sampling probability for a topic for position i in a document d in Labeled

LDA is given by:

P (zi = j|z−i) ∝
nwi
−i,j + ηwi

n
(·)
−i,j + ηT1

×
n

(d)
−i,j + αj

n
(d)
−i,· + αT1

(4.3)

where nwi
−i,j is the count of word wi in topic j, that does not include the current

assignment zi, a missing subscript or superscript (e.g. n
(·)
−i,j)) indicates a summation

over that dimension, and 1 is a vector of 1's of appropriate dimension.

Although the equation above looks exactly the same as that of LDA, we have an

important distinction in that, the target topic j is restricted to belong to the set of

labels, i.e., j ∈ λ(d).

Once the topic multinomials β are learned from the training set, one can perform

inference on any new labeled test document using Gibbs sampling restricted to its

tags, to determine its per-word label assignments z. In addition, one can also com-

pute its posterior distribution θ over topics by appropriately normalizing the topic

assignments z.
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It should now be apparent how this model addresses some of the problems in

multi-labeled corpora that we highlighted in Section 4. For example, since there

is a one-to-one correspondence between the labels and topics, the model can display

automatic topical summaries for each label k in terms of the topic-speci�c distribution

βk. Similarly, since the model assigns a label zi to each word wi in the document d

automatically, we can now extract portions of the document relevant to each label k

(it would be all words wi ∈ w(d) such that zi = k). In addition, we can use the topic

distribution θ(d) to rank the user speci�ed labels in the order of their relevance to the

document, thereby also eliminating spurious ones if necessary.

Finally, we note that other less restrictive variants of the proposed L-LDA model

are possible. For example, one could consider a version that allows topics that do not

correspond to the label set of a given document with a small probability, or one that

allows a common background topic in all documents. We did implement these variants

in our preliminary experiments, but they did not yield better performance than L-

LDA in the tasks we considered here. We return to the idea of latent background

topics in Chapter 5, along with other extensions and relaxations of the L-LDA model.

4.2.2 Relationship to Naive Bayes

The derivation of the algorithm so far has focused on its relationship to LDA. However,

Labeled LDA can also be seen as an extension of the event model of a traditional

Multinomial Naive Bayes classi�er [87] by the introduction of a mixture model. In

this section, we develop the analogy as another way to understand L-LDA from a

supervised perspective.

Consider the case where no document in the collection is assigned two or more

labels. Now for a particular document d with label ld, Labeled LDA draws each word's

topic variable zi from a multinomial constrained to the document's label set, i.e.

zi = ld for each word position i in the document. During learning, the Gibbs sampler

will assign each zi to ld while incrementing βld(wi), e�ectively counting the occurrences

of each word type in documents labeled with ld. Thus in the singly labeled document

case, the probability of each document under Labeled LDA is equal to the probability
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of the document under the Multinomial Naive Bayes event model trained on those

same document instances. Unlike the Multinomial Naive Bayes classi�er, Labeled

LDA does not encode a decision boundary for unlabeled documents by comparing

P (w(d)|ld) to P (w(d)|¬ld), although we discuss using Labeled LDA for multi-label

classi�cation in Section4.6.

Labeled LDA's similarity to Naive Bayes ends with the introduction of a second la-

bel to any document. In a traditional one-versus-rest Multinomial Naive Bayes model,

a separate classi�er for each label would be trained on all documents with that label,

so each word can contribute a count of 1 to every observed label's word distribution.

By contrast, Labeled LDA assumes that each document is a mixture of underlying

topics, so the count mass of single word instance must instead be distributed over the

document's observed labels.

4.3 Credit attribution within tagged documents

Social bookmarking websites contain millions of tags describing many of the web's

most popular and useful pages. However, not all tags are uniformly appropriate at

all places within a document. In the sections that follow, we examine mechanisms by

which Labeled LDA's credit assignment mechanism can be utilized to help support

browsing and summarizing tagged document collections.

To create a consistent dataset for experimenting with our model, we selected 20

tags of medium to high frequency from a collection of documents dataset crawled from

delicious, a popular social bookmarking website [58]. From that larger dataset, we

selected uniformly at random four thousand documents that contained at least one of

the 20 tags, and then �ltered each document's tag set by removing tags not present

in our tag set. After �ltering, the resulting corpus averaged 781 non-stop words per

document, with each document having 4 distinct tags on average. In contrast to many

existing text datasets, our tagged corpus is highly multiply labeled: almost 90% of of

the documents have more than one tag. (For comparison, less than one third of the

news documents in the popular RCV1-v2 collection of newswire are multiply labeled).

We will refer to this collection of data as the delicious tag dataset.
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4.4 Topic visualization

A �rst question we ask of Labeled LDA is how its topics compare with those learned by

traditional LDA on the same collection of documents. We ran our implementations of

Labeled LDA and LDA on the delicious corpus described above. Both are based on the

standard collapsed Gibbs sampler, with the constraints for Labeled LDA implemented

as in Section 4.2.

Figure4.2 shows the top words associated with 20 topics learned by Labeled LDA

and 20 topics learned by unsupervised LDA on the delicious document collection.

Labeled LDA's topics are directly named with the tag that corresponds to each topic,

an improvement over standard practice of inferring the topic name by inspection [91].

The topics learned by the unsupervised variant were matched to a Labeled LDA topic

highest cosine similarity.

The topics selected are representative: compared to Labeled LDA, unmodi�ed

LDA allocates many topics for describing the largest parts of the corpus and under-

represents tags that are less uncommon: of the 20 topics learned, LDA learned mul-

tiple topics mapping to each of �ve tags (web, culture, and computer, reference, and

politics, all of which were common in the dataset) and learned no topics that aligned

with six tags (books, english, science, history, grammar, java, and philosophy, which

were rarer).

4.4.1 Tagged document visualization

In addition to providing automatic summaries of the words best associated with

each tag in the corpus, Labeled LDA's credit attribution mechanism can be used to

augment the view of a single document with rich contextual information about the

document's tags.

Figure4.3 shows one web document from the collection, a page describing a guide

to writing English prose. The 10 most common tags for that document are writing,

reference, english, grammar, style, language, books, book, strunk, and education, the

�rst eight of which were included in our set of 20 tags. In the �gure, each word

that has high posterior probability from one tag has been annotated with that tag.
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Figure 4.2: Comparison of some of the 20 topics learned on delicious by Labeled LDA
(left) and traditional LDA (right), with representative words for each topic shown in
the boxes. Labeled LDA's topics are named by their associated tag. Arrows from
right-to-left show the mapping of LDA topics to the closest Labeled LDA topic by
cosine similarity. Tags not shown are: design, education, english, grammar, history,
internet, language philosophy, politics, programming, reference, style, writing.
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The Elements of Style, William Strunk, Jr.

Asserting that one must first know the rules to break them, this 
classic reference book is a must-have for any student and 
conscientious writer.  Intended for use in which the practice of
composition is combined with the study of literature, it gives in
brief space the principal requirements of plain English style and
concentratesattention on the rules of usage and principles of
composition most commonly violated.

Figure 4.3: Example document with important words annotated with four of the
page's tags as learned by Labeled LDA. Red (single underline) is style, green (dashed
underline) grammar, blue (double underline) reference, and black (jagged underline)
education.

The red words come from the style tag, green from the grammar tag, blue from the

reference tag, and black from the education tag. In this case, the model does very well

at assigning individual words to the tags that, subjectively, seem to strongly imply

the presence of that tag on this page. A more polished rendering could add subtle

visual cues about which parts of a page are most appropriate for a particular set of

tags.

4.5 Snippet extraction

Another natural application of Labeled LDA's credit assignment mechanism is as

a means of selecting snippets of a document that best describe its contents from

the perspective of a particular tag. Consider again the document in Figure 4.3.

Intuitively, if this document were shown to a user interested in the tag grammar, the

most appropriate snippet of words might prefer to contain the phrase �rules of usage,�

whereas a user interested in the term style might prefer the title �Elements of Style.�

To quantitatively evaluate Labeled LDA's performance at this task, we con-

structed a set of 29 recently tagged documents from delicious that were labeled with

two or more tags from the 20 tag subset, resulting in a total of 149 (document,tag)

pairs. For each pair, we extracted a 15-word window with the highest tag-speci�c

score from the document. Two systems were used to score each window: Labeled

LDA and a collection of one-vs-rest SVMs trained for each tag in the system. L-LDA
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books
L-LDA this classic reference book is a must-have for any student and conscientious writer.

Intended for

SVM the rules of usage and principles of composition most commonly violated. Search:

CONTENTS Bibliographic

language
L-LDA the beginning of a sentence must refer to the grammatical subject 8. Divide words

at

SVM combined with the study of literature, it gives in brief space the principal requirements

of

grammar
L-LDA requirements of plain English style and concentrates attention on the rules of usage

and principles of

SVM them, this classic reference book is a must-have for any student and conscientious

writer.

Figure 4.4: Representative snippets extracted by L-LDA and tag-speci�c SVMs for
the web page shown in Figure 4.3.

scored each window as the expected probability that the tag had generated each

word. For SVMs, each window was taken as its own document and scored using the

tag-speci�c SVM's un-thresholded scoring function, taking the window with the most

positive score. While a complete solution to the tag-speci�c snippet extraction prob-

lem might be more informed by better linguistic features (such as phrase boundaries),

this experimental setup su�ces to evaluate both kinds of models for their ability to

appropriately assign words to underlying labels.

Figure 4.3 shows some example snippets output by our system for this document.

Model Best Snippet Unanimous

L-LDA 72 / 149 24 / 51
SVM 21 / 149 2 / 51

Table 4.2: Human judgments of tag-speci�c snippet quality as extracted by L-LDA
and SVM. The center column is the number of document-tag pairs for which a sys-
tem's snippet was judged superior. The right column is the number of snippets for
which all three annotators were in complete agreement (numerator) in the subset of
document scored by all three annotators (denominator).
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Note that while SVMs did manage to select snippets that were vaguely on topic,

Labeled LDA's outputs are generally of superior subjective quality. To quantify this

intuition, three human annotators rated each pair of snippets. The outputs were

randomly labeled as �System A� or �System B,� and the annotators were asked to

judge which system generated a better tag-speci�c document subset. The judges

were also allowed to select neither system if there was no clear winner. The results

are summarized in Table 4.2.

L-LDA was judged superior by a wide margin: of the 149 judgments, L-LDA's

output was selected as preferable in 72 cases, whereas SVM's was selected in only

21. The di�erence between these scores was highly signi�cant (p < .001) by the sign

test. To quantify the reliability of the judgments, 51 of the 149 document-tag pairs

were labeled by all three annotators. In this group, the judgments were in substantial

agreement,1 with Fleiss' Kappa at .63.

Further analysis of the triply-annotated subset yields further evidence of L-LDA's

advantage over SVM's: 33 of the 51 were tag-page pairs where L-LDA's output was

picked by at least one annotator as a better snippet (although L-LDA might not have

been picked by the other annotators). And of those, 24 were unanimous in that all

three judges selected L-LDA's output. By contrast, only 10 of the 51 were tag-page

pairs where SVMs' output was picked by at least one annotator, and of those, only 2

were selected unanimously.

4.6 Multilabeled text classi�cation

In the preceding section we demonstrated how Labeled LDA's credit attribution mech-

anism enabled e�ective modeling within documents. In this section, we consider

whether L-LDA can be adapted as an e�ective multi-label classi�er for documents

as a whole. To answer that question, we applied a modi�ed variant of L-LDA to a

1Of the 15 judgments that were in contention, only two con�icted on which system was superior
(L-LDA versus SVM); the remaining disagreements were about whether or not one of the systems
was a clear winner.
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multi-label document classi�cation problem: given a training set consisting of docu-

ments with multiple labels, predict the set of labels appropriate for each document

in a test set.

Multi-label classi�cation is a well researched problem. Many modern approaches

incorporate label correlations (e.g., [66], [65]). Others, like our algorithm are based on

mixture models (such as [130]). However, we are aware of no methods that trade o�

label-speci�c word distributions with document-speci�c label distributions in quite

the same way.

In Section 4.2, we discussed learning and inference when labels are observed.

In the task of multilabel classi�cation, labels are available at training time, so the

learning part remains the same as discussed before. However, inferring the best set of

labels for an unlabeled document at test time is more complex: it involves assessing

all label assignments and returning the assignment that has the highest posterior

probability. However, this is not straight-forward, since there are 2K possible label

assignments. To make matters worse, the support of α(Λ(d)) is di�erent for di�erent

label assignments. Although we are in the process of developing an e�cient sampling

algorithm for this inference, for the purposes of this chapter we make the simplifying

assumption that the model reduces to standard LDA at inference, where the document

is free to sample from any of the K topics. This is a reasonable assumption because

allowing the model to explore the whole topic space for each document is similar to

exploring all possible label assignments. The document's most likely labels can then

be inferred by suitably thresholding its posterior probability over topics.

As a baseline, we use a set of multiple one-vs-rest SVM classi�ers which is a

popular and extremely competitive baseline used by most previous papers (see [66,

130] for instance). We scored each model based on Micro-F1 and Macro-F1 as our

evaluation measures [77]. While the former allows larger classes to dominate its

results, the latter assigns an equal weight to all classes, providing us complementary

information.
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Dataset %MacroF1 %MicroF1
L-LDA SVM L-LDA SVM

Arts 30.70(1.62) 23.23 (0.67) 39.81(1.85) 48.42 (0.45)
Business 30.81(0.75) 22.82 (1.60) 67.00(1.29) 72.15 (0.62)
Computers 27.55(1.98) 18.29 (1.53) 48.95(0.76) 61.97 (0.54)
Education 33.78(1.70) 36.03 (1.30) 41.19(1.48) 59.45 (0.56)
Entertainment 39.42(1.38) 43.22 (0.49) 47.71(0.61) 62.89 (0.50)
Health 45.36(2.00) 47.86 (1.72) 58.13(0.43) 72.21 (0.26)
Recreation 37.63(1.00) 33.77 (1.17) 43.71(0.31) 59.15 (0.71)
Society 27.32(1.24) 23.89 (0.74) 42.98(0.28) 52.29 (0.67)

Table 4.3: Averaged performance across ten runs of multi-label text classi�cation for
predicting subsets of the named Yahoo directory categories. Numbers in parentheses
are standard deviations across runs. L-LDA outperforms SVMs on 5 subsets with
MacroF1, but on no subsets with MicroF1.

4.6.1 Yahoo

We ran experiments on a corpus from the Yahoo directory, modeling our experimental

conditions on the ones described in [65].2 We considered documents drawn from 8 top

level categories in the Yahoo directory, where each document can be placed in any

number of subcategories. The results were mixed, with SVMs ahead on one measure:

Labeled LDA beat SVMs on �ve out of eight datasets on MacroF1, but didn't win

on any datasets on MicroF1. Results are presented in Table 4.3.

Because only a processed form of the documents was released, the Yahoo dataset

does not lend itself well to error analysis. However, only 33% of the documents in

each top-level category were applied to more than one sub-category, so the credit

assignment machinery of L-LDA was unused for the majority of documents. We

therefore ran an arti�cial second set of experiments considering only those documents

that had been given more than one label in the training data. On these documents,

the results were again mixed, but Labeled LDA comes out ahead. For MacroF1, L-

LDA beat SVMs on four datasets, SVMs beat L-LDA on one dataset, and three were

2We did not carefully tune per-class thresholds of each of the one vs. rest classi�ers in each
model, but instead tuned only one threshold for all classi�ers in each model via cross-validation on
the Arts subsets. As such, our numbers were on an average 3-4% less than those reported in [65],
but the methods were comparably tuned.
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a statistical tie.3 On MicroF1, L-LDA did much better than on the larger subset,

outperforming on four datasets with the other four a statistical tie.

It is worth noting that the Yahoo datasets are skewed by construction to contain

many documents with highly overlapping content: because each collection is within

the same super-class such as �Arts�, �Business�, etc., each sub-categories' vocabu-

laries will naturally overlap a great deal. L-LDA's credit attribution mechanism is

most e�ective at partitioning semantically distinct words into their respective label

vocabularies, so we expect that Labeled-LDA's performance as a text classi�er would

improve on collections with more semantically diverse labels.

4.6.2 Tagged web pages

We also applied our method to text classi�cation on the delicious dataset, where the

documents are naturally multiply labeled (more than 89%) and where the tags are

less inherently similar than in the Yahoo subcategories. Therefore we expect Labeled

LDA to do better credit assignment on this subset and consequently to show improved

performance as a classi�er, and indeed this is the case.

We evaluated L-LDA and multiple one-vs-rest SVMs on 4000 documents with

the 20 tag subset described in Section 4.3. L-LDA and multiple one-vs-rest SVMs

were trained on the �rst 80% of documents and evaluated on the remaining 20%,

with results averaged across 10 random permutations of the dataset. The results

are shown in Table 4.4. We tuned the SVMs' shared cost parameter C(= 10.0) and

selected raw term frequency over tf-idf weighting based on 4-fold cross-validation on

3,000 documents drawn from an independent permutation of the data. For L-LDA,

we tuned the shared parameters of threshold and proportionality constants in word

and topic priors. L-LDA and SVM have very similar performance on MacroF1, while

L-LDA substantially outperforms on MicroF1. In both cases, L-LDA's improvement

is statistically signi�cantly by a 2-tailed paired t-test at 95% con�dence.

3The di�erence between means of multiple runs were not signi�cantly di�erent by two-tailed
paired t-test.
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Model %MacroF1 %MicroF1

L-LDA 39.85 (.989) 52.12 (.434)
SVM 39.00 (.423) 39.33 (.574)

Table 4.4: Mean performance across ten runs of multi-label text classi�cation for
predicting 20 tags on delicious data. Numbers in parentheses are standard deviations
across runs. L-LDA outperforms SVMs signi�cantly on both metrics by a 2-tailed,
paired t-test at 95% con�dence.

The website is designed, CMS works, content has been added and the client is happy.

The website is designed, CMS works, content has been added and the client is happy.

Before Inference

After Inference

Figure 4.5: The e�ect of tag mixture proportions for credit assignment in a web
document. Blue (single underline) words are generated from the design tag; red
(dashed underline) from the programming tag. By themselves, most words used here
have a higher probability in programming than in design. But because the document
as a whole is more about design than programming (incorporating words not shown
here), inferring the document's topic-mixture θ enables L-LDA to correctly re-assign
most words.

4.7 Discussion

One of the main advantages of L-LDA on multiply labeled documents comes from the

model's document-speci�c topic mixture θ. By explicitly modeling the importance

of each label in the document, Labeled LDA can e�ective perform some contextual

word sense disambiguation, which suggests why L-LDA can outperform SVMs on the

delicious dataset.

As a concrete example, consider the excerpt of text from the Delicious dataset in

Figure 4.5. The document itself has several tags, including design and programming.

Initially, many of the likelihood probabilities P (w|label) for the (content) words in this
excerpt are higher for the label programming than design, including �content�, �client�,

�CMS� and even �designed�, while design has higher likelihoods for just �website� and

�happy�. However, after performing inference on this document using L-LDA, the

inferred document probability for design (P (design)) is much higher than it is for

programming. In fact, the higher probability for the tag more than makes up the
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di�erence in the likelihood for all the words except �CMS� (Content Management

System), so that L-LDA correctly infers that most of the words in this passage have

more to do with design than programming.

The relationship between Labeled LDA and some existing models warrants more

explication. In particular, the models of associating word usage with authors in

[118, 88] are worth describing: the Author-Topic [118] model assumes that each author

(label) has its own distribution over topics. In the Author-Topic model, you �rst pick

an author and then pick a topic from that author's distribution over topics. So the

AT model still assumes a latent topic space. Labeled LDA has no latent topic�

each label is a topic�but does assume that the assignments of topics to words is

latent. By contrast, the Author Model in that same paper directly associated each

author with a distribution over words, which is much morel like L-LDA. However, the

author model assumes all authors (labels) have equal weight in generating each word;

Labeled LDA assumes that the labels are non-uniform with a latent mixture drawn

from a Dirichlet prior. Labeled LDA is more similar in spirit to McCallum's 1999

multinomial mixture model [88] which has a similar modeling intuition: the main

di�erences are in the intended applications (classi�cation versus credit attribution)

and in the priors � our model includes proper Dirichlet priors for the per-document

mixtures over observed labels (our thetas, McCallum's lambdas) and the per-label

distributions over words, whereas theirs treats these as parameters to be estimated

directly with no prior or generative process. McCallum '99 also includes a background

language class on each document as part of the model de�nition.

4.8 Conclusion

This chapter describes Labeled LDA, a model of multi-labeled corpora that addresses

the credit assignment problem. The model improves upon LDA for labeled corpora

by gracefully incorporating user supervision in the form of a one-to-one mapping

between topics and labels, introducing newfound interpretability that moves beyond

the capabilities of traditional latent topic models. We demonstrate the model's e�ec-

tiveness on tasks related to credit attribution within documents, including document
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visualizations and tag-speci�c snippet extraction. An approximation to Labeled LDA

is also shown to be competitive with a strong baseline (multiple one vs-rest SVMs)

for multi-label classi�cation.

Because Labeled LDA is a graphical model in the LDA family, it enables a range

of natural extensions for future investigation. For example, the current model does

not capture correlations between labels, but such correlations might be introduced by

composing Labeled LDA with newer state of the art topic models like the Correlated

Topic Model [15] or the Pachinko Allocation Model [78]. And with improved inference

for unsupervised Λ, Labeled LDA lends itself naturally to modeling semi-supervised

corpora where labels are observed for only some documents.

Labeled LDA's interpretability gains come from its association of each label with

exactly one topic. However, this advantage in interpretability comes at a cost of

�exibility in that the model is no longer suited for discovering language variation

that has not been explicitly labeled. In the next chapter, we extend Labeled LDA to

incorporate latent sub-structure within the provided labels, further generalizing the

model and introducing new-found �exibility.
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Chapter 5

Partially labeled topic models

E�ective text mining tools for labeled documents should be trustworthy, interpretable,

and �exible (Chapter 1). In previous chapters, we saw that labels could be used as

a source of side information to make topic models more trustworthy, as in MM-LDA

(Chapter 3). Or, by aligning each topic with some label, we could make a more

interpretable topic model, as in Labeled LDA (Chapter 4). However, to be truly ef-

fective, these models must also be �exible enough to account for the latent variations

in the textual patterns underlying the observed labels while still discovering unlabeled

topics. Indeed, a text model with these properties could be described as partially su-

pervised in that the provided document-level supervision only hints at the unlabeled

relationships of interest: namely, the alignment of words, with labels, background

language, or latent variations thereof. A model with these properties could help us

understand and interpret the meaning of ambiguous labels in context; to uncover

latent topics that are not described by any of the labels; and to discover which words

should be attributed to which of a document's labels, or to none at all.

This chapter presents two new supervised generative models of labeled text that

address trustworthiness, interpretability, and �exibility: Partially Labeled Dirichlet

Allocation (PLDA) and the Partially Labeled Dirichlet Process (PLDP). These mod-

els generalize and unify the popular unsupervised topic model LDA (Section 2.2.2,

This chapter draws from group work published as �Partially labeled topic models for interpretable
text mining� in KDD 2011 by D. Ramage, C.D. Manning, and S.T. Dumais. [114]

65
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or [16]), the multinomial naive Bayes supervised text classi�er's event model (Sec-

tion 4.2.2, or [87]), and Labeled LDA [112]. Intuitively, PLDA is like other topic

models in that it assumes each document's words are drawn from a document-speci�c

mixture of latent topics, where each topic is itself represented as a distribution over

words. But unlike latent topic models, PLDA assumes that each document can use

only those topics that are in a topic class associated with one or more of the docu-

ment's labels. In particular, we introduce one class (consisting of multiple topics) for

each label in the label set, as well as one latent class that applies to all documents.

This construction allows PLDA to discover large-scale patterns in language usage as-

sociated with each individual label, variations of linguistic usage within a label, and

background topics not associated with any label. A parallel learning and inference

algorithm for PLDA allows it to scale to large document collections. Our second

model, PLDP, extends PLDA by incorporating a non-parametric Dirichlet process

prior over each class's topic set, allowing the model to adaptively discover how many

topics belong to each label, but comes at a computational cost.

In this chapter, we explore PLDA and PLDP with qualitative case studies of

tagged web pages from Delicious and PhD dissertation abstracts, demonstrating im-

proved model interpretability over traditional topic models and improved �exibil-

ity over Labeled LDA. We use the many tags present in Delicious to quantitatively

demonstrate the new models' trustworthiness in its higher correlation with human

relatedness scores.

5.1 Related work

Partially supervised text mining models straddle the boundary between unsupervised

learning, in which models discover unmarked statistical relationships in the data, and

supervised learning, which emphasizes the relationship between word features and a

given space of labels for the purpose of classifying new documents. Popular unsu-

pervised approaches like the topic models and dimensionality reduction techniques

described in Chapter 2 are well suited for exploratory text analysis�e.g. [48]�but

most do not account for the label space. When they do, it is usually to improve the
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quality of a shared set of latent topics�such as in [74, 14, 35, 63, 144, 95]�rather

than to directly model the contents of the provided labels. The choice of a purely

latent topic model therefore introduces problems of interpreting what topics really

mean, how they should be named, and to what extent trends based on them can be

trusted in qualitative applications. These challenges ultimately stem from the nature

of the topics discovered: unsupervised topics can capture broad patterns in a doc-

ument collection, but they provide no guarantee about how well the learned topics

align with the human provided labels. In other words, these models are �exible but

not interpretable.

In contrast, supervised learning and (multi-) label prediction explicitly model the

label space for the purpose of prediction (such as in [38, 65]), but tend not to dis-

cover latent sub-structure or other latent patterns. Other learning formulations exist

in the space between supervised learning and unsupervised learning, most notably

semi-supervised learning [30], in which the goal is to improve label classi�cation

performance by making use of unsupervised data [145]. Another, similar learning

paradigm is semi-supervised clustering�such as [9, 138]�in which some supervised

information is used to improve an unsupervised task. Usually this information comes

in the form of human-provided pair-wise similarity/dissimilarity scores or constraints.

As a result, these approaches can be used e�ectively for label prediction or document

clustering, but do not lend themselves to more �ne-grained questions about how

the terms and label space interact. By contrast, the partially supervised approach

pursued here is explicitly designed to improve upon the exploratory and descriptive

analyses that draw practitioners to unsupervised topic models to begin with�i.e.

to discover and characterize the relationships between patterns, but with the added

ability to constrain those patterns to align with label classes that are meaningful to

people.

Recently, researchers in the topic modeling community have begun to explore

new ways of incorporating meta-data and hierarchy into their models, which is the

approach to partially supervised text mining that we take here. For instance, Markov

Random Topic Fields [35] and Markov Topic Models [134] both allow information

about document groups to in�uence the learned topics. There has also been a great
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amount of work on simultaneously modeling relationships among several variables,

such as authors and topics in the Author-Topic model [118], tags and words in [119],

and topics sentiment in [79]. All of these models assume a latent topic space that is

in�uenced by external label information of some form. By contrast, we use topics to

model the sub-structure of labels and unlabeled structure around them. Other ways

to constrain and exploit topic models for text mining tasks include recent work in

mining product reviews such as, Titov and McDonald [128] and later Branavan, et al.

[22] who extract ratable aspects of product reviews. And recently, the Nubbi model

of topics and social networks [28] introduced by Chang, et al., constrains an LDA-like

topic model to learn topics that correspond to individual entities (such as heads of

state in Wikipedia) and the relationships between them. Topic models that account

for an extra level of topic correlation have been studied as well, with notable papers

such as Blei et al.'s hierarchical topic models [13] and Li and MacCallum's Pachinko

Allocation [78]. These types of models assume an extra hidden layer of abstraction

that models topic-topic correlation. The label classes in this work can be seen as

an analogous layer, but here they are supervised, hard assignments constraining only

some topics to be active depending on a document's observed labels.

PLDA and PLDP build on Labeled LDA (Chapter 4, or [112]) and similar mod-

els such as the extension of Rubin et al. in [119]. Like PLDA and PLDP, Labeled

LDA assumes that each document is annotated with a set of observed labels, and

that these labels play a direct role in generating the document's words from per-label

distributions over terms. However, Labeled LDA does not assume the existence of

any latent topics (neither global nor within a label)�only the documents' distribu-

tions over their observed labels, as well as those labels' distributions over words, are

inferred. As a result, Labeled LDA does not support latent sub-topics within a given

label nor any global latent topics. In this chapter, we introduce two new models,

PLDA and PLDP, that by incorporating classes of latent topics extend, generalize,

and unify LDA with Labeled LDA. This simple change opens new opportunities in

interpretable text mining and results in a large and surprising boost in the models'

ability to correlate with human similarity judgments, as we demonstrate in 5.3.3.
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5.2 Partially supervised models

In our formalization of partially supervised text mining, we are given a collection of

documents D, each containing a multi-set of words ~wd from a vocabulary V of size

V and a set of labels Λd from a space of labels L. We would like to recover a set of

topics Φ that �t the observed distribution of words in the multi-labeled documents,

where each topic is a multinomial distribution over words V that tend to co-occur

with each other and some label l ∈ L. Latent topics that have no associated label are

optionally modeled by assuming the existence of a background latent label L that is

applied to all documents in the collection. In the sections below, we de�ne PLDA

and PLDP, both of which assume that the word w at position i in each document d is

generated by �rst picking a label l from Λd and then a topic z from the set of topics

associated with that label. Then word w is picked from the topic indexed Φl,z. In this

way, both PLDA and PLDP can be used for credit attribution of words to labels by

examining the posterior probability over labels for a particular word instance. Both

PLDA and PLDP generative probabilistic graphical models, and so for each we will

use an approximate inference algorithm to re-construct the per-document mixtures

over labels and topics, as well as the set of words associated with each label. By

incorporating the latent class of topics in addition to the label classes, the model

e�ectively forces each word to decide if it is better modeled by a broad, latent topic,

or a topic that applies speci�cally to one of its document's labels.

5.2.1 Partially Labeled Dirichlet Allocation

Partially Labeled Dirichlet Allocation (PLDA) is a generative model for a collection

of labeled documents, extending the generative story of LDA (Section 2.2.2, or [16]) to

incorporate labels, and of Labeled LDA (Chapter 4, or [112]) to incorporate per-label

latent topics. Formally, PLDA assumes the existence of a set of L labels (indexed by

1..L), each of which has been assigned some number of topics Kl (indexed by 1..KL)

and where each topic βl,k is represented as a multinomial distribution over all terms

in the vocabulary V drawn from a symmetric Dirichlet prior η. One of these labels

may optionally denote the shared global latent topic class, which can be interpreted
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L Set of labels indexed by l ∈ 1..L

Kl set of topics assigned to label l indexed by k ∈ 1..Kl

Λd Per-document assigned labels as sparse binary vector of size L

θd,l Per-document d, per-label l multinomial over topics Kl

ψd Per-document d distribution over labels l ∈ Λd
Φ Sparse binary vector prior of Λd
βl,k Per-label l, per topic k distribution over vocabular V
α Dirichlet hyperparameter for θ1...D,1...L and ψ1...D,1..L

η Dirichlet hyperparameter for β1...L,1...K

zd,i Latent topic assignment at word position i in document d

Table 5.1: Summary of variables used in PLDA in addition to those in Table 2.1.

D

α Kdθ

Φ Λ ψ N

z

l

w K

β

η

Figure 5.1: Bayesian graphical model for PLDA. Each document's words w and labels Λ

are observed, with the per-document label distribution ψ, per-document-label topic distri-

butions θ, and per-topic word distributions β taken as hidden variables. Because we assume

each document's label-set Λd is observed, its sparse vector prior Φ is unused, included for

completeness.

as a label �latent� present on every document d. PLDA assumes that each topic takes

part in exactly one label.

Figure 5.1 shows the Bayesian graphical model for PLDA. Each document d is

generated by �rst drawing a document-speci�c subset of available label classes, rep-

resented as a sparse binary vector Λd from a sparse binary vector prior. A document-

speci�c mix θd,j over topics 1..Kj is drawn from a symmetric Dirichlet prior α for

each label j ∈ Λd present in the document. Then, a document-speci�c mix of ob-

served labels ψd is drawn as a multinomial of size |Λd| from a Dirichlet prior ~αL, with

each element ψd,j corresponding to the document's probability of using label j ∈ Λd

when selecting a latent topic for each word. For derivational simplicity, we de�ne the
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element at position j of ~αL to be αKj, so ~αL is not a free parameter. Each word w

in document d is drawn from some label's topic's word distribution, i.e. it is drawn

by �rst picking a label j from ψd, a topic z from θd,l, and then a word w from βl,k.

Ultimately, this word will be picked in proportion to how much the enclosing docu-

ment prefers the label l, how much that label prefers the topic z, and how much that

topic prefers the word w.

We are interested in �nding an e�cient way to compute the joint likelihood of

the observed words ~w with the unobserved label and topic assignments ~l and ~z,

P (~w, ~z,~l|~Λ, α, η,Φ) = P (~w|~z, η)P (~z,~l|~Λ, α,Φ). Later, we will use this joint likelihood

to derive e�cient updates for the parameters θ1...D,1...L, ψ1...D,1...L, and β1...K,1...V .

First, we note that the left term P (~w|~z, η) =
´
β
P (~w|~z, β)P (β|η)dβ is the same as

for standard latent Dirichlet allocation and ultimately contributes the same terms to

the full conditional as well as to the sampling formula for updating individual topic

assignments zd,i, so we use the same derivation as in e.g. [48]. Using the model's

independence assumptions, we consider the joint probability of the topics and labels,

P (~z,~l|Λ, α,Φ) = P (~z|~l, α)P (~l|Λ,Φ, α). We will examine each half of this expression

in turn. First, observe that P (~z|~l, α) =
´
θ
P (~z|~l, θ)P (θ|α)dθ where:

P (~z|~l, θ) =
D∏
d=1

Wd∏
i=1

P (zd,i|ld,i, θd,ld,i)

=
D∏
d=1

Wd∏
i=1

θd,ld,i,zd,i

=
D∏
d=1

∏
j∈Λd

Kj∏
k=1

(θd,j,k)
nd,j,k,· (5.1)

Here we have introduced nd,j,k,t as the number of occurrences of label j ∈ Λd

topic k ∈ Kj within document d as applied to term t ∈ V. In this notation, we

sum out counts using �·� and select a vector of counts using � :�, so for example

nd,j,k,· refers to
∑V

t=1 nd,j,k,t or the number of occurrences of label j and topic k in

document d. Similarly, nd,j,:,·selects the vector of size Kj with the term at position

k equal to nd,j,k,·, which will be used below. After multiplying by θ's Dirichlet prior
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and applying the standard Dirichlet-multinomial integral, we see that P (~z|~l, α) =∏D
d=1

∏
j∈Λd

∆(nd,j,:,·+~α)

∆(~α)
making use of the notation in [57] where ∆(~x) =

∏dim ~x
k=1 Γ(xk)

Γ(
∑dim ~x

k=1 xk)

and we treat ~α as a vector of size Kj with each value equal to α. Note that because

each label has its own distinct subset of topics, the topic assignment alone is su�cient

to determine which label was assigned, so there is no need to represent ~l explicitly in

order to compute nd,j,:,·.

Now let's return to the computation of P (~l|~Λ,Φ, α), which, because Λ is considered

observed, can be factorized into:

P (~l|Λ, ψ)P (ψ|α,Λ) =

ˆ
β

D∏
d=1

P (ψd|α,Λd)

Wd∏
i=1

P (ld,i|Λd, ψd)dβ

By re-indexing over label types, and applying the standard Dirichlet prior and

Dirichlet-multinomial integral to get our �nal probability:

P (~l|Λ, ~αL) =
D∏
d=1

∏
j∈Λd

∆(nd,:,·,· + ~αL)

∆( ~αL)

Because in the current setting we treat Λd as observed, we do not need to explicitly

account for the prior term P (Λd|Φ) in this computation.1

Observe that the actual values of ~l are never used explicitly, and because every

topic takes part in only a single label, we can represent the model using a Gibbs

sampler tracking only the topic assignments ~z. We do not need to allocate memory

to represent which label ~l is assigned to each token. After combining terms, applying

Bayes rule, and folding terms into the proportionality constant, the sampling update

formula for assigning a new label and topic to a word token is de�ned as follows:

1In a label prediction setting we could incorporate a value such as the output of L tosses of a
Φ-coin, in which case we have that P (Λd|Φ) = Φ|Λd| · (1− Φ)L−|Λd|.



5.2. PARTIALLY SUPERVISED MODELS 73

P (ld,i = j, zd,i = k|l¬d,i, z¬d,i, wd,i = t;α, η)

∝ I[j ∈ Λd ∧ k ∈ 1..Kj]

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)
·(

n
(¬d,i)
d,j,·,· + ~(αL)j

n
(¬d,i)
d,·,·,· +

∑
j′∈Λd

~(αL)j′

)(
n

(¬d,i)
d,j,k,· + α

n
(¬d,i)
d,j,·,· +Kjα

)

∝ I[j ∈ Λd ∧ k ∈ 1..Kj]

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)
·
(
n

(¬d,i)
d,j,k,· + α

)
(5.2)

The notation n(¬d,i) refers to the corresponding count excluding the current as-

signment of topic z and label l in document d position i. Here we have used the

de�nition of ~αL at position j is αKj, which allows the numerator in the second frac-

tion to cancel the denominator in the last term. Because the denominator in the

second fraction is independent of the topic and label assignment, it is folded into

the proportionality constant. Interestingly, this sampler's update rule is like that of

Latent Dirichlet Allocation [48] with the intuitive restriction that only those topics

corresponding to the document's labels may be sampled.

The similarity of the model and the resulting sampling equations suggests some

interesting contrasts to existing models. In particular, if we use PLDA in a purely

unsupervised setting with no labels beyond the latent label class of k topics, the

model reduces exactly to traditional LDA. At the other extreme, if every document

has only a single label, if we have no latent topic class, and if we give each label's

class a single topic, our model's per-class learning function becomes the same count

and divide of terms within a class as used in the multinomial naive Bayes model [87].

Similarly, if we have no latent topic class, and if we give each label access to only

a single topic by setting Kl = 1 for all labels l, then the model reduces to Labeled

LDA [112]. Interestingly, Labeled LDA can be used to approximate PLDA by the

construction of a synthetic label space where, for any given label l, we construct a class

of labels of size Kl as labels � l -1 l -2 l -3 ... l -Kl� with all those labels are applied to

every document with label l. In this case, Labeled LDA will output multiple versions
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of the same label which, if symmetry is broken during initialization, may result in

topics that look like our latent sub-labels in PLDA but has no theoretical guarantees

as such. This construction was applied to microblogging data from Twitter by me

and colleagues in [111] to good e�ect, seeding the development of the models in this

chapter.

Learning and Inference

An e�cient Gibbs sampling algorithm can be developed for estimating the hidden

parameters in PLDA based on the collapsed sampling formula in Equation 5.2. E�-

cient computation of the counts n can be done by keeping histograms over the number

of times each term has been associated with each topic within each document and

how often each topic has been associated with each term. The Gibbs sampler simply

loops over the corpus, re-assigning topic assignment variables z and updating the

corresponding histograms. However, Gibbs sampling is inherently sequential and we

would like this model scale to the size of modern web collections, so we developed a

parallelizable learning and inference algorithm for PLDA based on the CVB0 vari-

ational approximation to the LDA objective as described in [4]. For each word at

position i in each post d, the algorithm stores a distribution γd,i over the likelihood

that each label and topic generated that word in that document using the normalized

probabilities from the Gibbs sampling update formula in Equation 5.2. These distri-

butions are then summed into fractional counts of how often each word is paired with

each topic and label globally, denoted #j,k,w, and how often each label appears in an

each document, denoted #d,j,k. The algorithm alternates between assigning values to

γd,i,j,k and then summing assignments in a counts phase. The update equations are

listed below. Initially, we use small random values to initialize #j,k,w and #d,j,k.

Assign:

γd,i,j,k ∝ I[j ∈ Λd, k ∈ 1..Kj] ·
#j,k,w − γd,i,j,k + η

#j,k − γd,i,j,k +Wη
· (#d,j,k − γd,i,j,k + α)
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Count:

#d,j,k =
∑
i

γd,i,j,k

#j,k,w =
∑
d,i

γd,i,j,k · I[wd,i = w]

#j,k =
∑
w

#j,k,w

The references to γd,i,j,k on the right side of the proportionality in the assignment

phase refer to the value at the previous iteration. This formulation allows for a data-

parallel implementation, by distributing documents across a cluster of compute nodes.

Assignments are done in parallel on all nodes based on the previous counts #d,j,k,

#j,k,w and #j,k (initially small random values). The resulting assignments γd,i,j,k

are then summed in parallel across all compute nodes in a tree sum, before being

distributed to all compute nodes for a new assignments phase. The process repeats

until convergence. Like in [4], we �nd that the CVB0 learning and inference algorithm

converges more quickly than the Gibbs sampler to a solution of comparable quality.

In practice, we �nd that this algorithm scales to very large datasets�experiments on

a corpus of one million PhD dissertation abstracts resulted in models that trained in

less than a day on a cluster of twelve 4-core machines.

5.2.2 Partially Labeled Dirichlet Process

PLDA provides a great deal of �exibility in e�ectively de�ning the space of latent top-

ics to learn both within labels and in a common latent space. Unfortunately, PLDA

introduces an important new parameter for each label, Kl, representing the number

of topics available within each label's topic class. Fortunately, non-parametric sta-

tistical techniques can help estimate an appropriate size for each per-label topic set

automatically. In particular, we replace PLDA's per-label topic mixture θl with a

Dirichlet process mixture model [98], which can be seen as the in�nite limit of the

�nite mixture of topics per label used in PLDA. Formally, PLDP assumes a genera-

tive process similar to PLDA, with a multi-set of words ~wd for each document and an
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observed set of labels Λd. Like in PLDA, each word wd,i has an associated label vari-

able ld,i and topic variable zd,i. Here, the label ld,i is drawn from a document-speci�c

multinomial over labels, which for e�ciency we assume is drawn from a symmetric

Dirichlet prior with parameter α. To generate a topic assignment zd,i, PLDP picks

an existing topic within label ld,i for word wd,i in proportion to how often it is used,

or generates a new topic with held-out mass parameter α (the same as the Dirichlet

prior for the document-speci�c multinomial over labels).

The word wd,i, is then generated according to the topic distribution φld,izd,i as in

PLDA. The Gibbs sampling formula for updating the joint label and topic assignment

ld,i and zd,i in PLDP is:

P (ld,i = j, zd,i = k|l¬d,i, z¬d,i, wd,i = t;α, η)

∝ I[j ∈ Λd] ·

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)(
n

(¬d,i)
d,j,·,· + α

n
(¬d,i)
d,·,·,· + α|Λd|

)

·


n
(¬d,i)
d,j,k,·

n
(¬d,i)
d,j,·,·+α

for k existing

α

n
(¬d,i)
d,j,·,·+α

for k new

∝ I[j ∈ Λd] ·

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)
·

n
(¬d,i)
d,j,k,· for k existing

α for k new
(5.3)

As in the Gibbs expression for PLDA in Equation 5.2, we cancel the numerator in

the second fraction with the denominator in both versions of the �nal term. Again, the

denominator in the second fraction is independent of label and topic assignments, so

it is folded into the proportionality constant. The Gibbs re-assignment parameters in

Equation 5.3, paired with data structures updated to re�ect the appropriate counts of

interest at reassignment, can be used to create an e�cient Gibbs sampling algorithm

for the Partially Labeled Dirichlet Process. Unfortunately, the embedded Dirichlet

process mixture model complicates the parallelizability of learning and inference in
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this model.

It is worth noting that PLDP's embedding of the Dirichlet Process is, in some

ways, an even more natural �t than in standard topic modeling applications such

as the Hierarchical Dirichlet Process [127]. HDPs and related models discover a

global set of latent topics within a corpus as a function of both the concentration

parameter α and the corpus being analyzed. So for a known corpus of interest, text

mining practioners still have a single parameter to choose�instead of picking the

number of topics, they pick a concentration parameter. In practice, this is often no

easier than picking the number of topics directly. In contrast, for PLDP, a single DP

concentration parameter α selects the number of topics for each label in L, e�ectively
reducing the number of model parameters related to topic cardinality from |L| to one,
α.

5.3 Case studies

We illustrate applications of PLDA and PLDP to partially supervised text mining

tasks on two kinds of labeled corpora with very di�erent distributional properties:

PhD dissertation abstracts annotated with subject code designations and tagged web

pages from Delicious. Our PhD dissertation dataset contains over 1 million United

States PhD dissertation abstracts from the ProQuest UMI database2 since 1980, av-

eraging 2.08 subject codes out of a controlled subject code vocabulary of 259 com-

mon codes representing curated by ProQuest sta�. These subject codes correspond

to high-level �eld designations such as biochemistry, public administration, cultural

anthropology, etc. Each document contains 179 non-stop words, corresponding to

about two paragraphs of text from each abstract. Our Delicious dataset is a subset of

3,200 popular, heavily tagged documents from the Stanford Tag Crawl Dataset [58]

collected in the Summer of 2007, with an average length of 1263 words from a word

vocabulary of 321,062 terms, and an average of 122.1 distinct tags out of a vocabulary

of 344,540 tags.

These datasets have very di�erent distributional statistics, both in terms of the

2http://www.proquest.com/en-US/products/dissertations/
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underlying texts and the label spaces. The Delicious documents are longer and have

high overlap in common tags, whereas the dissertations tend to be shorter and care-

fully �led in a small number of subjects. Where not otherwise speci�ed, we used �xed

hyperparameters of 0.1 for α and η. In the following subsections, we examine these

datasets from the partially supervised text mining perspective, �nding that, despite

their di�erences, both datasets can be e�ectively modeled. Because of the size of the

dissertation dataset in the case study below, we focus on qualitative results that can

be achieved through our parallelized PLDA model. Because of the smaller size of the

Delicious data, we use the Delicious case study to quantify our intuitions about the

model's ability to approach text mining challenges and compare PLDA with PLDP.

5.3.1 PhD Dissertation Abstracts

Traditional digital libraries often annotate documents with a controlled vocabulary

maintained by domain experts to ease indexing, searching, and browsing. While

these collections represent a shrinking fraction of all the world's electronic text, they

do contain some of the most focused and important content within a limited domain.

One such collection is the UMI database of PhD dissertation abstracts maintained

by ProQuest. We collected 1,023,084 PhD dissertation abstracts from the Proquest

UMI database �led by US students since 1980 from any of 151 schools classi�ed as

research-intensive by the Carnegie Foundation since 1994.3 This data set is discussed

and analyzed in detail in Chapter 7. In this section, we present an initial qualitative

exploration of the UMI dissertations as a way to demonstrate PLDA's e�ectiveness

on a dataset with contrasting characteristics to Delicious.

While the subject codes in our data cover the full range of academic �elds, they

are not evenly distributed in usage, re�ecting real di�erences in �eld sizes. Indeed, the

most common subject code in our dataset (electrical engineering) has 44,551 instances,

whereas the least common (african literature) has only 1,041. Models like PLDA are a

natural �t for analyzing these controlled-vocabulary document collections due to their

ability to model both the text content in terms of latent usages of the known indexing

3http://classi�cations.carnegiefoundation.org/resources/
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Figure 5.2: PLDA output on dissertation abstracts (left) and Delicious tags (right). Com-

puter Science and Linguistics are two subject codes. �NB� (upper, left) refers to the naive

Bayes term estimates associated with each respective code, contrasted with the latent topics

learned within each. The �(background)� class (for Delicious in upper right, dissertations in

lower-left) is the latent topic class shared by all documents in the respective collection.
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vocabulary. By contrast, latent topics on this dataset collapse distinctions between

small �elds (folding them into a single topic) and overly emphasize the importance of

larger ones, just based on the amount of support in the data. For example, one run of

LDA on this dataset using 100 latent topics dedicated topics to �elds in propotion to

their prevalence in the data: electrical engineering was assigned three topics, whereas

african literature was split between one topic related to all forms of race culture

in America (�american, black, white, ethnic, african�) and another on all forms of

literature (�literari, novel, narr, text, writer�). By seeing which subject codes appeared

in each topic, we can see that these two topics are themselves dominated by larger

subjects: anthropology and political science for the former and modern and classical

literature for the latter. This result is reasonable from the perspective of how much

support there is for topics in the dataset. But by con�ating smaller subject codes

into a single topic, we lose the ability to describe topic dimensions in terms of the

known, human interpretable objects of study (�elds) while simultaneously losing all

latent sub-structure within each �eld.

As a modeling alternative, we could train an independent topic model on all

dissertations in each subject code. However, almost all dissertations have more than

one subject code, with 2.08 on average and a maximum of 15. As a result, many words

in the corpus will be double counted whereas PLDA can determine attribute each word

in each dissertation to the appropriate subject code's latent topics. More concretely,

using PLDA as a modeling framework allows for the automatic construction of shared

latent background topics that pull common words found in most abstracts out of the

per-�eld latent topics. The background topics in PLDA are explicitly labeled as

background topics by the model so the practitioner does not need to manually sort

the content topics from the background topics as they would for each subject code's

independently trained topic model. Examples of these latent topics are shown in

Figure 5.2 along with latent sub-topics discovered for several disciplines. Due to the

size of the dataset, we used a distributed implementation of PLDA to learn a model

with eight global latent background topics and eight latent topics per subject area,

resulting in a total of 2,080 latent topics. The results shown are representative of

the quality of discovered topics across all academic disciplines. Note that the major
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distinctions within each subject code roughly correspond to the broad areas of study

within computer science and linguistics. The latent topics capture shared common

structure in PhD dissertations,4 including basic things such as variables that increase

or decrease, rates of change, and structural starting points about needs, problems,

and goals.

Although this section is merely descriptive, we hope it serves to illustrate the

practical impact that having human-interpretable topic dimensions can bring in a

text mining context to text mining practitioners and computational social scientists

in particular. In the next section, we examine content from the social bookmarking

website Delicious, and use that dataset's abundance of tags as the basis for extrinsic

comparison between models.

5.3.2 Tagged web pages

Users of social bookmarking websites like Delicious bookmark the pages they en-

counter with single word tags [26]. In contrast to more traditional supervised learn-

ing problems, user-generated tags are not predetermined nor applied uniformly to all

items. For example, the tag language on Delicious might be applied to web pages

about human languages or programming languages. We call these variations in usage

of the same tag sub-tags. The right half of Figure 5.2 summarizes some of the types

of trends discovered within each tag on Delicious. The model was run on a randomly

selected 3,200 tagged web pages from [58], using 20 tags hand-selected to be relatively

common but also broad in scope: reference, design, programming, internet, computer,

web, java, writing, english, grammar, style, language, books, education, philosophy,

politics, religion, science, history and culture. We used �ve latent topics and �ve

topics for each tag. Qualitatively, the �gure illustrates the model's ability to discover

meaningful sub-tags, even some with a common meaning.

Because the model was trained on only a subset of all tags, we can use the remain-

ing tags as a form of extrinsic model evaluation for computing the correlation of our

model's output with a surrogate human relatedness judgment. Such an evaluation is

4Note that common stopwords and very rare words in the corpus were removed before training.
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Table 5.2: HTJS within a tag (left) and within sub-tags (right). % change is relative to the

.0183 score for randomly selected documents.
Docs by tag Docs by sub-tag

Tag HTJS Change HTJS Change

books .0254 39% .1292 605%

computer .0362 97% .1609 777%

culture .0259 41% .0780 326%

design .0269 47% .0510 178%

education .0206 12% .1784 873%

english .0263 44% .0531 189%

language .0314 71% .1996 989%

style .0290 58% .2244 1124%

Overall .0273 49% .1191 550%

preferable to the standard perplexity-based evaluations common in topic modeling,

which have been shown to disagree with human judgments of topic quality, such as

in [29]. Here, we refer to the tags not explicitly modeled as held-out tags. In our

experiments, most tags are held-out (128 / 132 per document, on average). Because

two related documents are more likely to be tagged the same way, overlap between

their held-out tags is a natural surrogate gold-standard metric for those pages' relat-

edness. Formally, we measure the relatedness of a pair of documents d1 and d2 as their

held-out tag Jaccard score (HTJS), de�ned to be the Jaccard coe�cient of overlap in

their held out tag sets, G(d1) and G(d2), respectively: HTJS(d1, d2) = |G(d1)∩G(d2)|
|G(d1)∪G(d2)| .

To measure the average relatedness within a group of documents, we randomly select

k pairs of distinct documents from within the group, with replacement. Here we set

k = 500, �nding little deviation in a set's scores across di�erent random initializations

and �nding no signi�cant impact from increasing k.

HTJS is a sensible basis for evaluating the e�ectiveness of our model at capturing

latent sub-structure in the data. We computed HTJS on a random subset of all the

documents in our dataset, �nding the average score to be 0.0183, showing relatively

little overlap in tags of randomly chosen pages, as expected. We expect that pairs of

documents that are both tagged with t will have higher held-out tag similarity than

the baseline, and indeed, documents tagged with computer (which is not a held-out

tag) have an average HTJS score of .0362, a 97% increase over the set of all documents.
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The center columns in Figure 5.2 show the improvement in HTJS scores from some

of the 20 modeled tags in the dataset. On average, grouping by tag increases HTJS

scores by 49%, in line with our expectation that knowing the document's tag tells us

something about its other tags. We can further utilize HTJS to quantify our model's

ability to isolate coherent sub-tags within a tag. The HTJS score for sub-tag s of tag

t is computed on all documents labeled with tag t that use sub-tag s with at least

as much probability mass as the sum of the other sub-tags s′ of t. For example, the

HTJS score of the documents using tag computer's �rst sub-tag (�security news may

version update network mac�) scores as high as 0.312, improving the HTJS score of

just knowing computer by another 31%. The right-most columns in Figure 5.2 report

the HTJS score averaged across all sub-tags of the tag named in the left-most column.

Not all documents tagged with t will necessarily participate in one of these subsets,

as not all documents will be guaranteed to be strongly biased toward one sub-tag.

The large improvements (550% relative to the baseline and 336% relative to the single

tag) shown in Figure 5.2 demonstrates PLDA's ability to model coherent sub-usages

of tags.

5.3.3 Model comparison by HTJS Correlation

In this section we use HTJS to compare PLDA and PLDP to several strong baselines.

Better performing models should have better agreement with HTJS similarity scores

across a wide range of document pairs. We quantify this intuition with Pearson's

correlation coe�cient: for any given model, we compute the correlation of similarity

scores generated by the model with HTJS scores over 5,000 randomly selected docu-

ment pairs. Higher correlations mean that the similarity score implied by the model

better aligns with our surrogate human judgments.

Figure 5.3 shows the correlation of PLDP, PLDA, LDA, Labeled LDA, and tf-

idf cosine similarity with HTJS scores as the total number of latent topics changes.

The way we compute similarity scores depends on the model form: the partially

supervised models introduced here, like other topic models, project documents into a

lower dimensional topic space through their per-document topic loadings. In the case
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of standard topic models such as LDA, this loading is just the per-document topic

distribution θ, which we compare using cosine similarity.5 For PLDA and PLDP, we

take a document's �θ� to be the concatenation of the documents' topic loading on all

labels (even those not present in the document), resulting in a vector that is dense

for topics corresponding to the document's labels and zero elsewhere.

We also included two baselines: tf-idf cosine simliarity (in word space) and the

Jaccard score of the modeled (i.e. not held-out) tags. For all models, we used �xed

hyperparameters of α = .01 and η = .01. Along the x-axis is the total number of latent

topics used by PLDA (varying the number of topics allocated per class from 1 to 16)

and of LDA. Labeled LDA has a horizontal line corresponding to using 20 topics, one

per class (and no latent class) and performs substantially worse than the other models

because of its inability to model the sub-structure of each tag. PLDP demonstrates a

higher correlation with the HTJS scores across the whole dataset by adapting to the

label and word distributions in the data. PLDP's embedded Dirichlet process allows

it to allocate di�erent numbers of topics to each tag as a function of its concentration

parameter α. Here, our PLDP model allocated 293 topics with substantial probability

mass (and several hundred more occuring with very low frequency). These topics were

allocated di�erentially according to the frequency of each tag and the variety of ways

in which it is used�most were given to the latent class and common tags such as

design, politics, and internet. Only four topics were allocated to the least common

tag in the dataset (grammar). We experimented with several values of α for PLDP,

resulting in more or fewer topics, but with similar distributions of topics allocated to

each tag and similar overall performance results.

5.4 Scalability

The expense of adding more label classes is directly proportional to how many doc-

uments each label participates in, and is always faster than modeling more global

latent topics. Indeed, the impact of a label l's topics on running time appears only in

5We have found cosine similarity to be a stable and high performing metric in this context in
contrast to information theoretic scores such as KL-divergence.
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computing the sampling proportions in documents with l ∈ Λd. This allows PLDA

models such as those trained on the PhD dissertation dataset to scale to very large

topic spaces and in an appreciably shorter period of time�indeed, training our 8

topics-per-subject PLDA model on one million abstracts ran in under a day on a

small cluster of multi-core computers. Training a comparable number of latent topics

(2,080) on this dataset took, on average 82 times longer per iteration. Incorporating

a large sparse label space, such as Twitter hashtags (described in the next chapter),

has little impact on the model's running time when holding the number of global

latent topics �xed: even with more than 6 times as many parameters, we found an

average increase of only 5.8 seconds per iteration across a wide range of sizes of the

shared latent class and no impact on the convergence rate of our parallelized PLDA

implementation. Adding rare label classes is computationally inexpensive, but opens

up new possibilities in �exibly modeling annotations and scales to very large datasets

with su�cient computational resources.

On collections with more common labels that have a higher degree of overlap,

such as Delicious, incorporating more label classes or topics per class increases the

computational load, but at a rate much slower than the cost of adding more global

shared latent topics, as most tags are not applied to most documents. Figure 5.4

shows the running time per iteration (in minutes) for the collapsed variational Bayes

learning algorithm on roughly twelve thousand documents from Delicious as the ef-

fective number of topics increases (using the same schedule of topics as in Figure 5.3).

Even though PLDA's output better �ts human similarity judgments, it is substan-

tially faster to train. We note, however, that practitioners should use models like

PLDA with care, choosing the set of labels modeled and topics per label depending

on the statistics of the dataset. PLDP can help by automatically determining an

appropriate number of topics per label class, but its �exibility comes at the expense

of speed, as the model takes about four times longer to train than the Gibbs sampler

for PLDA, and does not yet have a data parallel implementation.
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5.5 Conclusion

This chapter introduced two topic models that incorporate label supervision in novel

ways: PLDA and PLDP, which learn latent topic structure within the scope of ob-

served, human-interpretable labels. This model represents a culmination of the mod-

eling e�orts in this dissertation toward a text mining model that is simultaneously

trustworthy in its ability to align with a surrogate measure of human similarity, inter-

pretable in that the topics it learns are associated with the labels given in the data,

and �exible in that it can model labeled as well as unlabeled patterns.

The models introduce high-level constraints on a latent topics that cause them

to align with human provided labels, essentially ��lling in the details� with the use

of unsupervised machine learning. The addition of these constraints improves inter-

pretability of the resulting topics, shortens running time, and improves correlation

with similarity judgments. And because these models �t into the Bayesian framework,

they can be extended to incorporate other features, such as time or sequence infor-

mation. Another extension could allow the labels to be treated as unobserved�to

handle missing labels, for instance. Similarly, PLDA and PLDP do well with am-

biguity in the label space�by uncovering latent variations of labels' usage�but do

not directly model (partial-)synonymy by sharing topics across labels. Although such

topic sharing would come at a computational cost (if the shared topics are discovered

during inference) and would complicate the interpretation of latent topic usage, it is

intuitively appealing. I believe that PLDA, PLDP, and similar future models hold

promise for addressing the challenges of partially supervised learning for more inter-

pretable text mining, where human provided labels are present but do not always

align with the needs of text mining practitioners.

In the next chapters, we study two applications of these partially supervised tech-

niques: �rst through an analysis of language usage in social media in Chapter 6

where some labeled and some latent patterns are modeled together, as well as a more

in-depth look at the UMI dissertation database in Chapter 7.



Chapter 6

Mining and interpreting microblogs

A central theme of this dissertation is that textual data can be used as an e�ective

lens for understanding domains of human endeavor. In this chapter, we explore traces

of people's social interactions in microblog posts from Twitter by the application of

the modeling techniques developed in the previous chapter. Millions of people turn

to microblogging services to gather real-time news or opinion about people, things,

or events of interest. These services are used for social networking, e.g., to stay in

touch with friends and colleagues. And they are increasingly used as a publishing

platforms for creating and consuming content from sets of users with overlapping

and disparate interests. Understanding the types of content that people create and

consume is critical both to our understanding of people's behavior on Twitter as well

as to addressing new categories of content-driven information needs.

Microblogging services must now support information needs above and beyond

their traditional roles as social networks. However, most users' interaction with Twit-

ter is still primarily focused on their social graphs, forcing the often inappropriate

con�ation of �people I follow� with �stu� I want to read.� Consider a hypothetical user

@jane who follows user @frank because of the latter's posts about college football.

However, @frank additionally uses Twitter to coordinate social arrangements with

friends and occasionally posts political viewpoints. Currently, @jane has few tools to

This chapter draws from group work published as �Characterizing microblogs with topic models�
in ICWSM 2010 by D. Ramage, S. Dumais, and D. Liebling. [111]

89
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�lter non-football content from @frank. In short, Twitter assumes that all posts from

the people @jane follows are posts she wants to read. Similarly, @jane has a limited

set of options for identifying new people to follow. She can look at lists of users in the

social graph (e.g., those followed by @frank), or she can search by keyword and then

browse the returned tweets' posters. However, it remains di�cult to �nd people who

are like @frank in general or�more challengingly�like @frank but with less social

chatter or di�erent political views.

The example above illustrates two of content-oriented information needs, beyond

the capability of traditional network-based approaches. Content analysis on Twitter

poses unique challenges: posts are short (140 characters or less) with language unlike

the standard written English on which many supervised models in machine learning

and NLP are trained and evaluated. E�ectively modeling content on Twitter requires

techniques that can readily adapt to the data at hand and require little supervision.

The approach taken in this chapter makes use of the latent variable models developed

in the preceding chapters. While LDA and related models have a long history of

application to news articles and academic abstracts, one open question is if they will

work on documents as short as Twitter posts and with text that varies greatly from

the traditionally studied collections�here we �nd that the answer is yes.

What types of patterns can topic models discover from tweets? Section 6.2 ar-

gues from surveys and interviews that language use should be roughly categorized

into four types: substance topics about events and ideas, social topics recognizing

language used toward a social end, status topics denoting personal updates, and style

topics that embody broader trends in language usage. Next, in the Section 6.3, we

employ PLDA to map the content of the Twitter feeds into dimensions. Some of these

dimensions exploit implied tweet-level labels where available, enabling models of text

associated with hashtags, replies, emoticons, and the like. However, many of the

most interesting patterns of language are not labeled, and can be categorized roughly

into substance, style, status, and social characteristics of posts. In Section 6.4, we

characterize selected Twitter users along these learned dimensions, showing that the

models can provide interpretable summaries or characterizations of users' streams.

Finally, Section 6.5 demonstrates the approach's e�ectiveness at modeling Twitter
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content with a set of experiments on users' quality rankings of their own subscribed

feeds.

6.1 Related work

Most of the published research about Twitter has focused on questions related to

Twitter's network and community structure. For example, Krishnamurthy, et al. in

[71] summarize general features of the Twitter social network such as topological and

geographical properties, patterns of growth, and user behaviors. Others such as Java,

et al. [64], argue from a network perspective that user activities on Twitter can be

thought of as information seeking, information sharing, or as a social activity.

Less work has presented a systematic analysis of the textual content of posts on

Twitter. Recent work has examined content with respect to speci�c Twitter conven-

tions: @user mentions in [61] and re-tweeting, or re-posting someone else's post in

[21]. Notably, Naaman, et al. [97] characterizes content on Twitter and other �Social

Awareness Streams� via a manual coding of tweets into categories of varying speci-

�city, from �Information Sharing� to �Self Promotion.� Naaman, et al., extrapolate

from these categories, inducing two kinds of users: �informers� that pass on non-

personal information and �meformers� that mostly tweet about themselves. Others

have proposed forms of content analysis on Twitter with speci�c focuses, such as

modeling conversations [117]. Although rich with insight, these works do not present

automatic methods for organizing and categorizing all Twitter posts by content, the

problem we approach here.

6.2 Understanding following behavior

What needs drive following and reading behavior on Twitter, and to what extent

does Twitter satisfy them? To help organize our own intuitions, we conducted in-

depth structured interviews with four active Twitter users (with number of following

and followed users ranging from dozens to thousands), and followed up with a web-

based survey of 56 more users. We found that both the content of posts and social
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factors played important roles when our interviewees decided whether to follow a user.

Distilling our conversations down to their essence, we found that all those interviewed

made distinctions between people worth following for the subjects they write about

(substance, e.g., about a hobby or professional interest), because of some social value

(social, e.g., for making plans with friends), because of (dis)interest in personal life

updates from the poster (status, e.g., where someone is or what they are doing), or

because of the tone or style of the posts (style, e.g., humor or wit).

To examine these intuitions in a broader context, we conducted a web-based survey

cataloging reasons that underlie users' following decisions on Twitter, as determined

from our interviews and other direct interaction with regular Twitter users. 56 re-

spondents within Microsoft completed the survey during one week in November 2009.

65% were male and 75% were between the ages of 26 and 45. 67% were very active

consumers of information, reading posts several times a day. 37% posted more than

once per day, and 54% posted with frequency between once a day and once a month.

While this sample does not represent the full range of Twitter's demographics, we

believe it provides useful insight into challenges facing Twitter users more generally.

Respondents were asked how often they considered 26 reasons when making de-

cisions about whom to follow, with most reasons falling into one of the substance,

status, social and style categories identi�ed earlier. Each respondent rated each rea-

son on a �ve-point scale: �rarely,� �sometimes�, �about half the time,� �often,� to

�almost always.� The most common reasons for following represent a mixture of the

four categories of reasons: the two most common reasons were �professional interest�

and �technology� (substance). These particular substantive topics re�ected the de-

mographics of the respondents. The next most commonly used reasons were �tone

of presentation� (style), �keeping up with friends� (social), �networking� (social), and

�interested in personal updates� (status). Low ranked reasons included �being polite

by following back� and �short-term needs (like travel info).�

Respondents were also queried about nine reasons for un-following users, i.e. re-

moving users from their streams. We found that �too many posts in general� was

the most common reason for a user to be un-followed. Other common reasons were:

�too much status/personal info� (status), �too much content outside my interest set�
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(substance), and �didn't like tone or style� (style). Respondents rarely un-followed

for social reasons like �too many conversations with other people.� The least common

reason was, unsurprisingly, �not enough posts� � because such users are rarely seen

by their followers simply by lack of activity. 24 users provided additional reasons

for un-following: 10 mentioned spam, 8 mentioned insu�ciently interesting / boring

/ duplicative posts, and 6 un-followed because of o�ensive posts (e.g. religious or

political views, general tone, or about other people).

In response to an open-ended question about what an ideal interface to Twitter

would do di�erently, survey respondents identi�ed two main challenges related to con-

tent on Twitter, underscoring the importance of improved models of Twitter content.

First, new users have di�culty discovering feeds worth subscribing to. Later, they

have too much content in their feeds, and lose the most interesting/relevant posts in

a stream of thousands of posts of lesser utility. Of the 45 respondents who answered

this question, 16 wanted improved capabilities for �ltering of their feeds by user, topic

on context (e.g., �organize into topics of interest�, �ignore temporarily people, tags

or topics�). In addition, 11 wanted improved interfaces for following, such as organi-

zation into topics or suggestions of new users to follow (e.g. �suggestions on who to

follow that have similar interests�).

6.3 Modeling posts with PLDA

The information needs outlined above point to the importance of developing better

models of textual content on Twitter. The approach we use here is based on latent

variable topic models inspired by LDA that incorporate some supervision in the form

of the implicit tweet-level label spaces. The original paper on which this chapter is

based [111] used a mixture of latent and labeled topics in a synthetic label space

in Labeled LDA (Chapter 4), which inspired the PLDA model in Chapter 5. This

chapter re-frames the original analysis in terms of PLDA.
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6.3.1 Dataset description

We trained models on data collected by crawling one week of public posts from Twit-

ter's �spritzer� stream. This public stream's makeup is determined by Twitter and

contains posts sampled from all public posts made on the site. Our collection con-

tains 8,214,019 posts from the 17th through the 24th of November 2009 (OneWeek).

Posts were processed by tokenizing on whitespace and on punctuation subject to

rules designed to keep together URLs, emoticons, usernames, and hashtags. Some

multi-word entity names were collapsed into single tokens (such as michael_jackson)

by using a gloss lookup derived from Wikipedia and query logs. After processing,

posts contained an average of 13.1 words from a vocabulary of 5,119,312 words. As

an important pre-processing step, we removed the 40 most common terms in the cor-

pus1 and all terms appearing in fewer than 30 documents. Some experiments were

conducted on just those posts from the 24th of November (OneDay), containing just

over 1M posts. It is worth noting that the number of documents in both collections

is substantially larger than most applications of latent variable topic models, where

collections tend to be on the order of tens of thousands of documents, although those

documents are usually longer.

Besides the number and types of labels used, PLDA has two parameters: we

used un-tuned symmetric Dirichlet priors of .01 for η and .01 for α, which can be

thought of as pseudo-count smoothing on per-label word distributions and per-post

label distributions, respectively. In early experimentation with these values, we found

similar qualitative results across a wide range of small positive values.

6.3.2 Model implementation and scalability

In order to scale to our test collection size�and beyond for real-time analysis of

all Twitter data�our implementation must be parallelizable. We use the CVB0

variational approximation to the PLDA objective described in Section 5.2.1 based

on the work in [4]. For each word at position i in each post d, the algorithm stores

1The most common terms are e�ectively a corpus-speci�c collection of stop-words; removing them
improves running time and the subjective quality of learned topics.
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a distribution γd,i over the likelihood that each topic (associated with some label)

generated that word in that document. These distributions are then converted into

counts of how often each word is paired with each topic globally, denoted #lkw, and

how often each label appears in an each document, denoted #dlk. The algorithm

alternates between assigning values to γd,i,l,k and then summing assignments in a

counts phase. The update equations are listed below. Initially, we use small random

values to initialize #lkw and #dlk. The references to γd,i,l,k on the right side of the

proportionality in the assignment phase refer to the value at the previous iteration.

Formulating the PLDA learning problem in this way allows for a data-parallel

implementation. Documents are distributed across a cluster of compute nodes. Be-

fore each assignment phase, all nodes are given a copy of the current counts #dlk,

#lkw and #lk. The assignments phase is done in parallel on all processors. Then,

processors aggregate their local counts by summing their assignments in parallel, and

then passing along the sums to higher rank nodes until the master node has the sum

of all counts. This iterative process repeats for a �xed number of iterations or until

the change in model parameters falls below a threshold. Our implementation does

threading within compute nodes and communicates across nodes with MPI, and can

complete training on the OneWeek dataset within about four days on a 24-machine

cluster.

In the results presented in this chapter, the PLDA models will contain 100 or

200 dimensions (a parameter we set) that correspond to latent trends in the data

(like labels �Topic 1� through �Topic K� applied to each post), and about 500 labeled

dimensions (depending on the dataset) that correspond to hashtags, etc, as described

in the Section 6.3.4. After describing the characteristics of these dimensions, we go on

to describe how they can be used to characterize users or sets of posts in Section 6.4

and how they impact performance on two ranking tasks in Section 6.5.

6.3.3 Latent dimensions in Twitter

Before examining the types of content captured by the labels in PLDA, we �rst

examine Twitter's latent structure, as modeled using K labels applied to every post
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in the collection. These labels are incorporated so that unsupervised large-scale trends

can be captured by the model. By inspection, we �nd that many of these learned

latent dimensions can be divided into one of the four categories de�ned above: those

about events, ideas, things, or people (substance), those related to some socially

communicative end (social), those related to personal updates (status), and those

indicative of broader trends of language use (style). Later, we refer to text analyses

using these categories as a 4S analysis.

We manually labeled 200 latent dimensions from one run of our model on the

OneDay dataset according to the 4S categories by examining the most frequent words

in each dimension's term distribution. Four raters labeled each dimension as any

combination of substance, status, style, social, or other�i.e. each dimension may have

more than one 4S category assignment. As an example, the most frequent words in

�Topic 1� are: �watching tv show watch channel youtube episode and season,� which

was labeled as substance. The other dimensions tended to be dominated by non-

English terms, by numbers, by symbols, or by generic word classes like terms for

males (him his he boy father man, etc).

Table 6.1 summarizes the number of latent dimensions associated with each cate-

gory, the inter-rater agreement in labeling, and the top words in an example dimen-

sion for each category. We used Fleiss' κ to compute inter-rater agreement for each

of these categories across our four judges as separate binary classi�cation tasks. As

shown in Table 1, we �nd fair to substantial agreement across all categories. The so-

cial category shows the lowest inter-rater agreement, which is in part because so much

language usage on Twitter has some social component, regardless of whether it is also

substantive, stylistic, etc. Indeed, boyd, et al. [21] report that 36% of posts mention

another user, and of those roughly 86% are directed speci�cally to that user. As a

caveat, categorizing latent dimensions in this way can be di�cult for three reasons.

First, the judgments (and even our categories) are inherently subjective, although we

do �nd reasonable agreement. Second, some legitimate trends may be hidden in the

lower frequency terms in each distribution. Finally, many discovered dimensions are

inherently ambiguous in usage, such as some indicative linguistic styles being coupled

with social intent. Nonetheless, we believe that this type of high-level summary can
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Category Fleiss' κ Example topic

Substance
54/200

.754

obama president american

america says country russia

pope island failed honduras

talks national george us usa

Status
30/200

.599

am still doing sleep so going

tired bed awake supposed hell

asleep early sleeping sleepy

wondering ugh

Style
69/200

.570

haha lol :) funny :p omg

hahaha yeah too yes thats ha

wow cool lmao though kinda

hilarious totally

Social
21/200

.370

can make help if someone

tell_me them anyone use

makes any sense trying

explain without smile laugh

Other
47/200

.833
la el en y del los con las se

por para un al es una su mais

este nuevo hoy

Table 6.1: Inter-rater agreement from four raters marking 200 latent dimensions with
4S categories. Left: number of dimensions in category marked by ≥ 2 raters. Middle:
Fleiss' κ showing all four categories have at least fair agreement. Right: high scoring
words in an example from each category.
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provide value insofar as it quanti�es agreed-upon intuitions, and holds up to scrutiny

when examined at the level of individual posts. In our own exploration, we found the

4S categorization corresponded to distinctions that arose commonly in the interviews,

survey and content analysis and, furthermore, that there was good agreement about

categorization decisions from multiple labelers.

6.3.4 Labeled dimensions in Twitter

While the latent dimensions in Twitter can help us quantify broad trends, much

additional meta-data is available on every post that can help uncover speci�c, smaller

trends. In addition to the latent dimensions discussed above, several classes of tweet-

speci�c labels were applied to subsets of the posts. For instance, we create one label

for each hashtag. A hashtag is a Twitter convention used to simplify search, indexing,

and trend discovery. Users include specially designed terms that start with # into

the body of each post. For example a post about a job listing might contain the term

#jobs. By treating each hashtag as a label applied only to the posts that contain

it, PLDA discovers which words are best associated with each hashtag. We associate

one latent topic with each hashtag. Common words better described by some latent

dimension tend not to be attributed to the hashtag label.

We incorporated several other types of labels into the model. Emoticon-speci�c

labels were applied to posts that used any of a set of nine canonical emoticons: smile,

frown, wink, big grin, tongue, heart, surprise, awkward, and confused. Canonical

variations were collapsed: e.g. =] and :-) mapped to :). @user labels were applied

to posts that addressed any user as the �rst word in the post, as per the Twitter

convention of direct messaging. reply labels were added to any post that the Twitter

API has designated as a reply, i.e. because a user clicked a reply link on another post.

question labels were applied to posts that contain a question mark character. Because

the emoticons, @user, reply, and question labels were relatively common, we gave each

10 latent topics to model natural variation in how each label was used. The number 10

was chosen heuristically given the relative commonality of these symbols compared

to hashtags. Posts contained an average of 8.8 labels out of a label vocabulary of
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158,223 distinct labels. Of those labels, the majority (158,103) were hashtags; we

�ltered hashtags occurring on less than 30 posts, resulting in a �nal set of 504 labels.

Table 6.2 shows some characteristic topics associated with each label class. Natu-

ral variation in the linguistic usage is evident: one of the excerpted smile labels is used

to express gratitude and another consists of various forms of social bonding (�xoxo�

means hugs and kisses). Similarly, one frown label is dedicated to feeling ill, whereas

another represents frustration (mostly with computers). The speci�city of these la-

beled dimensions hints at new directions in sentiment analysis on Twitter content.

One reply label is dedicated to con�rmations (thanks ok good yeah) and another

represents a somewhat rowdier linguistic style (lmao yea tho wat hell). Analogous

distinctions are found through the other label types. We are interested in exploring

applications of isolating each of these trends, such as improved browsing interfaces

for hashtag labels, better sentiment analysis using emoticon labels, and conversation

and question modeling using the social labels. An open challenge in formulating this

kind of model is how best to select the number of sub-labels per label type, which we

plan to explore in future work.

Beyond the inherent appeal of explicitly modeling these label types, their incorpo-

ration supports our 4S analysis. For example, we know that all posts that are replies

or are directed to speci�c users are, to some extent, social, so we can count usage

of any reply or @user label as usage of the social category. Emoticons are usually

indicative of a particular style and/or a social intent. Because hashtags are intended

to be indexed and re-found, they might naturally be labeled as substance. Although

not all labels fall cleanly into the assigned categories, the great majority of usage of

each label type is appropriately categorized as listed above, enabling us to expand

our 4S label space without manual annotation.

6.4 Characterizing Content on Twitter

PLDA can be used to map individual posts into learned latent and labeled dimen-

sions, which we have grouped into 4S categories � substance status style social, either

manually (for 200 latent dimensions) or by construction (for 504 labeled ones). These
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Table 6.2: Example word distributions learned for various classes of labels, supple-
menting latent topics (not shown).
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mappings can be aggregated across posts to characterize large-scale trends in Twitter

as well as patterns of individual usage. Formally, a post d's usage of topic k, denoted

θd,l,k is computed simply as #dlk/|d|. We compute an aggregate signature for any col-

lection of posts by summing and normalizing #dlk across a collection of documents,

such as posts written by a user, followed by a user, the result set of a query, etc. The

usage of any 4S category can be determined by summing across dimensions within

that category.

By aggregating across the whole dataset , we can present a large-scale view of what

people post on Twitter. At the word level, Twitter is 11% substance, 5% status, 16%

style, 10% social, and 56% other. Despite the common perception to the contrary,

usage of substance dimensions outnumbers status dimensions on Twitter by two to

one.

Other is so common because of how our 4S categorization interacts with other

kinds of common trends that on Twitter. For instance, time words and numbers are

contained prominently in several topics that are labeled other. The largest source

of other, however, comes from the distribution of languages on Twitter. In particu-

lar, about half of user tra�c comes from non-English speaking countries,2 and the

language in which a post is written is a powerful similarity signal across posts. The

model e�ectively segregates usage of these languages into their own dimensions, which

we manually labeled as other. Only once a language has enough posts will the model

have enough data to subdivide by linguistic usage.

By aggregating PLDA dimensions across recent posts from two Twitter accounts,

we can visually contrast their language usage. Figure 6.1 shows a 4S analysis of

200 recent posts written by a popular celebrity (@oprah, right) and by the World

Wide Web Consortium (@w3c, left). In the center, we see the ratios of these two

account's usage of dimensions that fall into each 4S category, denoted as stacked

vertical segments drawn to scale. Background statistics for the dataset are shown as

a third stacked bar in the center, from which we can see that @w3c is highly skewed

toward substance, whereas @oprah has slightly more status than average. The most

2While we could not �nd an exact statistic for the distribution of languages
by post on Twitter, English-speaking countries make up about 49% of user tra�c
(http://www.alexa.com/siteinfo/twitter.com as of November 2010).
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Figure 6.1: 4S analysis of two users: @w3c (left) and @oprah (right). The usage of
dimensions from substance (top row), status (second), social (third), or style (bottom)
categories is shown in the vertical bars, with Twitter's average usage shown in the
center. Common words in selected dimensions from each category are shown as word
clouds. Word size is proportional to frequency in that dimension globally, and word
shade is proportional to the frequency in the user's recent tweets. Light gray words
are unused in recent tweets.
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common words for selected dimensions within each 4S category are shown to the left

and right. The size of a word re�ects how important it is in that dimension globally

(i.e. in the training data), and shading depends upon how often the poster uses each

word within that dimension.

Images like Figure 6.1 can be used to visually characterize and contrast users.

For instance, we can see that @oprah posts about her television show (top right) and

about books (adjacent in region). In particular, we see that @oprah uses the �book�

dimension to talk about reading (darker) rather than writing (unshaded). Similarly,

@w3c often posts about technology (top left) and the web (adjacent). Within the

web topic, @w3c uses words like �internet� and �online� but not �marketing� or �seo.�

Socially, @w3c comes across as an open organization by using words like join, we, our

and us, whereas @oprah talks to her followers (your, you're).

A scalable, interactive version of this visualization was developed and deployed to

the web as Twahpic3. Two screenshots of the visualization are shown in Figure 6.2.

The topic browser allows users on the web to enter a Twitter username or search query.

Inference is performed on 200 returned posts matching the query using a pre-trained

PLDA model, where latent topics are manually classi�ed into 4S categories and given

short descriptive titles. The posts returned by the query are shown at the left, and

for each post, the fraction of its words attributed to each type of language is shown

as a small adjacent bar chart. These distributions are summed, with the highest

probability topics in each 4S category shown at the right. The area of each topic is

proportional to the amount that it is used. The color of each topic is determined by

it 4S category. From the visual aggregations alone, we can easily learn the relative

prevalence of the 4S categories. In this case, we see that the Bing account (@bing)

is a corporate account designed to interact with other Twitter users and engage in

conversations about Bing, whereas the Microsoft Research account (@msftresearch) is

more of an information-push style account that announces new results and initiatives.

To provide a context grounding our understanding in the underlying words, we

show each topic box at the right with its highest probability words as a word cloud.

Words in each cloud are sized in proportion to how often they are used within the

3http://twahpic.cloudapp.net/
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Figure 6.2: Screenshots of the interactive Twahpic browser's 4S analysis of two
corporate Microsoft accounts: Microsoft Research and Bing. These screenshots were
taken in May 2010. Note the very di�erent aggregate distribution of social language
(green, upper left quadrant) and substance language (blue, bottom left quadrant) in
the two accounts. The di�erence stems from the alternative purposes served by the
two di�erent kinds of corporate Twitter accounts: @msftresearch is almost entirely
substance, promoting new research and initiatives within the lab. @bing, on the
other hand, is designed to be a customer-facing service that responds directly to
other Twitter users to engage others in conversations about Microsoft's search service.
Images by Dan Liebling.
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topic overall and shaded according to how often each word occurs within the modeled

posts at the left. The juxtaposition of size and shading allows the visualization to

support a context-speci�c understanding of how the particular set of posts makes

use of the language in each topic. For instance, we see that the Microsoft Research

account (top half of Figure 6.2) uses a topic called �Web� without using the word

�google� (light shading) even though �google� is commonly used by others using the

�Web� topic overall.

6.5 Ranking experiments

The previous section demonstrated ways we can use PLDA with a 4S analysis to char-

acterize sets of posts according to the model's learned dimensions. Here we examine

the model from a di�erent perspective: e�ectiveness at modeling Twitter content as

measured by performance on two information consumption tasks. One task considers

ranking posts from a person's current feed; the other is aimed at recommending new

users to follow. In these experiments, we do not make use of the 4S categorization

of the PLDA dimensions, instead focusing on the relative e�ectiveness of two repre-

sentations of Twitter content: the per-post feature space de�ned by PLDA's per-post

θd and standard tf-idf feature vectors built from tokenized posts. We also report the

performance of a combination of these models and two baseline methods, ordering

randomly and ordering by time. The PLDA model used here was a 100 latent dimen-

sion model with all labeled dimensions as described above, trained on the OneWeek

dataset.

Active Twitter users within Microsoft were asked to rate the quality of posts from

users they follow on a three point scale. For each participating rater, we selected up

to seven posters with public feeds followed by that rater. We collected the 14 most

recent posts from each poster using Twitter's public API. This collection of 7Ö14

posts was presented to the rater in chronological order. Each rater was asked to

score the selected posts on a three point scale: 3 = �must read,� 2 = �maybe worth

the reading time,� and 1 = �not really worth reading.� 43 users completed at least

60 judgments, providing us a dataset of 4,267 judgments. Most raters in our study
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Model Mean Avg Prec Mean Prec@1 Mean RR@1R

PLDA + tf-idf .622 .634 .756
PLDA .605 .537 .681
tf-idf .608 .585 .718

Temporal .565 .537 .678
Random .542 .537 .670

Table 6.3: Performance on the by-rater post ranking task.

were unhappy with most posts in their feeds. The average rating was only 1.67, with

a majority of posts (2,187) scored as �not really worth reading.� Individual raters

displayed a range of satisfaction: the median per-rater average score was 1.64, with

a minimum of 1.08 and a max of 2.26.

6.5.1 By-rater post ranking task

The by-rater post ranking task models a content-driven information consumption sce-

nario: given only a few minutes, which posts should @jane read from her feed. To

evaluate this task, we split the set of judgments by rater, ordering posts chronologi-

cally. The earliest 70% of posts were taken as a training set, and the remaining were

scored as a test set, with the goal of ranking the most preferred posts �rst. While

a more involved supervised classi�cation algorithm could be used, here we trained a

simple centroid-based ranker on the positive examples (those rated as �must read� or

�maybe worth the reading time�) in order to compare feature spaces. Test posts were

ordered by their cosine similarity to the mean feature vector of the positive examples.4

Table 6.3 shows the results of computing several standard IR rank evaluations

(Mean Average Precision, Mean Precision @ 1, and Mean Reciprocal Rank of the

�rst relevant item) on the resulting test sets. We compared performance for models

based on raw tf-idf features computed on terms in the posts, the lower dimensional

feature space of PLDA, a combination of the two, a random baseline, and a baseline

based on time (the Twitter default). We observe that the tf-idf and PLDA models

have similar performance, but that a weighted combination of their similarity scores

4For the probabilistic models, we also experimented with information theoretic measures like
KL-divergence, but found them inferior to cosine similarity.
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Model Reciprocal Rank

PLDA + tf-idf .965
PLDA .579
tf-idf .839

Temporal .103
Random .314

Table 6.4: Performance on the user recommendation task.

(18% PLDA, 82% tf-idf) outperforms all models by a substantial margin. While a full

exploration of combinations of similarity models is outside the scope of this chapter,

this particular mixture was picked by examining performance on a set of bootstrap

samples on a fraction of our dataset; performance was fairly stable and nearly optimal

across a range of values between 15% and 20% PLDA.

6.5.2 User recommendation task

The user recommendation task models a di�erent content-driven information need:

given posts from users I follow, recommend a new user to follow. In this task, we

ignore the positive and negative per-post ratings, and simply model the centroids of

posts from the rater's followed users. For each rater, we build a representation of their

interests using posts from six of the posters that they follow, and hold out posts from

the one remaining poster as a positive test example. As negative test examples we

use 8 other posters that the rater does not follow. Models are compared by the extent

to which they recommend the positive test user over the negative users. Speci�cally,

we measure the reciprocal rank of the positive test example in the set of test posters.

This measure is somewhat conservative since the rater may actually be interested

in some people whom they don't currently follow, particularly because our negative

test examples were drawn from within the same post ranking dataset. Because all

raters work for the same company and share some interest in social networking, we

expect there to be more similarity between followed users and non-followed users in

this dataset than for Twitter as whole.
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Table 6.4 shows the performance across the same models as the previous experi-

ment. Here, the temporal baseline ranks users by their average post time, so users who

posted more recently more often are ranked higher. In this task, tf-idf greatly out-

performs PLDA alone, but the combination substantially outperforms either model

individually. And more pointedly, the combination classi�er returns a nearly perfect

score of .96 � i.e. it ranks the actually followed user �rst in almost all test instances.

In both tasks, the best classi�er was a weighted combination of these inputs.

The weighted combination works well because PLDA and the tf-idf model capture

di�erent aspects of textual similarity. In particular, we expect PLDA to outperform

tf-idf when document vectors share few terms in common because PLDA reduces

the dimensionality of the word space to a much smaller label space. Conversely, we

expect the tf-idf model to outperform PLDA when there are enough terms in common

such that the occasionally spurious con�ations in the reduced space do more harm

than good. Because both of these similarity signals are informative, the weighted

combination allowed the models to complement each other and outperform either

model on its own.

6.6 Conclusion

This chapter has shown how content-based analysis of language use on social mi-

croblogs like Twitter can provide a rich characterization of the kinds of language used

as a way of understanding people's interactions online. We have shown how these

methods can support rich analyses of Twitter content at large scale through aggre-

gate statistics of social, substance, status, and style language use. We have also shown

their applicability to understanding individual users with interactive visualizations of

the 4S dimensions: the models' lower dimensional feature representation can be used

to characterize users by the topics and words they most commonly use. The approach

e�ectively models important similarity information in posts, improving performance

on two concrete tasks modeled after information needs: personalized feed re-ranking

and user suggestion.

The e�ectiveness of the models points to clear directions for future work, including
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temporal dynamics of learned models as well as the combination of content analysis

with techniques from reputation and social network analysis. In combination, these

models might enable us to answer more kinds of questions like: How much does the

distribution of substance, status, social, and style change across parts of the social

network? And how does each person's usage of language evolve over time? There

are also clear implications for the development of applications of PLDA and similar

models of Twitter content, including improvements in �nding and following new users

as well as �ltering feeds to topics of interest.

More importantly, this chapter demonstrates how a mixture of latent and labeled

topics�such as with PLDA�can support an e�ective computational approach to

studying social questions on Twitter. The mixture of latent and labeled topics exploits

user-provided labels to better understand language in context, such as the words

associated with emoticons, mentions, etc. It also leaves room to discover unknown

topics, which we make sense of using the 4S categories derived from traditional social

sciences approaches (surveys and interviews). The result is a new kind of visualization

and characterization of language use on Twitter that would not have been possible

without a combination of our own domain insight (4S categories), the implicit domain

expertise of the users (in emoticons, hashtags, etc.), and a modeling framework to

coherently integrate these signals with the raw Twitter data. Taken as a whole,

this chapter presents one case study in how to approach a text mining challenge

with known unknowns (emoticons, hashtags, etc.) as well as unknown unknowns

(latent topics organized into 4S categories) that combine to construct interpretable

characterizations of the language of individuals and queries on a social microblogging

site.

In the next chapter, we transition from the study of individuals and their communication�

representing one kind of question traditionally approached in the social sciences at a

smaller scale�to the study of ideas and the organizations that enable them.
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Chapter 7

Academia through a textual lens

In this chapter, we illustrate how text can be used to analyze ideas and the organi-

zational structures that support their creation through a statistical analysis of PhD

dissertation abstracts spanning three decades. We examine borrowing of language

across disciplines over time and the ways in which individual departments may lead

or lag the rest of a �eld. This case study is an instance of the general themes of

interpretable text mining for the social sciences outlined in Chapter 1: we demon-

strate the ways that we can make use of the implicit domain expertise in a text

collection to study the ideas and organizational structure represented in a large scale

text collection. In particular, I analyze academia through a study of one million

PhD dissertation abstracts �led in the United States over the past three decades,

from 1980 to 2010. The analysis is with respect to three kinds of labels�the implicit

domain expertise�embedded in each dissertation's metadata: the areas in which a

dissertation is �led, the school at which it is written, and its year of publication.

Speci�cally, this chapter considers two aspects of phenomena in our dataset: in-

corporation, or the use of language or ideas from outside an academic area, and leading

and lagging, or the use of language ahead or behind its time. We also consider the

intersection of these phenomena, which we think of as the returns from interdisci-

plinarity.

Incorporation. Work that crosses disciplinary boundaries is heralded as a source

of new ideas in the sciences, engineering, and humanities. That researchers from two

111
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�elds might come together to create something new, beyond the scope of each individ-

ual �eld, has held sway in the popular press and the sociological literature, and it has

directed funding agencies and university initiatives [68]. While this coming together

of people is symmetrical, the ideas, methods, we �nd in Section 7.4 that vocabulary

of science has a directional �ow. Using PLDA to model languages incorporated by

�elds across disciplinary boundaries, we document how methodological (computer

science, statistics) and theoretical approaches (philosophy, mathematics) export their

language to other �elds more than they borrow from elsewhere. In addition, we �nd a

split in the biological sciences between reductionist and system-level perspectives on

biological phenomena. And we �nd a large-scale, sustained change in the humanities

and social sciences driven by gender and ethnic studies.

Leading and Lagging. Every PhD dissertation is a product of its intellectual envi-

ronment and a contribution to human knowledge. From studies of individual proteins

to Middle English prose, the scope of each dissertation is usually quite focused. Yet

as new ideas, methods, and technologies emerge, some dissertations will come to

look more like academia's future than others. For example, some early work in DNA

sequencing presaged the larger shift in biology toward computational methods by sev-

eral years. In Section 7.5, we use the year of a dissertation's publication to analyze

the extent to which each dissertation leads the future of academia as a whole.

Returns from interdisciplinarity. Finally, in Section 7.6, we consider the com-

bination of interdisciplinarity scores with leading and lagging scores by university.

We �nd that work that crosses disciplinary boundaries is substantially more future

leaning than average dissertations across the entire time period.

7.1 Related work

Prior academic study of scholarship has primarily used traditional methods from the

social sciences including literature reviews, expert interviews, and surveys [73, 75].

Most studies examine single �elds [43] or compare several [69]. In aggregate, these

case studies convey stories about the development and division of broader areas, such

as the divide between STEM �elds (science, technology, engineering, and math) and
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the rest of academia [93]; the growth of reductionism in general and in microbiology in

particular [24]; and the growth in climate science and gender and ethnic studies [137].

As we will see, these observations are largely con�rmed in the patterns of language

incorporation we document. However, detailed studies employing traditional methods

have not scaled to similarly complete studies of academia writ large.

The few larger-scale studies of scholarship are based on link analysis rather than

language use [36]. These methods analyze networks of formal variables describing

links such as citations or co-authorship [99, 20, 18, 19]. Some even study interdis-

ciplinarity as mixing in team science [123]. However, these network-based studies

have two fundamental limitations. Conceptually, they are limited to formal linkages

and miss the hidden structure of academia that arises in the myriad informal con-

versations and often-uncited distant readings of others' work. As a result, they lack

a representation of how concepts may be borrowed across disciplines. Practically,

they su�er from the limited availability of high quality, accurately disambiguated

metadata that crosses �eld boundaries. Because of this, results are biased toward

journal-heavy �elds like biomedicine and leave book-heavy �elds like the humanities

under-represented. A focus on citation and authorship further favors �elds with high

output, short papers and short-term collaborations. A study of dissertation language

usage provides a scienti�c tool that avoids the biased conventions of citation and

authorship.

Recent noteworthy approaches to the study of academic scholarship through lan-

guage analysis have focused on detailed studies of domain in which the authors have

expertise. For instance, Blatt [12]�himself an anthropologist��nds textual evidence

of the recent split in anthropology into cultural anthropology and anthropological sci-

ence. Similarly, Hall, et al. [50] examine the rise of statistical methods in natural

language processing by utilizing a combination of topic models and their own domain

expertise. In this case, two of the three authors have independently written two of

the best known textbooks in the �eld. Because of the unsupervised methods used,

these studies are inherently limited to the authors' domain of expertise. By contrast,

the approach we take uses PLDA to exploit the implicit domain knowledge of each

dissertation �ler and the ProQuest taxonomists tasked with �ling each dissertation
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into its appropriate subject codes. As a result, our results are applicable to studies

of broader scale phenomena in academia as a whole.

While focused studies can tell us about the detailed history of a particular �eld,

they do not illuminate larger scale patterns across academia as a whole. The textual

analysis of the PhD dissertation database presented here does not su�er from the scale

limitations or sample biases that previous approaches face. Dissertations are ideal for

the study of interdisciplinarity because every academic writes one, embodying several

years' e�ort to extend the state of the art in some �eld. We examine thirty-one years

of dissertations published from research intensive universities in the UMI database

maintained by ProQuest [109]: long enough for longitudinal analysis while ensuring

high coverage of all schools and areas. To our knowledge, this work is the �rst large-

scale study of academia through the lens of its graduating students. In contrast to

other datasets, PhD dissertation abstracts re�ect the entire academic output of a

university. Every graduating PhD student produces a dissertation re�ecting several

years' e�ort. These tend to be of high quality: each is judged to be a new contribution

to human knowledge by faculty members of the graduating institution.

7.2 Dataset description

Shortly after completion, most PhD dissertations in the United States are �led in

the UMI database maintained by ProQuest. ProQuest is designated by the Library

of Congress as the collection agency for published PhD dissertations in the United

States [109]. We analyze a subset of 1.05 million dissertation abstracts �led be-

tween 1980 and 2010 from 157 schools. We selected schools that have been classi�ed

as research-intensive in one of three surveys of higher education conducted by the

Carnegie Foundation since 1994 [89]. We examined only data until 1980 because

electronic abstract records became much sparser before then.

Each dissertation contains a title, abstract, author, advisor, date, subject codes,

and keywords. The abstracts contain an average of 179 words after removing com-

mon stop-words (such as �about� and �the�), removing rare terms occurring in less
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than 5 documents, and collapsing term variations with a Porter stemmer [108].1 268

commonly used subject codes in our dataset are taken as implicit domain expertise�

re�ecting the knowledge both of the �ler and the taxonomists at ProQuest�corresp-

onding to relatively high-level �eld designations such as biochemistry, public adminis-

tration, cultural anthropology, etc. These subject codes have been manually curated

by ProQuest, and have been grouped by area. Some subject codes are introduced or

disappear during the time span of the data, but most are stable designations over the

31 year period.2

Most (92%) dissertations have more than one subject, with the bulk having either

two (58%) or three (24%). Unfortunately, the subject codes themselves are unevenly

distributed: some areas like Physics have a rich taxonomy of subject codes (13 subject

codes for 52,432 dissertations) whereas other areas like Computer Sciences contain a

paucity of subject codes (only two subject codes for 41,605 dissertations). The subject

codes in ProQuest are extensive, but much more �ne-grained and with less clear

organizational validity than the well-established basic disciplines re�ected in common

�eld designations like those in the National Research Council's 2010 report [103].

Consequently, we grouped subject codes into 69 areas based on the NRC classi�cation,

which we, in turn, group into seven broad area designations: Engineering, Physical

& Mathematical Sciences, Biological Sciences, Health & Medical Sciences, Earth and

Agricultural Sciences, Social Sciences, Humanities. Three more broad areas primarily

oriented toward professional training�Education, Business, and Law, containing 12

areas�are not considered in the analysis below. Even after grouping subject codes

into areas, we �nd that the average dissertation contains 1.6 areas, with nearly half

(46%) still participating in more than one area and many (17%) having three or more

areas designated.

1In general, stemming is not necessarily useful in topic modeling because synonymous variants
are often correctly placed into the same topics. The reason terms are stemmed here is simply
computational convenience: we are memory limited, so reducing model size�by reducing vocabulary
size�allows more document data to �t each compute node.

2ProQuest has made changes to the subject code hierarchy over the time span of the data, creating
mappings between hierarchies. Another di�erence by year is in the number of subject codes that can
be applied while �ling. The approach we take here controls for such variations (to a large degree)
by �lling in missing labels with PLDA inference.
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The dataset has very high coverage of all dissertations published in the United

States from the 157 research universities classi�ed as research intensive by the Carnegie

Foundation. For example, the dataset contains 35,942 dissertations attributed to

1994, or roughly 80% of the 45,394 PhDs granted by all United States graduate pro-

grams in that year according to the National Center for Education Statistics [122].

The National Science Foundation estimates a lower number of PhDs for the same

year, at just under 40,000 [83, p. 7], but does not include tallies of all professional

school PhDs. To ensure our coverage was as high as it seemed, we used data from the

o�ce of the registrar at Stanford to examine Stanford dissertations from 1993-2008:

our collection of UMI records contains 8,836 Stanford dissertations, or 94% of the

9,331 PhDs granted by the university. From these statistics, we have reasonable con-

�dence that our coverage of academia as a whole, while not exhaustive, is su�ciently

extensive to extrapolate high level trends.

7.3 Methodology

Every dissertation exists in several contexts: the time it is written, the university

at which it is produced, and the academic areas that delineate its boundaries. Our

goal is to model each dissertation with respect to these contexts in order to infer,

for example, that a given dissertation incorporates roughly 20% of its language from

engineering disciplines, or that it looks more like the future of its �eld than the past.

In both cases, we must perform two steps: learning and inference. First, we use PLDA

to learn models of what the language of a given label space looks like (as topics) given

the observed labels on each document. Then, in a second phase, we use these topics

to infer the natural distribution of the entire label space for each document. We

consider the case of learning the language associated with each academic area below.

In the learning phase, we build models of the language in each area. From only a

single dissertation with two or more labels, we could not hope to discern which words

belong to each. But by looking at the distribution of words and labels across the entire

collection, we can learn that words such as �genome� and �sequence� are statistically

more likely to occur together in Genetics & Genomics documents, whereas terms like
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�algorithm� and �complexity� are better attributed to the Computer Sciences. As

a result, we can determine which words in a dissertation labeled both as Computer

Sciences and Genetics & Genomics are better attributed to each label (and, more

speci�cally, what kind of CS or Genetics). We continue to use the PLDA model

introduced in Chapter 5. While the disciplinary labels are known, the topics are

not�the model discovers sub-disciplines. Formally, the probability of sampling a

particular label and topic given an some document's observed set of labels Λd and

Dirichlet hyper-parameters η and α is given by:

P (ld,i = j, zd,i = k|l¬d,i, z¬d,i, wd,i = t;α, η)

∝ I[j ∈ Λd ∧ k ∈ 1..Kj]

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)
·
(
n

(¬d,i)
d,j,k,· + α

)

In the inference phase, we re-examine every dissertation without the restriction

that its words be generated by one of the dissertation's labels: i.e. Λd is considered

to be the full set of labels L. Instead, we allow the model to determine the optimal

mixture of labels that would result in generating the words we see in each dissertation.

In this way, the model can �ll in missing labels by assigning high probability to a

particular label that may not have been present during training. Or it can e�ectively

remove a mis-applied label by assigning it very low probability. These scenarios

do happen often in practice�for instance, spot checks of dissertations in the �eld

of computational linguistics (where I have domain expertise) demonstrates several

dissertations �led under either Computer Sciences or Linguistics (but not both) but

where the model assigns high probability to both areas. The resulting per-document

label distributions can be interpreted as the percentage of words in a given dissertation

that can be attributed to each area of academia.

With these per-dissertation statistics computed, we can compute an aggregate

statistic of how much language is borrowed by an entire area or within a given year.

This is simply the expectation of the probability that any given word is assigned to

the particular label j across all documents in a set of interest D∗:
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Ed∈D∗P (ld,i = j)

=
1

|D∗|
∑
d∈D∗

1

Nd

Nd∑
i=1

∑
k∈Kj

P (ld,i = j, zd,i = k|...)

To derive real qualitative insight into the data, we need to be sure that the statis-

tics the model computes re�ect real patterns of language usage in the world and

not just artifacts of a choice of parameters or classi�cation. To select the number

of topics per model, we �t many models to the data varying the number of latent

subjects per area designation, looking for areas of consistency between the models'

assessment of cross-disciplinary language incorporation. Figure 7.1 shows the agree-

ment between models based directly on subject codes and models based on areas

(aggregated subject codes) as the number of latent topics per label varies. Note the

high absolute correlations overall�representing the relative stability of the models

learned�as well as the tendency for models trained with a su�cient number of latent

topics under either labeling scheme to agree. The agreement demonstrates that the

patterns of language incorporation learned are stable with respect to variations in the

number of topics per label (for su�ciently many labels) as well as the granularity of

the classi�cation scheme. Where not otherwise stated, we use the 12 topics per area

model because of its high consistency with the other models and its comparatively

small size. The model has a total of 829 topics versus a maximum of 4,289 topics for

the 16-topics-per-subject model. Learning and inference in the PLDA model can be

accomplished in parallel. As a result, a model with 12 topics per label and 69 area

labels can be learned in about a day on a small compute cluster. The stories we �nd

here are consistent across models from 8 to 16 topics per label.
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Figure 7.1: Intra-model consistency among PLDA models of academic �elds. PLDA
models were trained using one background topic, and either 2, 4, 8, 12, or 16 topics
per Subject (bottom, right) or per Area (top, left, also including 20 and 24 topics
per area). These models are compared by �rst computing the expected percentage
of words borrowed between all pairs of areas in all years. For the subject codes, the
percentages of each subject are summed by area to create a comparable scale. The
correlation of these inter-area borrowing percentages are computed for all pairs of
models, generating the plot above.
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7.4 Language incorporation across disciplines

Interdisciplinary research is work that crosses disciplinary boundaries, borrowing

ideas, methods, and terminology from elsewhere. Insofar as these borrowed fac-

tors are represented in the written word of a discipline, we can have hope that the

model described above can quantify the extent of borrowing across these disciplinary

boundaries. In this section, we examine the area model from Section 7.3 in detail.

We begin by observing that the disciplinary organization of academia is both

ubiquitous and stable. Abbott, a prominent historian of academia, notes in [2, pp.

122-23] that �the departmental structure of the American university has remained

largely unchanged since its creation between 1890 and 1910,� with few exceptions such

as a split in biology and new �elds like linguistics and comparative literature. Menand

[93] elaborates by arguing that the root of the current disciplinary organization lies

in the professionalization of American academia at the turn of the 20th century. By

putting scholars from each discipline in charge of training, hiring, and o�ering tenure

to faculty from that discipline, universities e�ectively ceded control of the categories of

academic inquiry to groups of scholars interested in developing and maintaining their

own norms. Menand argues that the resulting strength of disciplinary organization at

the university level sowed the future importance of both interdisciplinary work�work

that cuts across these boundaries�as well as the rise of inherently �antidisciplinary�

�elds in the humanities such as gender and ethnic studies designed to challenge the

traditional divisions. Indeed, in this section, we �nd that both the fracturing of

biology (as noted by Abbott) and the rise of gender and ethnic studies (as noted

by Menand) are two of the strongest statistical signals in our study of language

incorporation.

We use the partially labeled topic model trained as described in Section 7.3 to

induce a per-dissertation distribution over areas of academic study, and use these to

study academic disciplines by proxy.3 From here, we can begin to develop intuition

into the dynamics of language incorporation in academia.

3Observe that the areas in which a dissertation is �led do not necessarily re�ect the depart-
ment of the graduating student, as the names and exact boundaries of departments do vary across
universities.
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Figure 7.2: Language incorporation across all �elds in academia, 2000-2010. Every
area is shown on the outer ring, grouped by broad area. Clockwise from top: En-
gineering, Physical & Mathematical Sciences, Biological Sciences, Health Sciences,
Earth & Agricultural Sciences, Social Sciences, Humanities. Arcs are drawn between
areas with thickness in proportion to the total amount of language borrowed between
the �elds (in either direction) and with color determined by the area that sends more
language. Note the extent of division between the STEM �elds (right) and non-stem
�elds (left). Arcs between broad areas are shown inside the circle, while arcs within a
broad area are shown outside the circle, in order to emphasize broad multidisciplinary
in�uences. Earlier versions of this image by Jason Chuang.
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Figure 7.3: Borrowing among academic �elds over all years. This image is analogous
to Figure 7.2, but as a scatter matrix it makes visible the asymmetry in language
incorporation. The value in a cell (i, j) is determined by how much of the language
of row i is incorporated in dissertations labeled as column j. Cells are shaded when
the given row sends more language to the column than it receives. Earlier versions of
this image by Jason Chuang.
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Figure 7.4: Concurent (A) and asymmetric (B) language incorporation in two pairs
of �elds. (A) shows the concurrent rise of computational biology (blue) and bio-
computation (purple). The percentage of words in the computer science incorporated
from genetics and genomics is shown in blue, while the percentage of words in genetics
and genomics incorporated from computer sciences is shown in purple. Error bars
are derived from bootstrap resampled estimates of the statistic (5% and quartile).
B shows the asymmetrical incorporation of ecology and evolutionary biology into
environmental sciences (green), versus the other way around (purple).

Figure 7.2 shows borrowing among all academic �elds in years 2000-2010. Around

the ring (clockwise) are the broad areas of Engineering, Physical and Mathematical

Sciences, Biological Sciences, Earth and Agricultural Sciences, Social Sciences, and

the Humanities. Area within each broad area are shown as bars. Each link is a

measure of the extent to which language is incorporated (in either direction) and is

colored by the �eld that sends more. This �gure provides a stark visual representation

of the gulf between the sciences and engineering, on the right, and the humanities

and social sciences, on the left. Very few dissertations incorporate much language

from across the divide. Those that do tend to be applied disciplines.

The model can discover the formation of new interdisciplinary areas. Figure 7.4A

shows the uptake of terms from the Computer Sciences in dissertations from Genetics

and Genomics and vice versa as a percentage of each �eld. While the growth in these

areas' usage of each other tracks closely, Computer Sciences' usage of Genetics leads

slightly in the early 2000's before Genetics' use of CS reaches a higher peak in the

late 2000s.

Furthermore, the model tells us that interdisciplinarity is directional, as seen in the

scatter matrix of all language incorporation shown in Figure 7.3. The scatter image
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clearly delineates which areas send more language to which other areas. However,

these asymmetries become more interesting when temporal dynamics are considered.

Figure 7.4A shows that the amount of genetics language incorporated by computer

science is not equal to the amount of computer science language incorporated by

genetics. Figure 7.4B shows a starker example of asymmetric in�uence: ecology and

evolutionary biology has had a larger impact on environmental sciences than the other

way around. Indeed, asymmetries abound�some areas consistently incorporate more

language from other areas than vice versa. Some areas act as language organizers for a

broad area, such as Ecology and Evolutionary Biology for the Earth and Agricultural

Sciences or Sociology for the social sciences. We revisit these �ndings in more detail

below.

The method discovers known histories of interdisciplinarity among intellectual

disciplines, such as the recent rise in computational biology. Here we document

patterns of in�uence across many pairs of areas. First, we �nd that �elds play distinct

roles in language production: some areas are net sources and others are net sinks of

language. Then, we describe the two major patterns in multi-discipline dynamics

that have occurred over the past three decades: the split in biological sciences and

the rise of gender and ethnic studies. Finally, we conclude the section with an explicit

measure of interdisciplinarity.

7.4.1 Disciplinary Roles in Language Production

Academic disciplines have assumed distinct roles in the production of academic lan-

guage during these past 30 years. Every �eld repeatedly draws upon its own language

over time, but they vary in how much they export their language to other �elds or

incorporate the language generated elsewhere. Some �elds are frequently sources for

new academic concepts, while others consistently borrow concepts and apply them

to their own domain. We formalize this intuition as the net source score for an area

a. The net source score is a sum over all other areas b, adding one if b incorporates

signi�cantly more language from a than vice versa, or subtracting one if a incorpo-

rates signi�cantly more language from b than vice versa. Note that not every area
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Figure 7.5: Net source score (y, shared axis) for academic areas. In A, each area's
net source score is plotted over time, grouped by broad area. The highlighted areas
are in detail in B where each area's size (x) is plotted versus its net source score over
time (line series). In B, from top to bottom, the brown line is Mathematics; the red
lines from the Humanities are Philosophy and Gender and Ethnic Studies; the blue
line is Computer Sciences, the Purple lines are Ecology and Evolutionary biology
and Microbiology, and the Green line is Animal Sciences. Each line represents a time
series from 1980 to 2010 by 5 year increments, progressing from the lightest to darkest
dot.
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contributes to the sum: many pairs of �elds incorporate each other's language at

statistically indistinguishable rates.4 Figure 7.5A shows the net source scores in each

broad area over time. The shape of these point clouds demonstrates that some ar-

eas in Engineering5 and the Social Sciences have gained in in�uence, whereas many

in the Physical & Mathematical Sciences, Earth & Agricultural Sciences, and some

of the Humanities have lost in�uence. Selected areas are shown in Figure 7.5B as

trajectories of area size versus net source score over time.

Areas that export language to other �elds are frequently methodological and con-

cern abstract reasoning: e.g., Computer Science, Statistics, Mathematics and Phi-

losophy and History. Mathematics and Philosophy have elsewhere been described as

�root disciplines� [41] because their generality and abstraction anchor the develop-

ment of more applied �elds. We �nd quantitative support for this argument. Math

and philosophy do clearly export more language to other �elds than they borrow

concepts from elsewhere. However, we also observe Computer Science and Statistics

assuming a similar role, and possibly becoming more of a preferred root category in

contemporary science. Methodology and machines of engineering and statistics are

more often incorporated into other �elds than are philosophy and mathematics. In

contrast, other areas�particularly in the biological sciences�have grown much larger

without gaining external in�uence. Others incorporate language from elsewhere sub-

stantially more than they export. These �elds tend to be humanistic, applied, or

topical domains like classics, languages, and the whole of earth and agricultural sci-

ences. These topical areas tend to rely on abstract reasoning and methods to further

understanding in their knowledge domains.

7.4.2 The Rise of Molecules and Machines

In the 1980s, the biological sciences were dominated by two primary modes of inquiry.

On the one hand were integrative approaches to biological systems, from individual

4We compute statistical signi�cance by comparing the distributions of our statistic (mean lan-
guage use of some area) in 100 bootstrap samples of the dissertations in any target area.

5Not all areas of Engineering gain in�uence: the gains are driven largely by increases in Computer
Science, Electrical Engineering, and Operations Research. The notable downward trajectory in
Engineering in Figure 7.5A is Chemical Engineering.
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Figure 7.6: Interdisciplinary language incorporation among the Biological Sciences
(purple), Health Sciences (gold), and Earth and Agricultural Sciences (green) in two
time points (1980s and 2000s). The value of cell i,j represents the fraction of words in
column j that were incorporated from row i. Note the tremendous increase in language
in the Earth & Agricultural sciences incorporated from Ecology and Evolutionary
Biology. Note also the increased in�uence of the Biological Sciences (as compared to
the Animal Sciences) on Health Sciences.

animals all the way up to ecosystems. On the other hand were reductionist approaches

that sought to understand biology from its base components, �rst through microbi-

ology and later through more speci�c �elds such as genetics and genomics as well as

cell biology [24]. Indeed, the split in the �eld is so deep that some universities have

already discussed dividing their departs into two if they have not done so already�to

molecular biology and evolutionary biology.6

Figure 7.6 shows borrowing among all the biological sciences, health sciences, and

earth & agricultural sciences in two decades: the 1980s and 2000s. What we �nd is

that ecology & evolutionary biology�once an integral part of the biological sciences

both by mass and by the extent its language was incorporated elsewhere�shrinks

greatly in in�uence within the rest of the biological sciences. However, over the same

period of time, it grows to become dominant in the earth & agricultural sciences.

Simultaneously, we witness an enormous growth and blossoming of the reductionist

6Biology major may split. October 21, 2011. Yale Daily News.
http://www.yaledailynews.com/news/2011/oct/21/biology-major-may-split/
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Figure 7.7: Language incorporated from each area (graph title) over time from other
areas of the Biological Sciences (purple), Health Sciences (gold), Earth & Agricultural
Sciences (green). Language incorporation is also shown for Humanities (red), and
Social Sciences (orange) corresponding to areas described in Section 7.4.3. These
graphs represent the total percentage of words in the given broad area incorporated
from the named area. Usage in all other broad areas not captured by the lines in a
given graph is shown in gray.
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Figure 7.8: Interdisciplinary language incorporation among the Social Sciences (or-
ange) and Humanities (red).

biological �elds in the biological sciences. Figure 7.7 shows the amount of language

exported by each of several areas to other areas within selected broad areas. For

instance, we see that microbiology grows quickly through the 1980s before losing

relative impact in biology to related reductionist approaches in the 1990s, including

Genetics & Genomics as well as Physiology & Cell Biology. Molecular biology acts

as an integrator of the rest of biological sciences and a growing source of language for

health sciences, as well.

The ability to quantify and document these trends has implications for the way we

structure university initiatives. For instance, many consider the rise of environmen-

tal studies as a whole as an independent discipline [25], but it heavily incorporates

language from the studies of biological systems. In contrast, the rise in reduction-

ist biology is driven by the technologically of miniaturization, data generation, data

collection, and associated engineering methodologies. Indeed, the percentage of lan-

guage in the biological sciences borrowed from engineering disciplines (as a whole)

roughly doubles over the time period (to about 7%).
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7.4.3 Rise of Gender and Ethnic Studies

The �eld of Gender and Ethnic Studies began in the 1960s before our dataset's starting

year of 1980 [93, 137]. In the 1960's, the humanities and social sciences faced an

intellectual crisis of legitimacy in an era of broad cultural shifts that demanded greater

representation of traditionally under-represented voices and views. Our methods

show that it was not until the late 1980s that Gender and Ethnic studies began to

grow in in�uence. By the 2000s, Gender and Ethnic Studies are a primary mode of

organizing thought, pervasive both throughout the humanities and social sciences,

with its in�uence beginning to plateau in the early 2000s.

Figure 7.8 shows language borrowing among the social sciences and humanities.

It shows that Gender and Ethnic studies has moved from incorporating the language

of others in the 1980s to acting as an organizing force for two broad areas: both the

humanities and social sciences. Contemporary with the rise in Gender and Ethnic

Studies, Philosophy declines in size but does not decline in relative in�uence. Indeed,

Philosophy remains one of the largest net sources of language in the dataset, as

shown in Figure 7.5, despite the growth of Gender and Ethnic Studies. We can think

of Gender and Ethnic studies as, in e�ect, an intellectual movement�a critique of

disciplines�that got institutional support and grew [93]. Its growth demonstrates the

wide and growing acceptance of identity as a construct necessary to academic inquiry

into social and humanistic questions. Perhaps unsurprisingly, we �nd no evidence of a

signi�cant language usage of Gender and Ethnic in either Engineering or the Physical

and Mathematical Sciences.

7.4.4 Interdisciplinarity

The extent to which a dissertation's language comes from disciplines other than its

primary discipline can then be taken as a measure of that dissertation's interdisci-

plinarity. We can use the inferred per-document distribution over areas to compute

a percentage of words borrowed from outside a given dissertation's reference area.

For example, a dissertation labeled Computer Sciences that borrows 20% of its words
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Figure 7.9: Percentage of words incorporated from outside areas, by broad area.
Error bars are from bootstrap resampled estimates of the mean percentage of words
drawn externally.

from Genetics & Genomics would likely be an interdisciplinary dissertation in compu-

tational biology, whereas another dissertation that is 99% computer science is likely

to be a work in a core area of computer science such as theory or systems.

We formalize this de�nition by computing an interdisciplinarity score for any

given dissertation d with respect to an observed reference label l ∈ Λd as the expected

probability mass in the document's distribution over labels that is over some threshold

τ ∈ [0, 1] and is attributed to areas other than l. This interdisciplinarity score Id,l is

de�ned as:

Id,l =
∑
l′∈L

ψd,l′ · I[l′ 6= l ∧ ψd,l′ > τ ]

Note that this formalization counts each dissertation separately as a member of

each of its labeled areas and will, in general, have a di�erent score with respect to

each reference label.

Looking at the expected value of this test statistic over the whole document col-

lection gives us a sense of the change in interdisciplinarity in academia over our time
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span. Figure 7.9 shows a bootstrap resampled estimate of the mean Id,l for all areas

grouped by (and averaged within) each broad area for τ = .1. In general, all areas

have seen a net rise in interdisciplinary language over the time span, although some

areas show a distinct downward trend from a peak in the early 2000s. Dissertations

saw an average increase in the number of subject codes applied per dissertation in

the late 1980s across all areas, which is re�ected in the measure of language incorpo-

ration. Note that the Physical and Mathematical Sciences are the most disciplinary,

whereas the health and medical sciences borrow the most broadly. In recent years,

the Social Sciences have surpassed the Biological Sciences in terms of the percentage

of interdisciplinary language incorporated.

7.5 Leading and lagging

The area designations considered in the previous section are only one kind of contex-

tual labeling for a dissertation. We also made use of the year in which each dissertation

was published in order to study the dynamics of language borrowing over time. But

another way we might use the year of a dissertation's publication is directly as part of

a label space. If we do so, we can use the same methodology introduced in Section 7.3

to directly the measure the temporal distribution of any given dissertation and, by

extension, whole universities or �elds. Concretely, we assume that the zeitgeist of one

year in academia can be represented as the relative frequencies of terms used in that

year. From this assumption, we model every dissertation as a mixture of years�if

this dissertation were allowed to see the future of academia and the past (relative to

its date of publication), which years' words would the dissertation prefer to use?

Formally, we train a simple PLDA model with only one label per dissertation

corresponding to the year in which it was published. Note that in this simpli�ed

model, the maximum likelihood words in any given year are the same as those output

by the simple multinomial naive Bayes event model, as per our discussion in 5.2.1.

However, after inference, the model will infer a probability of the words in each

document coming from each year, i.e.
∑2010

y=1980 ψd,y = 1 for all dissertations. For a

dissertation d published in some year ŷ, we can compute a future, past, and present
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score for that dissertation by simply summing the elements of ψd that are less than,

greater than, or equal to ŷ. This gives us a total number of fractional dissertations

attributable to each time range. The future score for a dissertation is simply the

total probability of words being drawn from years that follow the year in which

the dissertation was published: Sfutd =
∑2010

y=ŷd+1 ψd,y. The past score is the total

probability of words being drawn from years that precede the dissertation: Spastd =∑ŷd−1
y=1980 ψd,y. The present score is the total probability of words being drawn from

the year in which that dissertation was published: Spresd = ψd,ŷd .

To compute the future score for a set of dissertationsD, we simply take the average

of their future scores SfutD = 1
|D|
∑

d∈D S
fut
d . We de�ne the past and present scores for

a set of dissertations analogously. Similarly, we can compute a future number as the

expected number of dissertations drawn from the future for a given set of dissertations

as #fut
D =

∑
d∈D S

fut
d = |D| ∗ SfutD . The past number and present number are de�ned

analogously.

All of these scores can be computed in two conditions. One is where the PLDA

model is trained using all dissertations, i.e. it captures large scale patterns of language

change in academia as a whole. The other considers only dissertations within some

area during training, i.e. it captures changing patterns of language use within the

�eld in which a dissertation is published. We consider both metrics below.

7.5.1 Future-leaning schools

When applied to the level of academic programs within schools, our entirely data-

driven metric reconstructs program rankings similar to those of the National Re-

search Council's 2010 report [103]. This is a strong validation of the technique as

well as a surprising �nding. The potential impact of data-driven techniques in the

study of academic research is large. Science policy makers, university administrators,

funding agencies, and prospective students all rely on many factors when deciding

which academic institutions to become involved with. Organizations have stepped

in to provide information to support such decision makers. From US News & World

Report rankings [100] to the recently released National Research Council report on
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academic institutions [103], there is great interest in generating objective benchmarks

of academic institutions. Traditionally, these benchmarks have focused on the inputs

associated with each institution�amount of money raised, SAT scores of incoming

students, number of grant dollars and research sta�, etc.�or on the reputation of

those institutions as judged by their peers. Yet by their nature, academic institutions

produce a great deal of output, usually in the form of the text of books, peer-reviewed

publications, and dissertations. Such text-rich datasets tend to be overlooked in quan-

titative analysis of institutional performance because making e�ective, quantitative

use of text is a challenging problem. In this section, we analyze these same institu-

tions from a new perspective: scoring institutions by how much each institution looks

like the future of academia, judged quantitatively from the text of each institution's

PhD dissertation abstracts.

The National Research Council spent years and large sums of money developing

its report on the quality of graduate programs at universities throughout the United

States. The �ndings are based on surveys (in two ways) and partially account for

uncertainty in survey responses. Each university program self-reported information

including features such as the number of full time faculty and research sta�, number

of publications per faculty, number of minority students, and many other features.

These features are then used to compose a ranking in one of two ways: S-rankings and

R-rankings. The S-rankings use surveys of academics within each �eld to assign the

relative importance of these various features to the aggregate quality of a department.

An aggregate weighting function is then created, with which departments are ranked.

For the R-rankings, academics are surveyed to solicit their judgments of the best

universities in their �eld, which are used to learn weights from the input features that

best predict the solicited rankings. In both cases, a �nal ranking is not produced:

instead, the model generates many candidate rankings and reports a range of possible

rankings for a given university program. The S- and R-rankings do not always agree,

but often do. Nor do they always agree with the rankings reported by the US News

& World Report (see, for example, a comparison in Psychology reported here [51]).

Nonetheless, the rankings represent a good-faith e�ort at producing a standardized

reference for assessing the importance of various factors in overall university rankings.
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To construct a data-driven assessment of graduate research programs, we must �rst

divide our dissertations by department. Unfortunately, the department in which a

dissertation is �led is not recorded in the UMI database: only the standardized subject

codes are provided. We used the area mapping manually constructed as described

in Section 7.2 to stand as a proxy for the department in which a dissertation was

�led. These areas were designed to match the NRC's 58 areas of study as much as

possible. So as a proxy for Stanford Computer Science Department dissertations, we

take any dissertation �led at Stanford University and containing either the subject

code �computer science� or the subject code �arti�cial intelligence.� Then we can

compute the future score Sfut and future number #fut of the Stanford Computer

Science dissertations as well as for every other department at every other school.

To evaluate our new metric's performance, we compare to how well it predicts the

NRC university rankings. As a reference point, we can see how well each input feature

used in the construction of the ranking correlates with the �nal ranking. Figure 7.10

shows the average correlation across areas of each feature with the �nal R-ranking

score at P = .05, i.e. at the lower bound of the reported rankings. Nearly identical

results are found when comparing to .95 bounds and to S-rankings at either bound.

The most predictive features are, unsurprisingly, features related to the academic

output of the department. These are, in order, Average PhDs 2002 to 2006 (the size

of the department), Awards per Allocated Faculty (a measure of external prestige),

Average GRE (the quality of the incoming students), Cites per Publication (how

high quality are the published works), and Publications per Allocated Faculty (how

proli�c are faculty members). Interestingly, a large gap in the predictive feature value

follows before the next feature (Percent Faculty with Grants), before feature values'

predictive scores fall o� for features that just don't matter, including Percentage

Female Students and Percent Female Faculty.

In the gap in predictive value lie several of our data-driven features: all those

based on the size of the department (#fut, #present, and #past) as well as Sfut trained

on the overall model. First let us consider the percentage scores Sfut, Spresent, and

Spast trained on the full dataset (overall). The NRC features are provided during

training of the linear model that eventually outputs the �nal ranking, so the fact that
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Figure 7.10: Relative predictive strength of NRC features and future scores. The
correlation of each NRC input feature (blue squares) is computed with respect to
the �nal score used for ranking departments, averaged across areas. The red squares
features represent #fut, #present, and #past computed on the overall model. The green
triangle features represent Sfut, Spresent, and Spast computed on the overall model.
The gray crosses represent the same S scores computed on the per-�eld model.



7.5. LEADING AND LAGGING 137

Sfut (overall) correlates better than all but four of the input features is a positive

and surprising �nding. Similarly, Spresent (overall) has almost no correlation with the

�nal score. This, too, is interesting�it shows us that simply being with the times

is not predictive of overall department quality. Finally, we see that Spast (overall)

is actually negative. Again, an intuitive result: those departments that do not keep

moving forward are left behind in the rankings. The corresponding S (�eld) scores

are trained on only those dissertations within each �eld, do not correlate as highly

with the overall rankings. We will return to these scores in Section 7.5.2.

The impressive performance of the features that depend on department size (#fut,

#present, and #past) is illuminating: size is one of the major factor in the overall

determinant of department quality, as has been noted in by multiple researchers

[7, 135, 126]. Indeed, Average PhDs 2002-2006 is the highest ranked feature in the

NRC dataset. When we scale the corresponding S (overall) scores by the size of each

department to get to the # scores, more information is included in each feature. Even

the negatively correlated coe�cient (Spast) has high overall correlation when scaled by

department size because of the strength of the latter. We note also that the relative

order of the three # scores preserves the properties we would hope: #fut is a better

predictor than simply the total number of dissertations, which in turn is a better

predictor than #present, which itself is a better predictor than #past. Nonetheless, the

performance of Sfut is heartening because it is itself uncorrelated with size.

The metrics above can be used to directly rank the universities within each �eld,

which we compare to the NRC rankings using Kendall's tau rank correlation. The

#fut metric, our highest scoring, has an overall Kendall's tau correlation of .398 with

NRC's R-ranking at P = .05. This correlation itself depends on the broad area under

consideration. The metric does best in progressive, technical �elds of Engineering

(average of -.445), Physical and Mathematical Sciences (-.377), and Biological and

Health Sciences (-.335). It falls �atter in Agricultural Sciences (-.300), Humanities

(-.288), and Social and Behavioral Sciences (-0.278). This ordering tells us about each

of the broad areas: not only are the Humanities and Social and Behavioral Sciences

structurally disconnected from the rest of academia (Section 7.2), they have funda-

mentally di�erent norms about the nature of their work. Norms in the Humanities
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and Social Sciences do not reward progressive, long-term development of the language

in a �eld to the extent that STEM �elds do. We analyze �elds by their future leaning

scores in more detail in the next section.

7.5.2 Future-leaning areas

Let us consider the �eld-by-�eld temporal variation in more detail. Figure 7.11 shows

the temporal distribution of language used by all dissertations in the dataset grouped

by area and colored by broad area. The distributions shown are the temporal distribu-

tions ψd,y for each dissertation, summed within each area relative to the dissertation's

year of publication. So a dissertation whose language looks like the year in which it

was published and the following two years would contribute a small amount (+0 +1

and +2) for its �eld's distribution over years.

Fields are colored by broad area. For each �eld, the �gure shows which years'

words make up what fraction of dissertations, on average. The 50th percentile is

marked with a black line; the 25th and 75th percentile are marked in color; and the

5th and 95th percentile are marked in gray. On the left is the extent to which a �eld

de�nes the language of academia's future overall. Some �elds, such as Classics, tend

to use language that looks more like academia's past, whereas �elds like Computer

Science tend to use language that looks more like academia's future. The left side of

the �gure, then, tells us a bit about the relative growth in importance of the language

from each area over time.

On the right of Figure 7.11 is the distribution based on comparing every disser-

tation's language to the language used in its own �eld independent of the rest of

academia. In other words, this model is trained only on dissertations published in

each �eld and is otherwise identical to the left half of the �gure. Whereas the left �g-

ure shows how much dissertations from a single �eld de�ne future academic language

generally (i.e., interdisciplinary transfer), the right shows shows how much a �eld is

inwardly de�ning, or paradigmatic. Some �elds that looked future leaning relative to

the rest of academia (such as Computer Science) here look more toward their own

past. Others that tend to look like academia's past (Classics) actually use language
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Figure 7.11: Temporal distributions of language usage by �eld under two models:
a global model of language use (left) corresponding to the �% (overall)� features in
Figure 7.10, and a �eld-speci�c model of language use (right) corresponding to the
�% (�eld)� features.
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Figure 7.12: Interdisciplinarity versus future score for three �elds, Law, Linguistics,
and Computer Sciences. Law shows negative returns from interdisciplinarity; Lin-
guistics shows a typical pattern of positive returns; and Computer Sciences shows a
more complicated interplay.

in stable, consistent way, looking both like their own past and future as seen in the

wide green bar.

7.6 Returns from interdisciplinary research

By combining the measure of interdisciplinarity developed in Section 7.4.4 with our

validated notion of future-leaning dissertations in 7.5, we can examine the e�ective

returns from interdisciplinary research as determined by the impact of increased in-

terdisciplinarity on future leaning score. Overall, we �nd a large return to inter-

disciplinary work: on average a dissertation that is one standard deviation more

interdisciplinary than other dissertations in its �eld and year will be about one half

of a standard deviation more future leaning. Figure 7.12 shows the plot of future score

(normalized for its area and year) versus interdisciplinarity (normalized for its area

and year) for three representative areas: Law, which shows a negative return to inter-

disciplinarity; Linguistics, which shows a more typical positive return; and Computer

Sciences, which appears to have no simple correlation between interdisciplinarity and

future score.

The relationship between interdisciplinarity and future score for the Computer

Sciences becomes more interesting when we examine the dynamics of the relation-

ship. Figure 7.13 plots the normalized interdisciplinarity score versus the normalized
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Figure 7.13: Diminishing returns from interdisciplinary work over time for computer
science dissertations (all universities). The % of words borrowed from other �elds
is displayed on the x-axis versus the normalized future score (for computer science
dissertations in each year) is shown on the y-axis.
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Figure 7.14: Dissertations from Stanford University computer science are plotted and
colored by external area designations. Most red engineering dissertations are electrical
engineering co-listed. The returns from collaborating with engineering fall over time,
but in the 2000s computational biology's growth begins to make interdisciplinary
dissertations again look future leaning.

future score for all dissertations �led as Computer Science in every year in the dataset,

from 1980 to 2010 in its own cloud. Note that these terms are indeed correlated, but

that the direction of correlation actually changes over the course of the dataset. In

particular, we �nd that in the 1980s, interdisciplinary work tends not to be particu-

larly future-leaning, but in later years there is a greater return to crossing disciplinary

boundaries for computer scientists. In a sense, we see that as dissertations become

more interdisciplinary (the mass of tends to move toward the right) the return to

being interdisciplinary falls.

The reason why is illustrated in Figure 7.14, where we examine Computer Sci-

ences dissertations at Stanford by decade, with each dissertation colored by any other

brother areas in which it participates. Here we �nd that in the early years, most

interdisciplinary work is interdisciplinary within the Engineering disciplines (red)�

and is usually Systems dissertations that borrow from Electrical Engineering, to be

precise�but that over time the returns from incorporating language from other parts
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of Engineering diminishes greatly, eventually having a negative correlation in the

2000s. However, not all forms of interdisciplinary language incorporation are created

equal: by the 2000s, language incorporated from the Biological Sciences (blue) is

substantially more future-leaning than other dissertations in the �eld.

7.7 Conclusion

Understanding the role of language incorporation and interdisciplinarity in academia

promises to shed light on both our academic understanding of the interplay of ideas

and institutions as well as having practical impact in data-driven techniques for as-

sessing impact. This chapter illustrates the broad scope of analysis made possible by

leveraging the human interpretable metadata�implicit domain expertise in the case

of subject codes�to perform larger scale analyses of language use in academia than

are possible with previous techniques. We use these techniques to study ideas�we

document fundamental changes in the language of academia that have occurred over

the past three decades, including broad scale splits in the biological sciences and the

growing dominance of gender and ethnic studies in the social sciences and humani-

ties. We also use these techniques to study the organization�the academic structure

of departments and universities�in which these ideas are made. Together with the

study of people in Chapter 6, this chapter complete our illustration of the ways in

which the statistical text models developed in the �rst half of this dissertation can

apply to studies of people, organizations, and ideas : three primary areas of inquiry

in the computational social sciences.
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Chapter 8

Conclusion

Computer science has dramatically changed society with technologies like the web,

online social networks, mobile computing, large scale databases, and so on. As a

discipline, we have developed and studied the content generation and storage tools

that enable these changes. Furthermore, from web search to genetics, techniques from

our �eld are now indispensable to the analysis of that content. As textual datasets

grow in size and scope, computer science has the potential to occupy an even more

central role in society by speaking directly to social questions in the world at large.

To rise to this challenge, computational social scientists will need tools that can

discover and characterize patterns of language use at a scale beyond what individuals

can achieve by reading. The discovered patterns must ultimately support or inspire

hypotheses about the world from the texts people write. But in order to be trusted,

the tools must �rst con�rm the broad trends and facts already known to be true�or

they must provide compelling arguments against the conventional wisdom. Without

such support in �nding the known, text mining models have limited utility in discov-

ering the unknown, i.e., in quantifying known trends or discovering unexpected ones.

Speci�cally, we need tools that are trustworthy in that they consistently �nd patterns

that match what we know to be true; they must be interpretable in that their output

speaks to hypotheses about the world, not just model mechanics; and they must be

�exible enough to incorporate input from domain experts while still letting the data

speak (Chapter 1).

145
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The approach I take in this dissertation is to incorporate labels or tags�represent-

ing implicit domain expertise within the data itself�in order to build text mining

tools that are trustworthy, interpretable, and �exible. I start by simply using labels

to improve upon the trustworthiness of latent topic models in the MM-LDA model

of Chapter 3. However, MM-LDA su�ers from the same interpretability di�culties

faced by all latent topic models, suggesting a better alternative use for label data: as

an anchor for organizing the learned topics. The �rst such model using labels in this

way, Labeled LDA in Chapter 4, restricts each topic to explicitly align with a single

label, addressing the credit attribution problem of determining which label is most

responsible for the presence of any given word in a document. I extend Labeled LDA

in Chapter 5 with the PLDA and PLDP models, which re-introduce the �exibility of

latent topics to Labeled LDA while retaining the former's interpretability advantages.

As a whole, the four models present a portrait of how labels can be used to build

trustworthy, interpretable, and �exible text mining tools.

This dissertation has demonstrated the viability of using datasets rich with human-

interpretable metadata to discover�and place in context�patterns about people, or-

ganizations, and ideas. These three categories of interest identi�ed in Chapter 1 cover

a wide range of computational social science questions. Yet despite the power of these

models, they are not a one-size-�ts-all approach to every question in computational

social science. They must be supported by domain-speci�c validation.

Indeed, this dissertation has devoted a great deal of e�ort towards validating the

learned models in embedded tasks and case studies throughout Chapters 3, 4, and

5. The longer case studies of language on microblogs (in Chapter 6) and academia

(Chapter 7) illustrate the central importance of domain-speci�c validation even more

clearly: we take pains to validate our understanding of the latent topic space on Twit-

ter through interviews and surveys, and we check our intuitions of academic language

incorporation with known precedents. Only then�once the model has con�rmed

some of the patterns that we expected to �nd�can we begin to trust its ability to

tell us things we didn't already know or couldn't have known otherwise. This form

of domain-speci�c validation is always needed to establish the trust of the practi-

tioner with his or her audience. Improvements in modeling can extend the scope of
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answerable questions, but can never replace the need for well designed validations.

Despite the contributions of this dissertation, what the �eld continues to lack is

a satisfying, general theory that connects the space of problems, the properties of

datasets and models, and methodologies for establishing trust. I have not formulated

this general theory, although I have illustrated some examples of how it might play

out in Chapters 6 and 7. In particular, I believe that when a dataset has labels

of interest, explaining the words in terms of those labels as much as possible leads

to clearer mechanisms for validation and more interpretable results. As a corollary,

when latent structure is unnecessary, it should be avoided.

The reason for both lessons is straightforward: as text mining practitioners, we

tend to over-�t our own intuitions. We examine each model we train for the errors

and inconsistencies we know to expect, training the models to match our own insights.

It is only by showing the output of the model to a third party�preferably a domain

expert without knowledge of model internals�that we can get a sense of whether the

model matches other people's intuitions, too. If the model supports clear, interactive

visualization, all the better: visualization can lead to simpli�ed exploration of the

individual examples that really validate �ndings or expose �aws. From practical

experience, I've found that models trained to align with a label space�like Labeled

LDA and PLDA�are better at matching my own intuitions and those of others than

purely unsupervised models like LDA.

Other recent approaches by topic modeling researchers are promising from a mod-

eling perspective, as well: work in evaluating the quality of LDA models with respect

to human intuition has shown that some models generate output that is more se-

mantically coherent than others [29]. Indeed, [96] explicitly optimizes the semantic

coherence as part of the topic model, while [3] demonstrates ways that domain knowl-

edge can be encoded into LDA models in terms of explicit word-pairing preferences

on the learned β distributions. While this dissertation does not explicitly compare

to these works, I �nd the recent interest in incorporating domain knowledge and se-

mantic coherence a heartening development in the �eld, and indicative of the broad

potential of other modeling approaches to core text mining challenges.
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In this dissertation, I have posited that we can build models that are simultane-

ously trustworthy, interpretable, and �exible by using the machinery of latent topic

models to learn word distributions constrained to align with the human-interpretable

metadata present in so many modern text collections. I use these models to show

that tags can improve clustering on the web in Chapter 3; that people's language

on microblogs can be categorized into substance, status, social, and style aspects

in Chapter 6; that large scale structural change in academia can be documented

(Section 7.4); that interdisciplinary work can be identi�ed (Section 7.4.4); and that

dissertations crossing disciplinary boundaries tend to look more like academia's fu-

ture (Section 7.6). While these results stand on their own, I hope that the approach

taken in this dissertation acts as a stepping stone toward even better methodologies

and analyses for uncovering the richness of our world through text.
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