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Abstract

We present a new part-of-speech tagger that
demonstrates the following ideas: (i) explicit
use of both preceding and following tag con-
texts via a dependency network representa-
tion, (ii) broad use of lexical features, includ-
ing jointly conditioning on multiple consecu-
tive words, (iii) effective use of priors in con-
ditional loglinear models, and (iv) fine-grained
modeling of unknown word features. Using
these ideas together, the resulting tagger gives
a 97.24% accuracy on the Penn Treebank WSJ,
an error reduction of 4.4% on the best previous
single automatically learned tagging result.
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first-order HMM, the current tago is predicted based
on the previous tag_; (and the current word). The
backward interaction betweety and the next tag.
shows up implicitly later, whei,, is generated in turn.
While unidirectional models are therefore able to capture
both directions of influence, there are good reasons for
suspecting that it would be advantageous to make infor-
mation from both directions explicitly available for con-
ditioning at each local point in the model: (i) because
of smoothing and interactions with other modeled fea-
tures, terms likeP(to|ty1,...) might give a sharp esti-
mate ofty even when terms liké?(t1|tg,...) do not,
and (ii) jointly considering the left and right context to-
gether might be especially revealing. In this paper we
exploit this idea, using dependency networks, with a se-
ries of local conditional loglinear (aka maximum entropy
or multiclass logistic regression) models as one way of
providing efficient bidirectional inference.

Secondly, while all taggers use lexical information,

Almost all approaches to sequence problems such as part-— I .
bp g P P nd, indeed, it is well-known that lexical probabilities

of-speech tagging take a unidirectional approach to cof .
P 99ing PP e much more revealing than tag sequence probabilities

ditioning inference along the sequence. Regardless . o
whether one is using HMMs, maximum entropy condi- harniak et al., 1993), most taggers make quite limited

tional sequence models, or other techniques like decisi e of lexical probabilities (compared with, for example,

trees, most systems work in one direction through th e bilexical probabilities commonly used in current sta-
sequence (normally left to right, but occasionally righ“.sncaI parsers). Wh'l.e modern taggers may be more prin-
to left, e.g., Church (1988)). There are a few exce cipled tha_m the classic CLA.WS Fagger (Marshall, 198.7)’
tions, such as Brill's transformation-based learning|(Bi they are in some respects inferior in their use of lexical

1995), but most of the best known and most successfmftorm?;['orrl: CLAtVVrS,d”r:’]rO#g?n:tS IrItDI;)tMTA;(r; rrt1ctJduIei3r,1
approaches of recent years have been unidirectional. categorically captured many important, correct taggings

.. of frequent idiomatic word sequences. In this work, we
Most sequence models can be seen as chaining to- : .
- . incorporate appropriate multiword feature templates so

gether the scores or decisions from successive local mod- :
] that such facts can be learned and used automatically by

els to form a global model for an entire sequence. Clearly

the identity of a tag is correlated with both past and future—/—————

1 . . . . e .
.. .. . . . Rather than subscripting all variables with a position inde
tags’ identities. However, in the unidirectional (causal), ¢ \se hopefully clearer relative notation, whayelenotes

case, only one direction of influence is explicitly consid+the current position antl_,, andt.,,, are left and right context
ered at each local point. For example, in a left-to-rightags, and similarly for words.



@ @ )@ That is, the replicated structure is a local model
P(t0|t_1,w0).2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
@ @ estimated in some sophisticated way; it is typical in tag-
(a) Left-to-Right CMM ging to populate these models with little maximum en-

tropy models. For example, we might populate a model
< @ Co @ for P(to|t—1,wo) With a maxent model of the form:

Mtntos) + Mg
éD é é é PA(t0|t,1,w0) — exp( (to,t—1) {to, 0))

(b) Right-to-Left CMM 2y P Nagta) + Mtpuwo)

() e (t)e>(t )< oo >@ In this case, thev, andt_; can have joineffectson ¢,
but there are not jointeaturesinvolving all three vari-

@ @ ables (though there could have been such features). We
say that this model uses ttieature templategto,t_1)

(c) Bidirectional Dependency Network (previous tag features) andy, wo) (current word fea-
tures).

Figure 1: Dependency networks: (a) the (standard) leftetot Clearly, boththe preceding tag_; and following tag

first-order CMM, (b) the (reversed) right-to-left CMM, and) (" 4 | carry useful information about a current tag Uni-

the bidirectional dependency network. directional models do not ignore this influence; in the

case of a left-to-right CMM, the influence of ; on ¢,

%srexplicit in theP(to|t_1,wp) local model, while the in-

. - Tluence oft; ontg is implicit in the local model at the

e o 28 1. P"hext bt (1Pl ) T sititn s 1

T versed for the right-to-left CMM in figure 1(b).

Sgrr';eihr':agnnOstuucshe?eggug:\ggzsbzZﬁlor;;%mwﬁﬂtz)npz\::?él From a seat-of-the-pants machine learning perspective,
gers Y When building a classifier to label the tag at a certain posi-
positive effect on the model. Indeed, as for the voted pef

. .“tion, the obvious thing to do is to explicitly include in the
ceptron of Collins (2002), we can get performance 93IN3 cal model all predictive features, no matter on which

by reducing the support threshold for features to be in-. - .
cluded in the model. Combining all these ideas, togeth side of the target position they lie. There are two good

§6rmal reasons to expect that a model explicitly condi-

with a few additional handcrafted unknown word fea-tioning on both sides agach position, like figure 1(c)

tures, gives us a part-of-speech tagger with aper-posm%r?ruld be advantageous. First, because of smoothing

0, -
tag accuracy of 97.24%, and a whole-sentence CoMm&Hects and interaction with other conditioning features

0 e
rate of 56.344) on Penn Treebank WSJ data. Thls is t ke the words), left-to-right factors liké®(to|¢_, wo)
best automatically Ieamed part-of—speech tagging res E not always suffice whety is implicitly needed to de-

known fo us, representing an error reduction of 4.4% Rrminet 1. For example, consider a case of observation
the model presented in Collins (2002), using the same s '

. . ias (Klein and Manning, 2002) for a first-order left-to-
0,
data Sp|lt§, and alarger error re.ductlon of 12.1A)fromthﬁght CMM. The wordto has only one tagTo) in the
more similar best previous loglinear model in Toutanov

. 1B tag set. Thao tag is often preceded by nouns, but
and Manning (2000). rarely by modals¥D). In a sequencwill to fight, that
trend indicates thawill should be a noun rather than a
modal verb. However, that effect is completely lost in a

When building probabilistic models for tag sequencescMM like (a): P(twu|will, (start)) prefers the modal
we often decompose the global probability of sequencd@99ing, andP(Tolto, t,u) is roughly 1 regardiess of
using a directed graphical model (e.g., an HMM (Brantswit- While the model has an arrow between the two tag
2000) or a conditional Markov model (CMM) (Ratna- positions, that path of influence is sevefed:he same
parkhi, 1996)). In such models, the probability assigneamt this paper we assume that enough boundary
to a tagged sequence of worgls= (¢, w) is the product symbols always exist that we can ignore the differences lwhic
of a sequence of local portions of the graphical modeiyould otherwise exist at the initial and final few positions.

one from each time slice. For example, in the left-to-right 3DbeSpite use gf namehs like “|§be| bias” (Laflfle”.y et al-,§£01
o i or “observation bias”, these effects are really just unednt
CMM shown in figure 1(a), explaining-away effects (Cowell et al., 1999, 19), where tw
nodes which are not actually in causal competition have been
P(t,w) = 1_[z P(tilti—1,w;) modeled as if they were.

the model.
Having expressive templates leads to a large numb

2 Bidirectional Dependency Networks



function bestScore()
@—> @ @<—> return bestScoreSub@- 2, {end, end, end));
(a) (b) () function bestScoreSubg 1, (ti_1, ti, tir1))

% memoization
Figure 2: Simple dependency nets: (a) the Bayes' net for if (cachedf + 1, (ti—1, i, ti+1)))

P(A)P(B|A), (b) the Bayes’ net foP(A|B)P(B), (c) a bidi- return cache(+ 1, (t;—1, ts, tit1));
rectional net with models oP(A|B) and P(B|A), which is % left boundary case
not a Bayes’ net. if (i =-1)

if ((ti—1,t:,ti41) == (start, start, start))
problem exists in the other direction. If we use the sym- elg:tuml;

metric right-to-left modelffightwill receive its more com- returno:
mon noun tagging by symmetric reasoning. However, 9 recursive case
the bidirectional model (c) discussed in the next section returnmax;;_, bestScoreSub((t;—2,t;—1,t;))x

makes both directions available for conditioning at all lo- P(tilti—1, tiv1, wi);

cations, using repllcateq models ﬁ’f(t0|té_1,t+1,w0), Figure 3: Pseudocode for polynomial inference for the first-
and will be able to get this example corréct. order bidirectional CMM (memoized version).

2.1 Semanticsof Dependency Networks 2.2 Inferencefor Linear Dependency Networks

While the structures in figure 1(a) and (b) are well-Cyclic or not, we can view the product of local probabil-
understood graphical models with well-known semanticdties from a dependency network as a score:

figure 1(c) is not a standard Bayes' net, precisely because

the graph has cycles. Rather, it is a more gendeal score(z) = HiP(xi|Pa(:z:i))

pendency networkHeckerman et al., 2000). Each node .

represents a random variable along with a local condi¥herePa(z;) are the nodes with arcs to the nadge In
tional probability model of that variable, conditioned onthe case of an acyclic model, this score will be the joint
the source variables of all incoming arcs. In this sens@robability of the event, P(z). In the general case, it
the semantics are the same as for standard Bayes' néfdll not be. However, we can still ask for the event, in
However, because the graph is cyclic, the net does nBtiS case the tag sequence, Wlth the highest score. For
correspond to a proper factorization of a large joint probdependency networks like those in figure 1, an adaptation
ability estimate into local conditional factors. Considerf the Viterbi algorithm can be used to find the maximiz-
the two-node cases shown in figure 2. Formally, for th"d Séguence in polynomial time. Figure 3 gives pseu-
net in (a), we can writé?(a,b) = P(a)P(bla). For (b) docode for the concrete case ofthe.netwo'rkmflgure 1(d);
we write P(a,b) = P(b)P(alb). However, in (c), the the general case is §|mllar, and is in fact just a max-plus
nodes A and B carry the informatidR(a|b) and P(bla) ~ VErsion of standard inference algorithms for Bayes' nets
respectively. The chain rule doesn't allow us to recon(Cowell et al., 1999, 97). In essence, there is no differ-
struct P(a, b) by multiplying these two quantities. Un- €Nce betwee_n inference on this network a_md a seqond—
der appropriate conditions, we coutetonstructP(a, b) order left-to-right CMM or HMM..The only Q|fference is
from these quantities using Gibbs sampling, and, in geP@t, when the Markov window is at a positionrather
eral, that is the best we can do. However, while recorfh@n receiving the score far(t;[ti—1, t;—», w;), one re-
structing the joint probabilities from these local condi-Ceives the score faP (t,_1 |t;, ti—z, wi—1). o
tional probabilities may be difficult, estimating the local There are some foundational issues worth mentioning.
probabilities themselves is no harder than it is for acyclié'S discussed previously, the maximum scoring sequence
models: we take observations of the local environmenttéed not be the sequence with maximum likelihood ac-
and use any maximum likelihood estimation method w&0rding to the model. There is therefore a worry with
desire. In our experiments, we used local maxent modei§i€se models abouta kind of “collusion” where the model

but if the event space allowed, (smoothed) relative counl@cks onto conditionally consistent but jointly unlikely
would do. sequences. Consider the two-node network in figure 2(c).

If we have the following distribution of observations (in
“The effect of indirect influence being weaker than direct inthe formab) (11,11, 11,12, 21, 33), then clearly the most
fluence is more pronounced for conditionally structuredeted likely state of the network i$1. However, the score dfl
but is potentially an issue even with a simple HMM. The probis P(q = 1b=1)Pb=1a=1) =3/4x3/4=9/16,

abilistic models for basic left-to-right and right-to4eiMMs  \ypjjje the score 083 is 1. An additional related problem
with emissions on their states can be shown to be equivagent u

ing Bayes' rule on the transitions, provided start and end-sy 'S that the training set loss (sum of negative logarithms

bols are modeled. However, this equivalence is violatedagp Of the sequence scores) does not bound the training set
tice by the addition of smoothing. error (0/1 loss on sequences) from above. Consider the



DataSet | Sect'ns | Sent. | Tokens | Unkn istics of the three splité.Except where indicated for the
Training 0-18| 38,219| 912,344 0 modelBEST, all results are on the development set.
Develop | 19-21| 5,527| 131,768| 4,467 One innovation in our reporting of results is that we
Test 22-24| 5,462| 129,654| 3,649 present whole-sentence accuracy numbers as well as the

traditional per-tag accuracy measure (over all tokens,
even unambiguous ones). This is the quantity that most
) o ] sequence models attempt to maximize (and has been mo-
following training set, for the same network, with eachyjyated over doing per-state optimization as being more
entire data point considered as a labgl1,22). The gefyl for subsequent linguistic processing: one wants to
relative-frequency model assigns Ids$o both training  fing 5 coherent sentence interpretation). Further, while
examples, but cannot do better than 50% error in regen&sme tag errors matter much more than others, to a first
ating the training data labels. These issues are further dig;; getting a single tag wrong in many of the more com-
cussed in Heckerman et al. (2000). Preliminary work ofj,on ways (€.g., proper noun vs. Common noun; Noun vs.
ours suggests that practical use of dependency netwoRsyy) would lead to errors in a subsequent processor such
is not in general immune to these theoretical concerns: & an, information extraction system or a parser that would
dependency network can choose a sequence model thakatly degrade results for the entire sentence. Finally,
is bidirectionally very consistent but does not match thee fact that the measure has much more dynamic range
data very well. However, this problem does not appear tQ55 some appeal when reporting tagging results.
have prevented the networks from performing well onthe 1o per-state models in this paper are log-linear mod-
tagging problem, probably because features linking tag§js pyilding upon the models in (Ratnaparkhi, 1996) and
and observations are generally much sharper discrimi”f"]’outanova and Manning, 2000), though some models are
tors than tag sequence features. in fact strictly simpler. The features in the models are
It is useful to contrast this framework with the con-gefined using templates; there are different templates for
ditional random fields of Lafferty et al. (2001). Therare words aimed at learning the correct tags for unknown
CRF approach uses similar local features, but rather thgjbrds? We present the results of three classes of experi-
chaining together local models, they construct a sinments: experiments with directionality, experiments with

gle, globally normalized model. The principal advaniexjcalization, and experiments with smoothing.
tage of the dependency network approach is that advan-

tageous bidirectional effects can be obtained without th&1 Experimentswith Directionality
extremely expensive global training required for CRFs. |, this section, we report experiments using log-linear
To summarize, we draw a dependency network itMMs to populate nets with various structures, explor-
which each node has as neighbors all the other nodgg, the relative value of neighboring words’ tags. Table 2
that we would like to have influence it directly. Eachjists the discussed networks. All networks have the same
node’s neighborhood is then considered in isolation angertical feature templatestto, wo) features for known
a local model is trained to maximize the conditional likeyords and varioust,, (w1, )) word signature features
lihood over the training data of that node. At test timefor a| words, known or not, including spelling and capi-
the sequence with the highest product of local conditiona}jization features (see section 3.3).
scores is calculated and returned. We can always find the j st this vertical conditioning gives an accuracy of
exact maximizing sequence, but only in the case of ag3 699 (denoted as “Baseline” in table®2)Condition-
acyclic net is it guaranteed to be the maximum likelihoo
sequence. ®Tagger results are only comparable when tested not only on
the same data and tag set, but with the same amount of training
. data. Brants (2000) illustrates very clearly how taggingqre
3 EXpe”mentS mance increases as training set size grows, largely betaeise

. ) percentage of unknown words decreases while system perfor-
The part of speech tagged data used in our experimentswance on them increases (they become increasingly restrict

the Wall Street Journal data from Penn Treebank 1 (Maras to word class). .
cus et al., 1994). We extracted tagged sentences from the 'Except where otherwise stated, a count cutoff afas used

. : . for common word features argb for rare word features (tem-
parse treeS.We split the data into training, development, lates need a support set strictly greater in size than ttodfcu

and test sets as in (Collins, 2002). Table 1 lists charactg{atore they are included in the model).

- 8Charniak et al. (1993) noted that such a simple model got
®Note that these tags (and sentences)raeidentical to  90.25%, but this was with no unknown word model beyond

those obtained from thagged/pos directories of the same disk: a prior distribution over tags. Abney et al. (1999) raises thi

hundreds of tags in the RB/RP/IN set were changed to be mobaseline to 92.34%, and with our sophisticated unknown word

consistent in the@arsed/mrg version. Maybe we were the last to model, it gets even higher. The large number of unambiguous

discover this, but we've never seen it in print. tokens and ones with very skewed distributions make the-base

Table 1: Data set splits used.



M odel Feature Templates' Features | Sentence Token | Unkn. Word

Accuracy | Accuracy Accuracy
Baseline [ 56,805 26.74% 93.69% 82.61%
L (to,t_1) 27,474 41.89% 95.79% 85.49%
R (to, t41) 27,648 36.31% 95.14% 85.65%
L+L» (to,t—1), (to,t—2) 32,935 44.04% 96.05% 85.92%
R+R; (to, t+1), (to, t42) 33,423 37.20% 95.25% 84.49%
L+R (to,t—1), (to, t+1) 32,610 49.50% 96.57% 87.15%
LL (to,t—1,t_2) 45,532 44.60% 96.10% 86.48%
RR (to, t41,t+2) 45,446 38.41% 95.40% 85.58%
LR (to,t—1,t41) 45,478 49.30% 96.55% 87.26%
L+LL+LLL (to,t—1), (to,t—1,t—2), (to,t—1,t—2,t_3) 118,752 45.14% 96.20% 86.52%
R+LR+LLR (to, t41), (to, t—1,t41), (fo, t—1,t—2,t41) 115,790 51.69% 96.77% 87.91%
L+LL+LR+RR+R <t0,t,1>, (to,tfl,t,2>, (to,t,ht_‘_l), <t07t+1>, (to,t+1,t+2> 81,049 53.23% 96.92% 87.91%

Table 2: Tagging accuracy on the development set with diffesequence feature templatgsll models include the same vertical
word-tag features(fo, wo) and various(to, o (w1))), though the baseline uses a lower cutoff for these features

Model Feature Templates Support | Features | Sentence Token | Unknown
Cutoff Accuracy | Accuracy | Accuracy

BASELINE | (to, wo) 2 6,501 1.63% 60.16% 82.98%
(to, wo) 0 56,805 26.74% 93.69% 82.61%

3w (to, wo), (to, wfl), (to, w+1) 2 239,767 48.27% 96.57% 86.78%
3W+TAGS | tag sequencesto, wo), (to, w—1), (to, w+1) 2 | 263,160 53.83% 97.02% 88.05%
BEST see text 2 | 460,552 55.31% 97.15% 88.61%

Table 3: Tagging accuracy with different lexical featunapdates on the development set.

Model | Feature Templates | Support | Features | Sentence Token | Unknown
Cutoff Accuracy | Accuracy | Accuracy
BEST | seetext 2 | 460,552 56.34% 97.24% 89.04%

Table 4: Final tagging accuracy for the best model on thesttst

ing on the previous tag as well (model {¢y,t_1) fea- 3.2 Lexicalization

tures) gives 95.79%. The reverse, model R, using the . . . .
next tag instead, is slightly inferior at 95.14%. Moderl]‘emCahzatIon has been a key factor in the advance of

L+R, using both tags simultaneously (but with only th Sé?tlztlc?; pails\;grgdsmsot?r?ljsdnzlilr: h;‘]se ?:i?peﬁsv?/oer}gprigtid
individual-direction features) gives a much better acc 99ing. 9

racy of 96.57%. Since this model has roughly twice Yeen occasionally used in taggers, such as (Ratnaparkhi,

a o . )
many tag-tag features, the fact that it outperforms the unz—zgi)h’j: :\IAth rr?]rcljsafglr rgfafgg gta Zfd(;%%%()ar éﬁtr I!e\}gr?ﬁé

irectional models is not by itself compelling eviden . K .
directional models is not by itself compeliing evide quss, the only lexicalization consistently included in-tag

for using bidirectional networks. However, it also out- .
performs model L+, which adds thet, ¢ ») second- ging models is the dependence of the part of speech tag
0,2 of a word on the word itself.

previous word features instead of next word features, , . .
which gives only 96.05% (and R+Ryives 95.25%). We In maximum entropy models, joint features which look
hat surrounding words and their tags, as well as joint fea-

conclude that, if one wishes to condition on two neig . )
boring nodes (using two sets of 2-tag features), the syntlt_lres. of the current word an.d_ surrounding words are in
metric bidirectional model is superior. principle straightforward additions, but have not been in-

corporated into previous models. We have found these

H|gh—performanpe taggers typ|cglly also mcIudg JOImfeatures to be very useful. We explore here lexicaliza-
three-tag counts in some way, either as tag tngrargs

(Brants, 2000) or tag-triple features (Ratnaparkhi, 199 jon both alone and in combination with preceding and

Toutanova and Manning, 2000). Models LL, RR, and C bllowing tag histories.
use only the vertical features and a single set of tag-triple 12°€ 3 shows the development set accuracy of several
features: the lefttags (», ¢_; andto), righttags o, 11, models with various lexical features. All models use the

t.), or centered tagg (1, fo, £+1) respectively. Again, same rare word features as the models in Table 2. The

with roughly equivalent feature sets, the left context idirSt two rows show a baseline model using the current

better than the right, and the centered context is bett&ford only. The count cutoff for th|s feature wasn the
than either unidirectional context. first model and 2 for the model in the second row. As

there are no tag sequence features in these models, the ac-
curacy drops significantly if a higher cutoff is used (from
a per tag accuracy of about 93.7% to 060y2%).

line for this task high, while substantial annotator noissates
an unknown upper bound on the task.



The third row shows a model where a tag is def Smoothed | Features | Sentence | Token | Unk.W.
cided solely by the three words centered at the tag PR p— Acﬁrggé 96?8%/' 8622‘;
L i , . (] . (] . ()
sition (3W). As far as we are aware, modelg of thig o 45532 | 42.81%| 95.88% | 83.08%
sort have no't .been gxplored prewougly, but its accu “yes 202,649 54.88% | 97.10% | 88.20%
racy is surprisingly high: despite having no sequenceno 292,649| 48.85% | 96.54% | 85.20%

model at all, it is more accurate than a model which
uses standard tag fourgram HMM featurdsy(wo),
<t0,t_1), (to,t_l,t_2>, (to,t_l,t_z,t_:;), shown in Ta-
ble 2, model L+LL+LLL).

Table 5: Accuracy with and without quadratic regularizatio

performance. By far the most significant is a crude com-

: . . pany name detector which marks capitalized words fol-

d.;zsg:‘%lljrt?a ang f'f:gatrol\gz shovill_hlgo?oelsrtr\]/v 'tr:]]o?j'éllowed within 3 words by a company name suffix like.
?I:W+'II'AGS 9a! ,?h ::1 t N u featur or Inc. This suggests that further gains could be made by
Eh last r)nucTeIS in eTStE;I ez ag tsequet Cf eta ures f’hscorporatingagood named entity recognizer as a prepro-

€ last mode able 2 {fo, t-1), (to,t-1,1-2),  osenrio the tagger (reversing the most common order of
{to,t—1,t41), (fo, t11), {fo, t+1,1+2)) and current, pre- processing in pipelined systems!), and is a good example
viouss, and next word. The last model has in adbf something that can only be done when using a condi-
dition the feature templatego, wo, 1), {fo, w0, t+1),  tional model. Minor gains come from a few additional
<tr0 7\7);7 ?r:]t())i,nanndkgo\yfvurio\;vw;rdl% adnollirl]ncclil;ldes thz ilrr1n- features: an allcaps feature, and a conjunction feature of
? 0 Z 3% \SN u I tcr)f Od |BISS$ SESSTCESSE ¢ S€Gords that are capitalized and have a digit and a dash in
ion 3.2. ¢ call this mode ) as a0 hem (such words are normally common nouns, such as
ken accuracy on the final test set of 97.24% and a se

Brc-120r F/A-18. We also found it advantageous to
0 - .
tence accuracy of 56.34% (see Table 4).9%% confi se prefixes and suffixes of length up 0. Together

dence interval for the accuracy (using a binomial mOdeu/ith the larger templates, these features contribute to our

Is (97.15%, 97.33%). . L unknown word accuracies being higher than those of pre-
In order to understand the gains from using right con\—/iously reported taggers

text tags and more lexicalization, let us look at an exam-
ple of an error that the enriched models learn notto makg.4  smoothing
An interesting example of a common tagging error of the

simpler models which could be corrected by a determinisv—vIth so many features in the model, overtraining is a dis-

tic fixup rule of the kind used in the IDIOMTAG module t?nct possibilitywh_en u.sing pure maximum I-ikeIihc.)od es-
of (Marshall, 1987) is the expressi@s X as(often, as t|mat|on.. We avq|d th|s by using a Gauss!an prior (qka
far ag. This should be taggeas/RB X{RB,J} as/INin qugdratp regularization or quadratic penalization) whic
the Penn Treebank. A model using only current word anﬁeSIStS h'|gh feature ngghts u'nle.ss.they produce great
two left tags (model L+k in Table 2), mad®&7 errors on score gain. The regularized objectifs:
this expression, tagging &s/IN X as/IN- since the tag

sequence probabilities do not give strong reasons to dis-  F(X) = Z.log(PA(tz’|wat)) — Z
prefer the most common tagging &$ (it is tagged as IN ¢

over 80% of the time). However, the model 3WASS,  sjnce we use a conjugate-gradient procedure to maximize
which uses two right tags and the two surrounding wordge gata likelihood, the addition of a penalty term is eas-
in addition, made only errors of this kind, and model iy jncorporated. Both the total size of the penalty and
BESTmade only6 errors. the partial derivatives with repsect to eakh are triv-

ial to compute; these are added to the log-likelihood and
log-likelihood derivatives, and the penalized optimiaati
Most of the models presented here use a set of UBrocedes without further modification.

known word features basically inherited from (Ratna- e have not extensively experimented with the value
parkhi, 1996), which include using charactegram pre-  of 52 _ which can even be set differently for different pa-
fixes and suffixes (for up to 4), and detectors for a rameters or parameter classes. All the results in this paper
few other prominent features of words, such as capitalizyse 3 constant? = 0.5, so that the denominator disap-
tion, hyphens, and numbers. Doing error analysis on Uears in the above expression. Experiments on a simple
known words on a simple tagging model (Witfd, ¢ 1),  model witho made an order of magnitude higher or lower
(to,t—1,t>), and (wo, to) features) suggested severalynh resulted in worse performance than with= 0.5.
additional specialized features that can usefully improve o, experiments show that quadratic regularization

Thede and Harper (1999) uge. 1, to, wo) templates in is very eﬁectiv.e in improving the ger'leraliza'tion perfor-
their “full-second order’ HMM, achieving an accuracy of mance of tagging models, mostly by increasing the num-
96.86%. Here we can add the opposite tiling and other femtureber of features which could usefully be incorporated. The
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3.3 Unknown word features



Tagger Support cutoff ~ Accuracy 072 - _
Collins (2002) 0 96.60% ’ -:N:]f;”"i‘;‘h'”g
5 96.72% N e Smeoting
Model 3W+TAGS variant 1 96.97% o | fn
0, -
5  96.93% 5 oo I[ \\
Table 6: Effect of changing common word feature cutoffs{fea g %7 | ~_
tures with suppork cutoff are excluded from the model). 96,6 | ~
96,5
number of features used in our complex models — in the 964 ;{
several hundreds of thousands, is extremely high in com- B AN
parison with the data set size and the number of features Training Iterations

used in other machine learning domains. We describe two
sets of experiments aimed at comparing models with angq re 4: Accuracy by training iterations, with and without
without regularization. One is for a simple model with aquadratic regularization.
relatively small number of features, and the other is for a
model with a large number of features. performance. Whereas Ratnaparkhi (1996) used feature
The usefulness of priors in maximum entropy modelsupport cutoffs and early stopping to stop overfitting of
is not new to this work: Gaussian prior smoothing is adthe model, and Collins (2002) contends that including
vocated in Chen and Rosenfeld (2000), and used in ddw support features harms a maximum entropy model,
the stochastic LFG work (Johnson et al., 1999). Howeur results show that low support features are useful in a
ever, until recently, its role and importance have not beeregularized maximum entropy model. Table 6 contrasts
widely understood. For example, Zhang and Oles (200Dbur results with those from Collins (2002). Since the
attribute the perceived limited success of logistic regresnodels are not the same, the exact numbers are incompa-
sion for text categorization to a lack of use of regularrable, but the difference in direction is important: in the
ization. At any rate, regularized conditional loglineamegularized model, performance improves with the inclu-
models have not previously been applied to the prolsion of low support features.
lem of producing a high quality part-of-speech tagger: Finally, in addition to being significantly more accu-
Ratnaparkhi (1996), Toutanova and Manning (2000), anhte, smoothed models train much faster than unsmoothed
Collins (2002) all present unregularized models. Indeednes, and do not benefit from early stopping. For ex-
the result of Collins (2002) that including low supportample, the first smoothed model in Table 5 requigéd
features helps a voted perceptron model but harms a maenjugate gradient iterations to converge (somewhat ar-
imum entropy model is undone once the weights of theitrarily defined as a maximum differenceldf * in fea-
maximum entropy model are regularized. ture weights between iterations), while its corresponding
Table 5 shows results on the development set from twansmoothed model requiréd5 iterations, thus training
pairs of experiments. The first pair of models use comwas roughlyt times slowet® The second pair of models
mon word template§o, wo), (to,t—1,t—2) and the same required134 and 370 iterations respectively. As might
rare word templates as used in the models in table 2. The expected, unsmoothed models reach their highest gen-
second pair of models use the same features as moaehlization capacity long before convergence and accu-
BEST with a higher frequency cutoff of 5 for common racy on an unseen test set drops considerably with fur-
word features. ther iterations. This is not the case for smoothed mod-
For the first pair of models, the error reduction fromels, as their test set accuracy increases almost monoton-
smoothing i$5.3% overall and20.1% on unknown words. ically with training iterations! Figure 4 shows a graph
For the second pair of models, the error reduction isf training iterations versus accuracy for the second pair
even bigger16.2% overall after convergence ab®%if  of models on the development set.
looking at the best accuracy achieved by the unsmoothed
model (by stopping training afteét5 iterations; see be- 4 Conclusion
low). The especially large reduction in unknown word er-
ror reflects the fact that, because penalties are effegtivefVe have shown how broad feature use, when combined
stronger for rare features than frequent ones, the presen¥¢éh appropriate model regularization, produces a supe-
of penalties increases the degree to which more genef#r level of tagger performance. While experience sug-
cross-word signature features (which apply to unknow
Wor_ds) are used, relative to word-specific sparse featur%srgest models require about 25 minupes iterationto train.
(which do not apply to unknown words). Mn practice one notices some wiggling in the curve, but

Secondly, use of regularization allows us to incorporatge trend remains upward even beyond our chosen convergence
features with low support into the model while improvingpoint.

1%0n a 2GHz PC, this is still an important difference: our



gests that the final accuracy number presented here coidrk Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and
be slightly improved upon by classifier combination, it is gtefa;“RieZ'ef- 19931\-C||5_S§;1&t0f5 f%fgsstogzi\StiC “unifai
worth noting that not only is this tagger better than any P2Se€d” grammars. » PAGES 935—o4. iy
previous sir?gle tagger b)L/Jt it also a%%ears to outperfor)r‘%an Klein and Christopher D. Manning. 2002. Conditional

- ! > structure versus conditional estimation in NLP models. In
Brill and Wu (1998), the best-known combination tagger gpMNLP 2002 pages 9—16.
(they report an accuracy of 97.16% over the same WSbhn Lafferty, Andrew McCallum, and Fernando Pereira. 2001

data, but using a larger training set, which should favor Conditional random fields: Probabilistic models for seg-
them). menting and labeling sequence data.l@ML-2001, pages

. N . 282-289.
While part-of-speech tagging is now a fairly well-worn Sang-Zoo Lee, Jun ichi Tsuji, and Hae-Chang Rim. 2000 -Part

road, and our ability to win performance increases in o speech tagging based on Hidden Markov Model assuming
this domain is starting to be limited by the rate of er- joint independence. IACL 38 pages 263—169.

rors and inconsistencies in the Penn Treebank trainirditchell P. Marcus, Beatrice Santorini, and Mary A. Mardigk
data, this work also has broader implications. Across Wicz. 1994. Building a large annotated corpus of English:
the many NLP problems which involve sequence mod- The Penn Treebank.Computational Linguistics19:313—

els over sparse multinomial distributions, it SUGQests thgy yarshall. 1987. Tag selection using probabilistic rodth

feature-riCh models W|th eXtenSiVe |eXica|iZati0n, billﬁ+’ In Roger Garside’ Geoffrey Sampson’ and Geoffrey Leech,
tional inference, and effective regularization will be key editors, The Computational analysis of English: a corpus-
elements in producing state-of-the-art results. based approachpages 42-65. Longman, London.

Adwait Ratnaparkhi. 1996. A maximum entropy model for
Acknowledgements part-of-speech tagging. BMNLP 1, pages 133-142.

Scott M. Thede and Mary P. Harper. 1999. Second-order hidden
This work was supported in part by the Advanced Re- Markov model for part-of-speech tagging. ACL 37 pages
search and Development Activity (ARDA)’s Advanced 175-182.

. . . _ Kristina Toutanova and Christopher Manning. 2000. Enrighi
Question Answering for Intelligence (AQUAINT) Pro the knowledge sources used in a maximum entropy part-of-

gram, by the National Science Foundation under Grant gpeech tagger. IEMNLP/VLC 1999pages 63—71.

No. 11IS-0085896, and by an IBM Faculty Partnershiprong zhang and Frank J. Oles. 2001. Text categorizatiordbase

Award. on regularized linear classification methotiformation Re-
trieval, 4:5-31.

References

Steven Abney, Robert E. Schapire, and Yoram Singer. 1999.
Boosting applied to tagging and PP attachment. In
EMNLP/VLC 1999pages 38-45.

Thorsten Brants. 2000. TnT — a statistical part-of-speagbdr.

In ANLP 6 pages 224-231.

Eric Brill and Jun Wu. 1998. Classifier combination for
improved lexical disambiguation. IACL 36/COLING 17
pages 191-195.

Eric Brill. 1995. Transformation-based error-driven gag
and natural language processing: A case study in part-of-
speech taggingComputational Linguistic21(4):543-565.

Eugene Charniak, Curtis Hendrickson, Neil Jacobson, ahke Mi
Perkowitz. 1993. Equations for part-of-speech tagging. In
AAAI 1], pages 784—789.

Stanley F. Chen and Ronald Rosenfeld. 2000. A survey of
smoothing techniques for maximum entropy modéEEE
Transactions on Speech and Audio Processifi):37-50.

Kenneth W. Church. 1988. A stochastic parts program and
noun phrase parser for unrestricted text. ANLP 2 pages
136-143.

Michael Collins. 2002. Discriminative training methods fo
Hidden Markov Models: Theory and experiments with per-
ceptron algorithms. lEMNLP 2002

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and
David J. Spiegelhalter. 1999Probabilistic Networks and
Expert SystemsSpringer-Verlag, New York.

David Heckerman, David Maxwell Chickering, Christopher
Meek, Robert Rounthwaite, and Carl Myers Kadie. 2000.
Dependency networks for inference, collaborative filtgrin
and data visualization.Journal of Machine Learning Re-
search 1(1):49-75.



