
Generating Typed Dependency Parses from Phrase Structure Parses

Marie-Catherine de Marneffe,†∗ Bill MacCartney,∗ and Christopher D. Manning∗

† Department of Computing Science, Université catholique de Louvain
B-1340 Louvain-la-Neuve, Belgium

∗ Computer Science Department, Stanford University
Stanford, CA 94305, USA

{mcdm,wcmac,manning}@stanford.edu

Abstract
This paper describes a system for extracting typed dependency parses of English sentences from phrase structure parses. In order to
capture inherent relations occurring in corpus texts that can be critical in real-world applications, many NP relations are included in the
set of grammatical relations used. We provide a comparison of our system with Minipar and the Link parser. The typed dependency
extraction facility described here is integrated in the Stanford Parser, available for download.

1. Introduction
We describe a system for automatically extracting typed de-
pendency parses of English sentences from phrase struc-
ture parses. Typed dependencies and phrase structures
are different ways of representing the structure of sen-
tences: while a phrase structure parse represents nest-
ing of multi-word constituents, a dependency parse rep-
resents dependencies between individual words. A typed
dependency parse additionally labels dependencies with
grammatical relations, such as subject or indirect object.
There has been much linguistic discussion of the two for-
malisms. There are formal isomorphisms between certain
structures, such as between dependency grammars and one
bar-level, headed phrase structure grammars (Miller, 2000).
In more complex theories there is significant debate: dom-
inant Chomskyan theories (Chomsky, 1981) have defined
grammatical relations as configurations at phrase structure,
while other theories such as Lexical-Functional Grammar
has rejected the adequacy of such an approach (Bresnan,
2001). Our goals here are more practical, though in essence
we are following an approach where structural configura-
tions are used to define grammatical roles.
Recent years have seen the introduction of a number of
treebank-trained statistical parsers [Collins (Collins, 1999),
Charniak (Charniak, 2000), Stanford (Klein and Manning,
2003)] capable of generating parses with high accuracy.
The original treebanks, in particular the Penn Treebank,
were for English, and provided only phrase structure trees,
and hence this is the native output format of these parsers.
At the same time, there has been increasing interest in using
dependency parses for a range of NLP tasks, from machine
translation to question answering. Such applications bene-
fit particularly from having access to dependencies between
words typed with grammatical relations, since these pro-
vide information about predicate-argument structure which
are not readily available from phrase structure parses. Per-
haps partly as a consequence of this, several more recent
treebanks have adopted dependency representation as their
primary annotation format, even if a conversion to a phrase
structure tree form is also provided (e.g., the Dutch Alpino
corpus (van der Beek et al., 2002) and the Danish Depen-
dency Treebank (Kromann, 2003)). However, existing de-

pendency parsers for English such as Minipar (Lin, 1998)
and the Link Parser (Sleator and Temperley, 1993) are not
as robust and accurate as phrase-structure parsers trained
on very large corpora. The present work remedies this re-
source gap by facilitating the rapid extraction of grammat-
ical relations from phrase structure parses. The extraction
uses rules defined on the phrase structure parses.

2. Grammatical relations
This section presents the grammatical relations output by
our system.
The selection of grammatical relations to include in our
schema was motivated by practical rather than theoretical
concerns. We used as a starting point the set of grammat-
ical relations defined in (Carroll et al., 1999) and (King et
al., 2003). The grammatical relations are arranged in a hi-
erarchy, rooted with the most generic relation, dependent.
When the relation between a head and its dependent can be
identified more precisely, relations further down in the hier-
archy can be used. For example, the dependent relation can
be specialized to aux (auxiliary), arg (argument), or mod
(modifier). The arg relation is further divided into the subj
(subject) relation and the comp (complement) relation, and
so on. The whole hierarchy of our grammatical relations is
given in Figure 2.
Altogether, the hierarchy contains 48 grammatical rela-
tions. While the backbone of the hierarchy is quite simi-
lar to that in (Carroll et al., 1999), over time we have in-
troduced a number of extensions and refinements to facil-
itate use in applications. Many NP-internal relations play
a very minor role in theoretically motivated frameworks,
but are an inherent part of corpus texts and can be criti-
cal in real-world applications. Therefore, besides the com-
monest grammatical relations for NPs (amod - adjective
modifier, rcmod - relative clause modifier, det - determiner,
partmod - participial modifier, infmod - infinitival modifier,
prep - prepositional modifier), our hierarchy includes the
following grammatical relations: appos (appositive modi-
fier), nn (noun compound), num (numeric modifier), num-
ber (element of compound number) and abbrev (abbrevi-
ation). The example sentence “Bills on ports and immi-
gration were submitted by Senator Brownback, Republican



Bills

on

prep

ports

pobj

and

cc

immigration

conj

were

submitted

nsubjpass auxpass

by

prep

Brownback

pobj

Senator

nn

Republican

appos

of

prep

Kansas

pobj

Figure 1: An example of a typed dependency parse for the
sentence “Bills on ports and immigration were submitted
by Senator Brownback, Republican of Kansas.”

of Kansas” in Figure 1 illustrates the appos relation be-
tween “Brownback” and “Republican” and the nn relation
between “Brownback” and “Senator”. The num relation
qualifies a number that serves to modify the meaning of a
NP: num(sheep, 3) in “Sam ate 3 sheep”, whereas the num-
ber relation captures the internal structure of multi-word
numbers like number(5, million) in “I lost 5 million dol-
lars”. The abbrev relation indicates that MIT is the abbre-
viation for “Massachusetts Institute of Technology” in the
following sentence: “The Massachusetts Institute of Tech-
nology (MIT) is located in Boston”. Such information can
be useful in the context of a textual inference application,
as explained below.

3. Extraction method
Our technique for producing typed dependencies is essen-
tially based on rules – or patterns – applied on phrase struc-
ture trees. The method is general, but requires appropriate
rules for each language and treebank representation. Here
we present details only for Penn Treebank English, but we
have also developed a similar process for Penn Treebank
Chinese. The method for generating typed dependencies
has two phases: dependency extraction and dependency
typing. The dependency extraction phase is quite simple.
First, a sentence is parsed with a phrase structure gram-
mar parser. Any Penn Treebank parser could be used for
the process described here, but in practice we are using
the Stanford parser (Klein and Manning, 2003), a high-
accuracy statistical phrase structure parser trained on the
Penn Wall Street Journal Treebank. The head of each con-
stituent of the sentence is then identified, using rules akin to
the Collins head rules, but modified to retrieve the seman-
tic head of the constituent rather than the syntactic head.
While heads chosen for phrase structure parsing do not re-
ally matter, retrieving sensible heads is crucial for extract-
ing semantically appropriate dependencies. For example,
in relative clauses, the Collins rule will choose as head the

dep - dependent
aux - auxiliary

auxpass - passive auxiliary
cop - copula

conj - conjunct
cc - coordination
arg - argument

subj - subject
nsubj - nominal subject

nsubjpass - passive nominal subject
csubj - clausal subject

comp - complement
obj - object

dobj - direct object
iobj - indirect object
pobj - object of preposition

attr - attributive
ccomp - clausal complement with internal subject
xcomp - clausal complement with external subject
compl - complementizer
mark - marker (word introducing an advcl)
rel - relative (word introducing a rcmod)
acomp - adjectival complement

agent - agent
ref - referent
expl - expletive (expletive there)
mod - modifier

advcl - adverbial clause modifier
purpcl - purpose clause modifier
tmod - temporal modifier
rcmod - relative clause modifier
amod - adjectival modifier
infmod - infinitival modifier
partmod - participial modifier
num - numeric modifier
number - element of compound number
appos - appositional modifier
nn - noun compound modifier
abbrev - abbreviation modifier
advmod - adverbial modifier

neg - negation modifier
poss - possession modifier
possessive - possessive modifier (’s)
prt - phrasal verb particle
det - determiner
prep - prepositional modifier

sdep - semantic dependent
xsubj - controlling subject

Figure 2: The grammatical relation hierarchy.

pronoun introducing the relative clause. As all the other
words in the relative clause will depend on the head, it
makes more sense to choose the verb as head when deter-
mining dependencies. In general, we prefer content words
as heads, and have auxiliaries, complementizers, etc. be de-
pendents of them. Another example concerns NPs with
ambiguous structure or multiple heads which are annotated



with a flat structure in the Penn Treebank:

(NP the new phone book and tour guide)

Using the Collins rule, the head for this example is the word
“guide”, and all the words in the NP depend on it. In or-
der to find semantically relevant dependencies, we need to
identify two heads, “book” and “guide”. We will then get
the right dependencies (the noun “book” still has primacy
as a governing verb will link to it, but this seems reason-
able):

nn(book, phone)
nn(guide, tour)
CC and(book, guide)
amod(book, new)
det(book, the)

It is essential in such cases to determine heads that will en-
able us to find the correct dependencies.
In the second phase, we label each of the dependencies ex-
tracted with a grammatical relation which is as specific as
possible. For each grammatical relation, we define one or
more patterns over the phrase structure parse tree (using the
tree-expression syntax defined by tregex (Levy and An-
drew, 2006)). Conceptually, each pattern is matched against
every tree node, and the matching pattern with the most spe-
cific grammatical relation is taken as the type of the depen-
dency (in practice, some optimizations are used to prune
the search).
Up until this point, if one assumes an extra “root” for the
sentence, then each word token is the dependent of one
thing, and the number of typed dependencies in the rep-
resentation is the same as the number of words in the sen-
tence. The dependency graph is a tree (a singly rooted di-
rected acyclic graph with no re-entrancies). However, for
some applications, it can be useful to regard some words,
such as prepositions and conjunctions, as themselves ex-
pressing a grammatical relation. This is achieved by col-
lapsing a pair of typed dependencies into a single typed
dependency, which is then labeled with a name based on
the word between the two dependencies (the word itself be-
ing excised from the dependency graph). This facility is
provided by our system, primarily targeted at prepositions,
conjunctions, and possessive clitics. As already mentioned,
Figure 1 shows the typed dependency parse obtained for
the sentence “Bills on ports and immigration were submit-
ted by Senator Brownback, Republican of Kansas.” Figure
5 gives the typed dependency parse for the same sentence
after the “collapsing” process, where the dependencies re-
lated to the prepositions “on” and “of” have been collapsed,
as well as the conjunct dependencies for “ports and immi-
gration”. Our system optionally provides another layer of
processing of conjunct dependencies which aims to pro-
duce a representation closer to the semantics of the sen-
tence. In our example, this processing will add a PREP on
dependency between “Bills” and “immigration” as shown
in Figure 6. An additional example of dependency struc-
ture modification is in a relative clause such as “I saw the
man who loves you”, the dependencies ref (man, who) and
nsubj(loves, who) will be extracted, as shown in Figure 3.
However it might be more useful to get nsubj(loves, man)

I

saw

nsubj

man

dobj

the

det

who

ref loves

rcmod

rel nsubj

you

dobj

Figure 3: An example of a typed dependency parse for the
sentence “I saw the man who loves you”.

I

saw

nsubj

man

dobj

the

det

loves

rcmod

who

nsubj

rel

you

dobj

Figure 4: An example of a typed dependency parse for the
sentence “I saw the man who loves you”, with “collapsing”
turned on.

where the relative pronoun is replaced by its actual refer-
ent. In such case the output will be the one in Figure 4.
Note that as a result of this structure modification, a de-
pendency graph may actually become cyclic, as shown in
Figure 4. The usefulness of such structures depends on
downstream software being able to correctly handle cyclic
directed graphs.

4. Comparison
Direct comparison between our system and other depen-
dency parsers like Minipar and the Link Parser is compli-

Bills

ports

PREP_on

immigration

CC_and

were

submitted

nsubjpass auxpass

Brownback

PREP_by

Senator

nn

Republican

appos

Kansas

PREP_of

Figure 5: A dependency parse for the sentence “Bills on
ports and immigration were submitted by Senator Brown-
back, Republican of Kansas”, with “collapsing” turned on.



Bills

ports

PREP_on

immigration

PREP_on

CC_and

were

submitted

nsubjpass auxpass

Brownback

agent

Senator

nn

Republican

appos

Kansas

PREP_of

Figure 6: A dependency parse for the sentence “Bills on
ports and immigration were submitted by Senator Brown-
back, Republican of Kansas”, with “collapsing” turned on
and processing of the conjunct dependencies.

cated by differences between the annotation schemes tar-
geted by each system, presumably reflecting variation in
theoretical and practical motivations. The differences fall
into two main categories: dependency structure (which
pairs of words are in a dependency relation) and depen-
dency typing (what the grammatical relation for a particular
dependency is).
First, the systems do not always agree about which words
should be counted as the dependents of a particular gover-
nor. For example, the Link Parser has a dependency type C
which is described as follows: “C links conjunctions to sub-
jects of subordinate clauses (“He left WHEN HE saw me”).
It also links certain verbs to subjects of embedded clauses
(“He SAID HE was sorry”).”1 This leads the Link Parser to
link “that” with “irregularities” and “said” with “investiga-
tion” in sentence 1 of table 2. In contrast, our system links
subordinating conjunctions with the verb of the clause and
main verbs to the verb of an embedded clause: in sentence
1, “that” is linked with “took place” (compl(took place,
that)) and “said” with “produced” (ccomp(said, produced)).
Another example regards the word “below” in sentence 6:
the Link parser connects it with “he”, whereas our system
links it with “see” (advmod(see, Below)).
Moreover, there are differences among the systems with re-
gard to the “collapsing” of prepositions and coordination;
as discussed above in section 3, we have tried to handle
these in a way that facilitates semantic analysis.
Even where the systems agree about whether two words are
in a dependency relation, they may diverge about the type
of the dependency. Each system assigns dependency types
from a different set of grammatical relations, and it is not
straightforward to establish mappings between these sets.
Of course, the names used for relations vary considerably,
and the distinctions between different relations may vary as
well. But the most salient difference between the schemes
is the level of granularity. As indicated in table 1, the
set of relations defined by Carroll is comparatively coarse-
grained. Carroll’s scheme makes a distinction between verb

1A complete summary of the grammatical re-
lations used by the Link parser can be found at
http://bobo.link.cs.cmu.edu/link/dict/summarize-links.html.

or noun arguments, but doesn’t further distinguish among
these. A mapping of our grammatical relations into Car-
roll’s scheme in order to evaluate our system using Carroll’s
Greval test suite2 would not reflect the finer distinctions we
make. But often these finer distinctions drive success in ap-
plications. For example, our PASCAL Recognizing Textual
Entailment (see Section 5) derives considerable value from
relations such as appos and abbrev.
In contrast, the Link Parser uses a very fine-grained set
of relations, which often makes distinctions of a structural
rather than a semantic nature, as for example the MX re-
lation which “connects modifying phrases with commas
to preceding nouns (“The DOG, a POODLE, was black”;
“JOHN, IN a black suit, looked great”).” The Link Parser
has specific relations for idiomatic expressions. It also has
three different relations for an adverb modifying another
adverb, or an adjective, or a comparative adjective. The
Link Parser uses a different set of dependency types for de-
pendencies appearing in questions and relative clauses. We
suggest that many of these distinctions are too fine to be
of practical value, and in our system we have aimed for an
intermediate level of granularity, motivated by the needs of
practical applications.
Such differences make it difficult to directly compare the
quality of the three systems. Lin (Lin, 1998) proposes
two ways to evaluate the correctness of a dependency parse
against a gold standard. In the first method, one simply
examines whether each output dependency also occurs in
the gold standard, while ignoring the grammatical type of
the dependency; this method is therefore sensitive only to
the structure of the dependency tree. The second method
also considers whether the type of each output dependency
matches the gold standard. But because the correctness of
a dependency parser must be evaluated according to the an-
notation scheme it targets, and because each parser targets
a different scheme, quantitative comparison is difficult.
However, a qualitative comparison may be of value. Fig-
ures 6, 7, and 8, show a comparison of the outputs of
the Stanford parser, MiniPar and the Link Parser respec-
tively on the sentence “Bills on ports and immigration were
submitted by Senator Brownback, Republican of Kansas”.
We chose this sentence as an illustrative example be-
cause it is short but shows typical structures like preposi-
tional phrases, coordination, and noun componding. The
graph representing Minipar output collapses directed paths
through preposition nodes. It also adds antecedent links
to ‘clone’ nodes between brackets. The graph for the
Link Parser presents the same collapsing of directed paths
through preposition nodes.
To provide a qualitative comparison, we parsed, with the
three parsers, ten sentences randomly chosen from the
Brown Corpus. The sentences we examined are given in
table 2. Globally, the Stanford parser and the Link parser
lead to more accurate structure trees than Minipar. How-
ever all parsers are misled by sentence 10 where “ride” is
analyzed as a noun.
The Stanford parser trained on the Penn Wall Street Journal

2Carroll’s evaluation software is available at
http://www.informatics.susx.ac.uk/research/nlp/carroll/greval.html



Scheme # GR
Carroll 23
MiniPar 59
Link 106
Stanford 48

Table 1: Number of grammatical relations of four different
annotation schemes.

Bills

ports

on

[Bills]

and

punc

immigration

conj

were

submitted

s obj be

Senator

by

Brownback

person

,

punc

Republican

appo

Kansas

of

Figure 7: Minipar dependency parse for the sentence
“Bills on ports and immigration were submitted by Sena-
tor Brownback, Republican of Kansas”.

Treebank does a poor job at parsing questions (sentences 7
and 9) and the dependencies outputted are therefore wrong
or not specific enough. This is easily explained by the fact
that the parser is trained on the Wall Street Journal section
of the Penn Treebank in which not many questions occur.
For use in other projects, we have augmented the training
data with a modest number of additional questions. In sen-
tence 8, we got dep(chair, out) while “out” should be con-
nected to “sat”. This link is correctly identified by both
Minipar and the Link parser.
Minipar is confused by punctuation (this fact has already
be mentioned in (Lin, 1998)): e.g., in sentence 5 no sub-
ject of the verb “had suggested” is found, and the parser
outputs only chunks of the sentence not related to one an-
other. Minipar is also confused by conjunction: in sentence
3, “awarding” is connected with “administrators”, while it
should be related to “appointment”. An advantage of Mini-
par is its capacity to identify collocations as “comment on”
in sentence 3 or “how many” in sentence 7.
As already mentioned, the MX relation of the Link parser
leads to weird dependencies: in sentence 9, “smoking” and
“waiting” are dependents of “tree”. They should however
be related to “Rector”. The Link parser has trouble with
conjunction: the parse of sentence 3 is wrong. Question 9
is also wrongly parsed.
We evaluated our system on this sample of 10 sentences,
with the “collapsing” option turned on. A dependency
tagged as dep is considered to be wrong if a more specific
dependency type should have been used. We obtained a
per-dependency accuracy of 80.3%. However it can be only
considered as a rough estimate because the sample size is
very small.

Bills

immigration

on

ports

and

were

pl-subj

submitted

pasv-part

by

prep-after-part

Brownback

compl-of-prep

Senator

cnoun-mod-pnoun

Republican

mod-after-comma

,

punct-left

Kansas

of

.

punct-right

Figure 8: Link Parser dependency parse for the sentence
“Bills on ports and immigration were submitted by Senator
Brownback, Republican of Kansas”.

5. Application
The typed dependency trees generated by this system have
been used as the foundation for systems (Raina et al., 2005;
de Marneffe et al., 2006) which were Stanford’s entry in
the PASCAL Recognizing Textual Entailment (RTE) chal-
lenges. Here the task is to determine whether one sentence
can reasonably be inferred from another sentence. The
Stanford system exploits the information about predicate-
argument structure encoded in the generated typed depen-
dency trees in three ways: in generating a quasi-logical
representation of the event structure represented by each
sentence (following the work of Moldovan and Harabagiu
in question answering (Moldovan et al., 2003)), in finding
a good alignment between the structures of the two sen-
tences, and in generating features used as input to a learn-
ing module. The Stanford system, which used the informa-
tion supplied by our typed dependency extractor, attained
the highest confidence-weighted score of all entrants in the
2005 competition by a significant margin.
The typed dependency generation facility described
in this paper has been integrated into the Stanford
parser, which is available for download at http://www-
nlp.stanford.edu/software/lex-parser.shtml.

Acknowledgements
Thanks to Roger Levy and Galen Andrew for develop-
ing tregex, which is centrally used in this system, and
to Galen for restructuring the grammatical relations code.
This material is based upon work funded in part by the
U.S. Government under the Advanced Research and Devel-
opment Activity (ARDA)’s Advanced Question Answering
for Intelligence (AQUAINT) Program. Any opinions, find-
ing, conclusion, or recommendation expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the U.S. Government.



1 The Fulton County Grand Jury said Friday an investigation of Atlanta ’s recent primary election produced “no
evidence” that any irregularities took place.

2 However, the jury said it believes “these two offices should be combined to achieve greater efficiency and reduce
the cost of administration”.

3 The jury also commented on the Fulton ordinary’s court which has been under fire for its practices in the appoint-
ment of appraisers, guardians and administrators and the awarding of fees and compensation.

4 When the larvae hatch, they feed on the beebread, although they also receive extra honey meals from their mother.

5 In her letter to John Brown, “E. B.”, the Quakeress from Newport, had suggested that the American people owed
more honor to John Brown for seeking to free the slaves than they did to George Washington.

6 Below he could see the bright torches lighting the riverbank.

7 “How many pamphlets do we have in stock?”, Rector said.

8 Then Rector, attired in his best blue serge suit, sat in a chair out on the lawn, in the shade of a tree, smoking a
cigarette and waiting.

9 Have you any objection to the following plan?

10 She was watching a tree ride wildly down that roiling current.

Table 2: 10 sentences from the Brown Corpus, to compare outputs of Minipar, the Link Parser and the Stanford parser.

6. References
Joan Bresnan. 2001. Lexical-Functional Syntax. Blackwell, Ox-

ford.
John Carroll, Guido Minnen, and Ted Briscoe. 1999. Corpus an-

notation for parser evaluation. In Proceedings of the EACL
workshop on Linguistically Interpreted Corpora (LINC).

Eugene Charniak. 2000. A maximum-entropy-inspired parser. In
Proceedings of NAACL-2000.

Noam Chomsky. 1981. Lectures on Government and Binding.
Foris, Dordrecht.

Michael Collins. 1999. Head-Driven Statistical Models for Nat-
ural Language Parsing. Ph.D. thesis, University of Pennsylva-
nia.

Marie-Catherine de Marneffe, Bill MacCartney, Trond Grenager,
Daniel Cer, Anna Rafferty, and Christopher D. Manning. 2006.
Learning to distinguish valid textual entailments. To appear in
PASCAL RTE-2 Challenge workshop.

Tracy H. King, Richard Crouch, Stefan Riezler, Mary Dalrym-
ple, and Ronald Kaplan. 2003. The PARC 700 dependency
bank. In 4th International Workshop on Linguistically Inter-
preted Corpora (LINC-03).

Dan Klein and Christopher D. Manning. 2003. Accurate unlexi-
calized parsing. In Proceedings of the 41st Meeting of the As-
sociation for Computational Linguistics.

Matthias T. Kromann. 2003. The Danish Dependency Treebank
and the underlying linguistic theory. In Joakim Nivre and Er-
hard Hinrichs, editors, Proceedings of the Second Workshop on
Treebanks and Linguistic Theories (TLT 2003). Vaxjo Univer-
sity Press.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating
tree data structures. In LREC 2006. http://www-
nlp.stanford.edu/software/tregex.shtml.

Dekang Lin. 1998. Dependency-based evaluation of MINIPAR.
In Workshop on the Evaluation of Parsing Systems, Granada,
Spain.

Philip H. Miller. 2000. Strong Generative Capacity: The Se-
mantics of Linguistic Formalism. Number 46 in Lecture Notes.
CSLI Publications, Stanford, CA.

Dan Moldovan, Christine Clark, Sanda Harabagiu, and Steve

Maiorano. 2003. Cogex: A logic prover for question answer-
ing. In HLT-NAACL.

Rajat Raina, Andrew Y. Ng, and Christopher D. Manning. 2005.
Robust textual inference via learning and abductive reasoning.
In Proceedings of AAAI 2005. AAAI Press.

Daniel D. Sleator and Davy Temperley. 1993. Parsing English
with a link grammar. In Third International Workshop on Pars-
ing Technologies.

Leonoor van der Beek, Gosse Bouma, and Robert Malouf
andGertjan van Noord. 2002. The Alpino Dependency Tree-
bank. In Computational Linguistics in the Netherlands CLIN
2001.


