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Abstract

A central challenge in relation extrac-
tion is the lack of supervised training
data. Pattern-based relation extractors suf-
fer from low recall, whereas distant su-
pervision yields noisy data which hurts
precision. We propose bootstrapped self-
training to capture the benefits of both sys-
tems: the precision of patterns and the
generalizability of trained models. We
show that training on the output of patterns
drastically improves performance over the
patterns. We propose self-training for fur-
ther improvement: recall can be improved
by incorporating the predictions from pre-
vious iterations; precision by filtering the
assumed negatives based previous predic-
tions. We show that even our pattern-
based model achieves good performance
on the task, and the self-trained models
rank among the top systems.

1 Introduction

The landscape of relation extractors can be clus-
tered into three general categories: (1) pattern-
based methods, which suffer from difficulties with
recall; (2) supervised methods, which suffer from
a lack of training data; and (3) distantly super-
vised methods, which suffer from excessive noise
in their training data. We present an approach –
bootstrapped self-training – to relation extraction
which mitigates the weaknesses of each of these
approaches while preserving much of their bene-
fits.

In this setup, we begin with a manually defined
rule-based relation extractor, built using less than
a person-week of total development time. This
extractor is inherently high precision but low re-
call. We then use the predictions of this extractor
over a large corpus to train a first iteration of sta-
tistical models. The predictions of these models

can then be fed into this same self-training loop to
train subsequent iterations of progressively higher-
precision models. This can be thought of as a hard-
EM-like procedure: from a smart initialization, we
infer labels on our large unlabeled corpus. Then,
from the statistics gained from this corpus we re-
train our parameters to get a better sense of their
true distribution.

The obvious danger of such an approach is the
possibility of semantic drift, where the self-trained
models drift progressively away from their in-
tended label semantics. We mitigate this in two
ways: first, the patterns are always included in the
true labels. Assuming the initial patterns account
for a non-negligible fraction of the labels, this at
least partially anchors the distribution of extrac-
tions. Second, and perhaps more importantly, we
train our extractors with a realistic proportion of
positives to negatives – that is, we train with many
more no relation examples than examples that ex-
press a relation. This, of course, requires our neg-
ative examples to be very clean. We get these neg-
atives by removing from the candidate negatives
(i.e., all type checked relation mentions) any ex-
ample which is extracted by a high recall extrac-
tor. In our case, we used the union of all of our
self-trained extractors as this high recall extractor.

For our submissions, we ran a conservative
shallow version of our self-training procedure.
From our pattern-based extractor’s output, we
trained a number of relation extractors. We then
removed from our negative set all “negatives”
which were predicted by the union of these ex-
tractors. We then re-trained our extractors off of
the patterns output and our new negatives. Initial
experiments showed modest improvements from
running self-training for more iterations.

We show that our methods achieve good perfor-
mance on both slotfilling and cold-start knowledge
base population, presented in detail in Section 5.
A union of our extractors ranks second and third



in KBP 2015 for the slotfilling and KB track re-
spectively. We further show that the pattern-based
relation extractor alone achieves the highest pre-
cision of any system that achieves non-negligible
recall, and ranks above median on the task (5th

excluding Stanford’s other systems). Lastly, we
show that model combination, in the flavor of Ra-
jani et al. (2015), can improve precision of hop0
queries by 18 F1 with only a 5 F1 drop in recall.

2 System Design and Architecture

Traditionally, slot filling systems have been struc-
tured as a pipeline beginning with an information
retrieval system, and then passing through an en-
tity linker, a relation extractor, and finally a consis-
tency component. This setup has the advantage of
being resource-light; however, we have observed
a number of practically important disadvantages:

1. Analytics on the corpus and the model – even
simple analytics such as histograms of pre-
dicted relations, or the number of occurrences
of an entity in the corpus – become slow and
difficult to code.

2. An amount of recall is immediately lost at the
initial information retrieval step.

3. The approach is abusive to the IR system: if
a document contains multiple candidate rela-
tion mentions, the system must re-retrieve the
document for each relation mention.

4. IR is a tool for querying textual mentions,
whereas we are nearly always querying for
entities. Even trivial morphological varia-
tions of names can confuse the IR system
(e.g., Beyonce instead of Beyonc’e).

For these reasons, we built our KBP system
around a relational database, similar in spirit to
DeepDive (Niu et al., 2012). At the center of this
framework are two tables, described below, both
populated by running Stanford CoreNLP (Man-
ning et al., 2014) and the Illinois Wikifier (Rati-
nov et al., 2011) on the 2010 and 2013 source cor-
pora. In addition to the named entity tags from
CoreNLP, we extract tags for additional relevant
named entities (e.g., job titles, nationalities) via a
set of gazetteers. Lastly, we run a retrained Stan-
ford NER model for detecting job titles, trained off
of the output of our gazetteers.

sentences A table of sentences in the KBP
source corpus. This includes part-of-speech
tags, lemmas, named entity tags, and dependency
parses.

mentions A table of entity mentions, along with
their named entity tag and canonical entity link.
The canonical entity link of coreferent mentions
in a document are constrained to be the same,
but there is not other explicit notion of corefer-
ence. A canonical entity link is represented as the
Wikipedia title of the entity, if one exists. If not,
it is the surface form of the canonical coreference
mention is used. In the case of dates and numbers,
the Timex value and canonical numeric form are
used respectively.

From these two core tables we can derive most
of the “data munging” operations in knowledge
base population directly in SQL. For instance,
finding candidate relation mentions is a simple
join on the mention table with itself, subject to
constraints on occurring in the same sentence, and
the named entity tags type-checking. Distant su-
pervision is as simple as joining this relation men-
tion table with a known knowledge base.1

Relation extraction then becomes a simple mat-
ter of taking as input such a relation mention ta-
ble, joined with its provenance sentence, and out-
putting the relations expressed by each row of the
table. In practice, all of our extractors are imple-
mented as command-line programs taking as input
a TSV on standard input (one example per row),
and outputting a stream of relations for those rows.

Lastly, a coherent knowledge base is con-
structed from these relation mention predictions
directly in the database through an SQL script. For
the KB track, this knowledge base is submitted di-
rectly for evaluation. For the slotfilling track, the
database is used as the input to a consistency and
inference component – as in Angeli et al. (2014a)
– and the output of that component is submitted
for evaluation.

The advantages of this setup are many fold:

1. SQL is a powerful language for probing the
corpus. Furthermore, since the output of our
extractors are also in the database, we can
easily view and debug against not only spe-
cific classification decisions, but also the ag-
gregate statistics of the classifier.

1Although none of our extractors are distantly supervised,
we do load a range of knowledge bases (Freebase, KBP,
Google) into the database for filtering negatives.



2. Every candidate relation mention in the cor-
pus is considered.

3. The query planner is able to most efficiently
retrieve the data passed into the extractors.

4. Querying on entities in addition to textual
mentions is trivial; furthermore, aggregate
statistics on entity linking are practically in-
valuable during debugging.

5. Evaluation no longer performs relation ex-
traction – evaluating on new query entities
becomes a set of database queries.

2.1 Supporting Infrastructure
The work flow described in this section requires an
unconventionally large software and hardware in-
frastructure. The database queries can be nearly
linearly sped up through the use of distributed
databases, such as Greenplum. This allows us to
run on a 20 core machine with a huge speed im-
provement. Furthermore, the expensive joins de-
scribed in the previous section are orders of mag-
nitude more efficient when executed in memory.
In practice, the submissions in this paper were run
on a machine with 790GB of memory backed by
a 1.2TB PCI-E solid state drive. Although this ap-
pears extravagant at first glance, we found the sav-
ings in runtime and debug time from this setup to
justify the investment.

2.2 Development Data
Development of all of the models was evaluated
against a number of development sets. First, the
annotations from the 2013 KBP evaluation were
propagated back into the database, linking to the
mentions table. This was then used to create a su-
pervised relation-mention level development set in
the same format as the training and test data for the
extractors.

This enabled two important types of debugging.
Trivially, it provides a development set for assess-
ing the quality of the extractors on human anno-
tated data. However, it also for the first time en-
ables approximately assessing recall errors in the
system – these are examples which could not be
linked to any known mention. For instance, even
with approximate span matching only 71% of cor-
rect judgments could be mapped back to any men-
tion pair at the time of submission.

This development data does, however, have the
problem of being biased towards positive exam-

ples, and therefore less sensitive to precision er-
rors than it should be. Furthermore, it does not
distinguish between entity linking errors and re-
lation extraction errors. Therefore, we also make
use of the 2010 – 2013 data for a slower end-to-
end evaluation of the system. The 2014 cold start
data was used for model combination. The 2014
slotfilling data was unused.

2.3 Class Skew
An important emergent property of the system is
the increased importance of precision over recall.
Whereas IR serves as a sort of regularizer, ensur-
ing that only potentially-sane sentences are pro-
posed to the classifier, in our case every relation
mention is a candidate for classification. This re-
sults in an increased sensitivity to misclassifica-
tions of sentences as exhibiting a known relation –
particularly for common entities.

In some ways, this is a concern more broadly
for NLP systems. In real world applications, clas-
sifiers are often applied to problems with a single
dominant class; however, these systems are nearly
always trained on a balanced or near balanced data
set. In this paper, we approach this problem us-
ing our bootstrapped self training approach (see
Section 4) – a simple and empirically effective ap-
proach.

3 Relation Extractors

At the core of our system is a set of relation ex-
traction models. In total, Stanford trained the fol-
lowing 6 models, described in more detail in this
section:

• patterns: The hand-coded Semgrex and To-
kensregex patterns.
• openie: The Stanford OpenIE system (An-

geli et al., 2015).
• website: A website extractor, based on ap-

proximate website UR match.
• altnames: An alternate names extractor,

based entirely on entity linking output.
• supervised: A learned supervised logistic re-

gression classifier.
• neural: A learned supervised bidirectional

LSTM classifier.

3.1 Patterns
The base system for our bootstrapping process is
a pattern-based relation extractor. The motivation
behind collecting these patterns is to ensure that



we capture the simple cases for relation extraction.
As the amount of data in our corpus grows, it be-
comes more and more likely that the relations we
are interested expressed straightforwardly some-
where in the corpus in a way that patterns can cap-
ture.

The patterns were constructed by hand from
four sources: (1) the patterns used in Stanford’s
previous KBP submissions (Angeli et al., 2014a);
(2) the patterns used in Roth et al. (2013); (3) the
patterns from the DeepDive system described in
Angeli et al. (2014a); and (4) a set of new patterns
developed for this year. This yielded a total of
4528 Tokensregex patterns (Chang and Manning,
2014) and 169 Semgrex patterns.

2417 of the Tokensregex patterns were collected
semi-automatically by taking common short n-
grams between people and organizations, aiming
to capture a long-tail of job titles that were missed
in the named entity annotations by the job title
gazetteer. For example, x, incoming president of
the y. These yielded a small but noticeable im-
provement of around 1 F1 on our dev set.

The remaining patters developed for this year
were constructed by hand by hill-climbing on the
errors found in the relation mention oriented de-
velopment data described in Section 2.2, and eval-
uating on the 2010 – 2013 end-to-end evaluations.
Especially for this extractor, the ability to rapidly
evaluate over the entire corpus was invaluable to
the development pipeline. In all, approximately 40
man-hours of work was expended writing patterns
over the course of 2 months.

3.2 Open IE
The Stanford Open IE system was run over the
corpus, and the resulting extractions mapped back
into the KBP relation schema. This mirrors the
evaluation in Angeli et al. (2015). This extractor
also serves as a base case for self training.

3.3 Alternate Names
Alternate names are unique in that they are not
usually explicit in the text, but rather are inferred
via coreference chains. We therefore create a
special-case alternate names extractor to handle
these cases. In particular, for every canonical en-
tity in our database, we collect all of the surface
forms of that entity in the mentions table. In
cases where there are more than 50 unique surface
forms, we ignore the entity – it is likely a sink for
entity linking mistakes. Otherwise, we consider

State
t-1 LSTM State

t

Emb(Todd)

… Democratic candidate <e1> Debra Todd </e1>, also a <e2> Superior Court </e2> judge ...

Figure 1: At some time step t, the LSTM has read
up to the word Todd. The sentence fragment read
so far is represented by current state, denoted by
“State t.”

any surface form which links at least twice to the
canonical entity to be a name for the entity. Any
pairs of surface forms in the same document which
are considered names for the entity by this criteria
are considered alternate names.

Importantly, note that this process is expressed
declaratively in under 100 lines of SQL, and ex-
ecutes in a matter of minutes over the full 150
million sentence source corpus. On the 2010 dev
evaluation, this yields 33% recall at 33% precision
for organization alternate names, and 24% recall at
47% precision for person alternate names.

3.4 Websites
Although it’s possible to extract a company’s web-
site using a conventional relation extractor, in
practice it is more reliable to do approximate name
matching on the website domain and organizations
in the document. We match a domain with an or-
ganization if either the edit distance between the
organization and the domain is sufficiently small,
or the domain is a near acronym of the organi-
zation’s name. On the 2010 dev evaluation, this
yields 38% recall at 67% precision.

3.5 Traditional Extractor
The first of two trained models is a traditional re-
lation extractor, implemented using l1 regularized
logistic regression. Since we do not have access
to constituency trees, we cannot run the featurizer
of Surdeanu et al. (2012); we therefore define our
own, taking many of the same features.

3.6 LSTM Extractor
In addition to traditional relation classification
models in which we manually select features
such as dependency patterns, we propose a re-
current neural networks based model to automat-
ically learn feature representations useful for the
task. Recurrent networks have recently proven to



State
T-1 LSTM State

T

Emb(subject)

… she issued dismissing charges against a subject

Softmax

org:top_members/employees

Figure 2: At time step T , the LSTM has read the
entire sentence. The final hidden state, denoted
“state T,” encodes the entire sentence, and is mul-
tiplied with another weight matrix (not shown) to
produce a distribution over the valid states.

be very successful for the relation classification,
achieve near state of the art results on the SemEval
2010 relation classification task.

For our model, we employ a long short term
memory (LSTM) based sequence classification
model as shown in figures Figure 1 and Figure 2.
The model takes as input the sentence and predicts
as output the relation. At each time step, the model
takes in the current word in the input sentence and
looks up an associated embedding for the word.
This embedding, along with the previous hidden
state, are then used to compute the current hid-
den state. Finally, the hidden state at the last time
step (eg. after the model has read the entire sen-
tence) is used to compute a distribution over the set
of possible relations. We train the network using
stochastic gradient descent. In addition, we use
Adagrad to adapt the learning rate per parameter
and Dropout to regularize the network.

We make two task-specific modifications to
simplify the training procedure:

• The input sentence is modified such that each
of the entity is surrounded by position marker
such that the model is aware of their respec-
tive locations

• The set of possible relations is reduced to the
small subset of all relations that is possible
given the NER tag of the subject entity and
the NER tag of the object entity

4 Training

Ignoring alternate names and websites, the sys-
tem has two extractors which do not need to be

trained: patterns and Open IE. We run the union
of these two high-precision systems on the entire
source corpus, and collect the output predictions
as a training dataset. In this way, we are creating a
bootstrapped system.

We then sample 1000 examples from this
dataset for each of the 41 relations, yielding
41,000 examples total. This is added to the su-
pervised data released in Angeli et al. (2014b),
5000 assumed negatives from each of the 41 re-
lations (205,000 total negative examples), and a
small corpus of additional hand-annotated rela-
tions (7,858). Assumed negatives for a relation are
relation mentions which: (1) type check with the
given relation type, and (2) occur in neither the
last iteration’s predicted output, or any knowledge
base.

We then train the traditional and LSTM ex-
tractors, and treat this output as the new training
dataset. Predictably, more iterations of this train-
ing improves recall and degrades precision. For
our submissions, based on dev results, we purely
optimize precision: after a first iteration of training
the learned systems, we re-generate the assumed
negatives (recall that these depend on the output of
the previous iteration), but continue to train only
on the patterns as positive examples. A clear av-
enue of future exploration is assessing the tradeoff
between precision and recall from both increasing
the iterations of self-training, and changing the ra-
tio of positive and negative training examples.

4.1 Model Combination
Taking inspiration from the model combination re-
sults in Rajani et al. (2015), we train our own
model combination over the 6 extractors described
in Section 3. We train a classifier taking as input a
candidate relation produced by at least one of the
extractors, and as output a judgment for whether
to keep that prediction or not. We train the model
combination system using four features:

1. An indicator for the number of extractors
which proposed the relation.

2. An indicator for each extractor which pro-
posed the relation.

3. An indicator for the relation being proposed.

4. An indicator for the combination of the rela-
tion being proposed and the system propos-
ing it.



For training data, we then hand-annotated the
predictions of our system on the 2014 hop0 and
hop1 evaluations. The hop1 evaluations were an-
notated assuming perfect hop0 output. The 2014
hop0 data was used to train our hop0 model com-
bination, and the hop1 data (assuming perfect
hop0 output) was used to train the hop1 classifier.

5 Results

Stanford submitted five runs to the slotfilling track,
and two runs two runs to the KB track. These runs
were meant to capture different points in the preci-
sion / recall tradeoff by including different combi-
nations of systems. In addition, for the slotfilling
track, some of the systems used the model combi-
nation component.

A summary of our slotfilling submissions is
given below.

Stanford1 A trained model combination of all
systems for both hop0 and hop1.

Stanford2 A high precision system (patterns,
openie, website, altnames) for hop0, and model
combination for hop1.

Stanford3 A high recall system: the union of all
models for both hop0 and hop1.

Stanford4 The hand-coded patterns alone, for
both hop0 and hop1.

Stanford5 Same as Stanford1, but disallowing
guessing of relations we have evidence for in the
larger KBP corpus.

Our preliminary results in the slot filling track
are given in Table 1. In addition, Stanford made
two submissions to the cold-start knowledge base
track:

Stanford1 A high precision system (patterns,
openie, website, altnames) for both hop0 and
hop1.

Stanford2 A high recall system: the union of all
models for both hop0 and hop1.

Our preliminary results in the KB track are
given in Table 2

A few observations can be made from these
results. Most saliently, the high-recall systems
consistently outperform the high-precision coun-
terparts. This suggests a mismatch between our
development and our test data – common for live
competitions like KBP – and lends support the to

hypothesis that further iterations of self-training to
improve recall would further benefit the systems.

However, it’s also worth noting that the high-
precision systems are both high-precision and re-
tain a reputable recall. The pattern extractor alone
achieves nearly 60% precision with a recall above
10% – unmatched by any similar system.

Furthermore, the hop0 model combination finds
what is very likely the correct tradeoff spot be-
tween precision and recall – it recovers much of
the recall of the high recall system, while main-
taining nearly the precision of patterns. This
shows a clear promise for model combination, al-
though the results also suggest that the challenge
of finding the right training data for hop1 model
combination remains outstanding.

Lastly, we observe that accuracy drops fairly
substantially between the slotfilling track and the
KB track. This suggests that the consistency and
inference components in the slotfilling track are in
fact very useful. An interesting area of future re-
search would be to incorporate these sorts of con-
straints not on a per-query basis, but across the en-
tire predicted knowledge base.

6 Conclusion

We have shown that a pattern-based relation ex-
tractor can perform competitively in the KBP slot-
filling competition; and, more importantly, that
a bootstrapped self-trained relation extractor built
on top of these patterns is very competitive at the
task. In addition, we’ve made the case for ap-
proaching the engineering task of KBP by doing
as much computation as possible in a distributed
relational database.
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