A Cross-Lingual Dictionary for English Wikipedia Concepts

Valentin I. Spitkovsky

 with Angel X. ChangStanford University / Google Inc.

From Words to Concepts and Back:

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

- from Goethe's Faust

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

- from Goethe's Faust

Example:

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

- from Goethe's Faust

Example:

- word sense disambiguation

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

- from Goethe's Faust

Example:

- word sense disambiguation

football

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

- from Goethe's Faust

Example:

- word sense disambiguation

football

From Words to Concepts and Back:

Dictionaries for Linking Text, Entities and Ideas

Yet in each word some concept there must be...

- from Goethe's Faust

Example:

- word sense disambiguation

football

Problem Space:

Problem Space:

- words:

Problem Space:

- words: raw, unstructured natural language representation

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)
- concepts:

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)
- concepts: concrete, structured organization of knowledge

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)
- concepts: concrete, structured organization of knowledge
- Wikipedia articles

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)
- concepts: concrete, structured organization of knowledge
- Wikipedia articles, as in explicit semantic analysis (ESA)
(Gabrilovich and Markovitch, 2007)

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)
- concepts: concrete, structured organization of knowledge
- Wikipedia articles, as in explicit semantic analysis (ESA)
(Gabrilovich and Markovitch, 2007)
- or coarse categories

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)
- concepts: concrete, structured organization of knowledge
- Wikipedia articles, as in explicit semantic analysis (ESA)
(Gabrilovich and Markovitch, 2007)
- or coarse categories
- high-level (low-dimensional) representation

Problem Space:

- words: raw, unstructured natural language representation
- low-level (high-dimensional)
- concepts: concrete, structured organization of knowledge
- Wikipedia articles, as in explicit semantic analysis (ESA)
(Gabrilovich and Markovitch, 2007)
- or coarse categories
- high-level (low-dimensional) representation
- e.g., aggregation via Wikipedia's hierarchical structure

Connection:

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Computational_linguistics

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer
Computational_linguistics

He is also a computational linguist who...

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

He is also a computational linguist who...

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Computerlinguistik

He is also a computational linguist who...

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Computerlinguistik

Linguistique informatique

He is also a computational linguist who...

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Computerlinguistik

Linguistique informatique

Språkteknologi

He is also a computational linguist who...

Connection:

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Computerlinguistik

Linguistique informatique
Språkteknologi

He is also a computational linguist who...

Solution:

Solution:

- anchor-texts are pretty good descriptors of pages (Manning, Raghavan and Schütze, 2008; Ch. 21)

Solution:

- anchor-texts are pretty good descriptors of pages (Manning, Raghavan and Schütze, 2008; Ch. 21)
- collect all anchor-text from each article's incoming links

Solution:

- anchor-texts are pretty good descriptors of pages (Manning, Raghavan and Schütze, 2008; Ch. 21)
- collect all anchor-text from each article's incoming links
$\{($ concept, words $) \mapsto$ count $\}$

Solution:

- anchor-texts are pretty good descriptors of pages (Manning, Raghavan and Schütze, 2008; Ch. 21)
- collect all anchor-text from each article's incoming links

$$
\{(\text { concept }, \text { words }) \mapsto \text { count }\}
$$

$$
\hat{\mathbb{P}}(\text { concept } \mid \text { words })=\frac{\text { count }(\text { concept }, \text { words })}{\sum \operatorname{count}(*, \text { words })}
$$

Solution:

- anchor-texts are pretty good descriptors of pages (Manning, Raghavan and Schütze, 2008; Ch. 21)
- collect all anchor-text from each article's incoming links

$$
\begin{gathered}
\{(\text { concept, words }) \mapsto \text { count }\} \\
\hat{\mathbb{P}}(\text { concept } \mid \text { words })=\frac{\text { count }(\text { concept }, \text { words })}{\sum \operatorname{count}(*, \text { words })} \\
\hat{\mathbb{P}}(\text { words } \mid \text { concept })=\frac{\text { count }(\text { concept }, \text { words })}{\sum \operatorname{count}(\text { concept }, *)}
\end{gathered}
$$

Types:

Computational_linguistics

Types:

> Computational_linguistics
(1) inter-Wikipedia links:

Types:

> Computational_linguistics
(1) inter-Wikipedia links:
Geoffrey_Leech

Types:

(1) inter-Wikipedia links:
Geoffrey_Leech

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer

Types:

(1) inter-Wikipedia links:
Geoffrey_Leech

Leech's main academic interests are: English grammar;
... Corpus-based natural language processing by computer
(2) external links:

Types:

(1) inter-Wikipedia links: Geoffrey_Leech

Leech's main academic interests are: English grammar; ... Corpus-based natural language processing by computer
(2) external links: www.culinaryanthropologist.org/about.html

Types:

(1) inter-Wikipedia links:

Geoffrey_Leech
Leech's main academic interests are: English grammar;
... Corpus-based natural language processing by computer
(2) external links: www.culinaryanthropologist.org/about.html

Matt eats very well. He is also a computational linguist who takes time off from the research he usually does for culinary road trips and other adventures.

Cross-lingual Examples:

Computational_linguistics

Cross-lingual Examples:

> Computational_linguistics
(3) anchor-texts of links into parallel Wikipedia pages:

Cross-lingual Examples:

> Computational_linguistics
(3) anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik

Cross-lingual Examples:

> Computational_linguistics
(3) anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik
- fr/Linguistique_informatique

Cross-lingual Examples:

> Computational_linguistics
(3) anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik
- fr/Linguistique_informatique
- sv/Språkteknologi

Cross-lingual Examples:

> Computational_linguistics
(3) anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik
- fr/Linguistique_informatique
- sv/Språkteknologi
(4) ... titles and other relevant strings!

Cross-lingual Examples:

```
Computational_linguistics
```

(3) anchor-texts of links into parallel Wikipedia pages:

- de/Computerlinguistik
- fr/Linguistique_informatique
- sv/Språkteknologi
(a) ... titles and other relevant strings!
(these don't count)

Volume:

Volume:

- wisdom of one huge crowd!

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings

7,560,141 concepts

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...
- canonicalize everything
(especially redirects)

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...
- canonicalize everything
(especially redirects)
- Wikipedia's coverage is extensive (and growing)

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...
- canonicalize everything
(especially redirects)
- Wikipedia's coverage is extensive (and growing)
- extrinsic quantity \rightarrow quality

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...
- canonicalize everything
- Wikipedia's coverage is extensive
- extrinsic quantity \rightarrow quality
- not intrinsic quality
(especially redirects)
(and growing)
(main differentiator)

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...
- canonicalize everything
- Wikipedia's coverage is extensive
- extrinsic quantity \rightarrow quality
- not intrinsic quality
— pre-Wikipedia (Koningstein et al., 2003-4)

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...
- canonicalize everything
(especially redirects)
- Wikipedia's coverage is extensive
- extrinsic quantity \rightarrow quality
- not intrinsic quality
(main differentiator)
- pre-Wikipedia (Koningstein et al., 2003-4),

ESA (2007), Wiki-linking (Milne and Witten, 2008), etc.

Volume:

- wisdom of one huge crowd!
- 3,152,091,432 individual links (\sim half English, half parallel)
- 297,073,139 distinct concept-word pairs
- 175,100,788 unique strings
- 7,560,141 concepts
- includes "red" links to non-existent pages...
- canonicalize everything
(especially redirects)
- Wikipedia's coverage is extensive
- extrinsic quantity \rightarrow quality
- not intrinsic quality
(main differentiator)
- pre-Wikipedia (Koningstein et al., 2003-4),

ESA (2007), Wiki-linking (Milne and Witten, 2008), etc.
http://wikipapers.referata.com/wiki/List_of_datasets

Football: Forward

Football: Forward

- 44,984 - Association football

Football: Forward

- 44,984 - Association football
- 23,373 - American football

Football: Back

Football: Back

- Association football

Football: Back

- Association football
- soccer

Football: Back

- Association football
- soccer
- association football

Football: Back

- Association football
- soccer
- association football
- fútbol
- futbol
- Fußball
- futebol

Football: Back

- Association football
- soccer
- association football
- fútbol
- futbol
- Fußball
- futebol
- American football

Football: Back

- Association football
- soccer
- association football
- fútbol
- futbol
- Fußball
- futebol
- American football
- American football

Football: Back

- Association football
- soccer
- association football
- fútbol
- futbol
- Fußball
- futebol
- American football
- American football
- fútbol americano

Football: Back

- Association football
- soccer
- association football
- fútbol
- futbol
- Fußball
- futebol
- American football
- American football
- fútbol americano
- football américain

Named Entities: Highly Ambiguous

Named Entities: Highly Ambiguous

- people named after other people

Named Entities: Highly Ambiguous

- people named after other people
- places named after other places

Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
- people named after places where they are from

Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
- people named after places where they are from
- places named after people who founded them

Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
- people named after places where they are from
- places named after people who founded them
- organizations named after people or places

Named Entities: Highly Ambiguous

- people named after other people
- places named after other places
- people named after places where they are from
- places named after people who founded them
- organizations named after people or places
- organizations become places...

Named Entities: Example
 - Stanford

Named Entities: Example
 1. Stanford University

- Stanford 50.3 ORG

Named Entities: Example
 1. Stanford University
 2. Stanford (disambiguation)

- Stanford 50.3 ORG
 7.7

Named Entities: Example

1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California

- Stanford 50.3 ORG
7.7
7.5 LOC

Named Entities: Example

1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football

- Stanford

50.3 ORG
7.7
7.5 LOC 5.7 ORG

Named Entities: Example

1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal

- Stanford

50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1

Named Entities: Example

1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball

- Stanford
50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG

Named Entities: Example

1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment

- Stanford

50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG
2.0

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment
8. Stanford, Kentucky

50.3	ORG
7.7	-
7.5	LOC
5.7	ORG
4.1	-
2.0	ORG
2.0	-
1.7	LOC

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment
8. Stanford, Kentucky
9. Stanford, Norfolk
50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG
2.0
1.7 LOC
1.0 LOC

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment
8. Stanford, Kentucky
9. Stanford, Norfolk
10. Bank of the West Classic
50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG
2.0
1.7 LOC
1.0 LOC
1.0

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment
8. Stanford, Kentucky
9. Stanford, Norfolk
10. Bank of the West Classic
11. Stanford, Illinois

50.3	ORG
7.7	-
7.5	LOC
5.7	ORG
4.1	-
2.0	ORG
2.0	-
1.7	LOC
1.0	LOC
1.0	-
0.9	LOC

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment
8. Stanford, Kentucky
9. Stanford, Norfolk
10. Bank of the West Classic
11. Stanford, Illinois
50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG
2.0
1.7 LOC
1.0 LOC
1.0
12. Leland Stanford
0.9 PER

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment
8. Stanford, Kentucky
9. Stanford, Norfolk
10. Bank of the West Classic
11. Stanford, Illinois
50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG
2.0
1.7 LOC
1.0 LOC
1.0
12. Leland Stanford
0.9 LOC
13. Charles Villiers Stanford

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
7. Stanford prison experiment
8. Stanford, Kentucky
9. Stanford, Norfolk
10. Bank of the West Classic
11. Stanford, Illinois
50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG
2.0
1.7 LOC
1.0 LOC
1.0
12. Leland Stanford
0.9 LOC
13. Charles Villiers Stanford
0.9 PER
14. Stanford, New York
0.8 PER
0.8 LOC

Named Entities: Example

 - Stanford1. Stanford University
2. Stanford (disambiguation)
3. Stanford, California
4. Stanford Cardinal football
5. Stanford Cardinal
6. Stanford Cardinal men's basketball
50.3 ORG
7.7
7.5 LOC
5.7 ORG
4.1
2.0 ORG
7. Stanford prison experiment
8. Stanford, Kentucky
9. Stanford, Norfolk
10. Bank of the West Classic
11. Stanford, Illinois
2.0
1.7 LOC
1.0 LOC
12. Leland Stanford
0.9 PER
13. Charles Villiers Stanford
0.8 PER
14. Stanford, New York
0.8 LOC
15. Stanford, Bedfordshire

Named Entities: Objective Evaluation

Named Entities: Objective Evaluation

- entity linking

(TAC-KBP)

Named Entities: Objective Evaluation

- entity linking
(TAC-KBP)
- task: disambiguate entity mentions in text

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...
- beats the median entry in all competitions! (so far)

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...
- beats the median entry in all competitions! (so far)
- tops most entries with a simple additional heuristic
(Chang et al., 2010)

Named Entities: Objective Evaluation

- entity linking
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...
- beats the median entry in all competitions! (so far)
- tops most entries with a simple additional heuristic
(Chang et al., 2010)
- abstract away sheer engineering effort

Named Entities: Objective Evaluation

- entity linking
(TAC-KBP)
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article
- e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...
- beats the median entry in all competitions! (so far)
- tops most entries with a simple additional heuristic
(Chang et al., 2010)
- abstract away sheer engineering effort
- let research focus on context-sensitive techniques

Named Entities: Objective Evaluation

- entity linking
(TAC-KBP)
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article
- e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...
- beats the median entry in all competitions! (so far)
- tops most entries with a simple additional heuristic
(Chang et al., 2010)
- abstract away sheer engineering effort
- let research focus on context-sensitive techniques
- machine learning

Named Entities: Objective Evaluation

- entity linking
(TAC-KBP)
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...
- beats the median entry in all competitions! (so far)
- tops most entries with a simple additional heuristic
(Chang et al., 2010)
- abstract away sheer engineering effort
- let research focus on context-sensitive techniques
- machine learning, linguistic features

Named Entities: Objective Evaluation

- entity linking
(TAC-KBP)
- task: disambiguate entity mentions in text, by linking to appropriate Wikipedia article - e.g., George Bush junior versus senior...
- dictionary baseline: simple look-ups (as MFS in WSD)
- return highest scoring concept for every string mention
- no learning, ignores context, not language-specific...
- beats the median entry in all competitions! (so far)
- tops most entries with a simple additional heuristic
(Chang et al., 2010)
- abstract away sheer engineering effort
- let research focus on context-sensitive techniques
- machine learning, linguistic features, etc.

From Words to Concepts and Back:

Examples:

- word sense disambiguation
- named entity recognition

From Words to Concepts and Back:

Examples:

- word sense disambiguation
- named entity recognition
- entity linking

From Words to Concepts and Back:

Examples:

- word sense disambiguation
- named entity recognition
- entity linking
- coreference resolution

From Words to Concepts and Back:

Examples:

- word sense disambiguation
- named entity recognition
- entity linking
- coreference resolution
- web search

From Words to Concepts and Back:

Examples (Recognition):

- word sense disambiguation
- named entity recognition
- entity linking
- coreference resolution
- web search

From Words to Concepts and Back:

- inverse problem

Examples (Generation):

From Words to Concepts and Back:

- inverse problem -

Examples (Generation):
 - word synonyms

From Words to Concepts and Back:

- inverse problem -

Examples (Generation):

- word synonyms
- paraphrasing

From Words to Concepts and Back:

- inverse problem -

Examples (Generation):

- word synonyms
- paraphrasing
- summarization

From Words to Concepts and Back:

- inverse problem -

Examples (Generation):

- word synonyms
- paraphrasing
- summarization
- translation

From Words to Concepts and Back:

- inverse problem -

Examples (Generation):

- word synonyms
- paraphrasing
- summarization
- translation
- keyword targeting

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering:

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.
- Interface is conditional probabilities:

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.
- Interface is conditional probabilities:
$-\mathbb{P}$ (concept \mid words);

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.
- Interface is conditional probabilities:
$-\mathbb{P}($ concept \mid words $)$; and \mathbb{P} (words \mid concept $)$.

From Words to Concepts and Back:

Comes up in IR and NLP all the time!

Good engineering: modularity and abstraction.

- Dictionary modules: stubs.
- Interface is conditional probabilities:
$-\mathbb{P}$ (concept \mid words $)$; and \mathbb{P} (words \mid concept $)$.
Conceptually trivial platform (hides engineering/systems details).

Another Example:

- Soft_drink

Another Example:

 - Soft_drink- Normalized (for capitalization, pluralization and punctuation differences).

Another Example:

- Soft_drink

- Normalized (for capitalization, pluralization and punctuation differences).

1. soft drink 28.62. soda3. soda pop
2. fizzy drinks 0.65.50.9
3. carbonated beverages 0.36. non-alcoholic7. soft0.20.18. pop0.1
4. carbonated soft drink 0.1
5. aerated water

Another Example:

- Soft_drink

- Normalized (for capitalization, pluralization and punctuation differences).

1. soft drink 28.62. soda
2. fizzy drinks5.5
3. soda pop 0.9
4. carbonated beverages 0.3
5. non-alcoholic 0.2
6. soft 0.1
7. pop 0.1
8. carbonated soft drink 0.1
9. aerated water 0.1

- Restricted to English Wikipedia (and hence missing 2/3 of the data).

WYSIWYG Examples:

- see paper and data

WYSIWYG Examples:

- see paper and data
- A small, manageable one: $s=$ bushbabies:

WYSIWYG Examples:

- see paper and data

- A small, manageable one: $s=$ bushbabies:

$\hat{\mathbb{P}}(\mathbf{U R L} \mid s)$	URL	(and Associated Scores)
0.966102	Galago D w:11	W08 W09 WDB w:2/5 w':2/2
0.0169492	bushbaby	w:2/5
0.00847458	Lesser_bushbaby	w:1/111 wo8 wo9 wDB
0.00847458	bushbabies	ctw w 1/5

WYSIWYG Examples:
 - see paper and data

- A small, manageable one: $s=$ bushbabies:

$\hat{\mathbb{P}}($ URL \| s)	URL	(and Associated Scores)
0.966102	Galago	11 W08 W09 WDB w:2/5 w:2/2
0.0169492	bushbaby	
0.00847458	Lesser_bushbaby	1 wos w
0.00847458	bushbabies	t w:1/5

- README file has (much) more about the features;

WYSIWYG Examples: - see paper and data

- A small, manageable one: $s=$ bushbabies:

$\hat{\mathbb{P}}($ URL \| s)	URL	(and Associated Scores)
0.966102	Galago	11 W08 W09 WDB w://5 $\mathrm{w}^{\text {w } 2 / 2}$
0.0169492	bushbaby	w:2/5
0.00847458	Lesser_bushbaby	w:1/111 wo8 w
0.00847458	bushbabies	ctw:1/5

- README file has (much) more about the features;
- More than half the paper is detailed examples...

Resource:

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques
http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques
http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2
- earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques
http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2
- earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky
- cleaner filtered English dictionary, designed for precision

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques
http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2
- earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky
- cleaner filtered English dictionary, designed for precision

To be released soon!

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques
http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2
- earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky
- cleaner filtered English dictionary, designed for precision

To be released soon!

- by A. Subramanya, S. Singh, F. Pereira and A. McCallum

Resource:

- noisy unfiltered cross-lingual dictionary designed for recall
- e.g., "click here" or "on Wikipedia"
- reconciliation of canonical URLs for non-existent pages
- contradictory redirects (Wikipedia snapshots from different times)
- but... lots of features to help filter out the noise!
- suitable for use with machine learning techniques
http://nlp.stanford.edu/pubs/crosswikis-data.tar.bz2
- earlier work with E. Agirre, E. Yeh, C. Manning and D. Jurafsky
- cleaner filtered English dictionary, designed for precision

To be released soon! - by A. Subramanya, S. Singh, F. Pereira and A. McCallum

We hope you will find creative uses for these! :)

Thanks!

Yet in each word some concept there must be...

Quite true! But don't torment yourself too anxiously; For at the point where concepts fail, At the right time a word is thrust in there.

- Mephistopheles, in Goethe's Faust (Part I, Scene III, as translated by G.M. Priest)
http://www.levity.com/alchemy/faust05.html

Thanks!

Any questions?

