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Abstract

The applicability of many current information ex-
traction techniques is severely limited by the need
for supervised training data. We demonstrate that
for certainfield structuredextraction tasks, such
as classified advertisements and bibliographic ci-
tations, small amounts of prior knowledge can be
used to learn effective models in a primarily unsu-
pervised fashion. Although hidden Markov models
(HMMs) provide a suitable generative model for
field structured text, general unsupervised HMM
learning fails to learn useful structure in either of
our domains. However, one can dramatically im-
prove the quality of the learned structure by ex-
ploiting simple prior knowledge of the desired so-
lutions. In both domains, we found that unsuper-
vised methods can attain accuracies with 400 un-
labeled examples comparable to those attained by
supervised methods on 50 labeled examples, and
that semi-supervised methods can make good use
of small amounts of labeled data.
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that is mainly irrelevant, and returning it in a struc-
tured form. For such “nugget extraction” tasks, the
use of unsupervised learning methods is difficult and
unlikely to be fully successful, in part because the
nuggets of interest are determined only extrinsically
by the needs of the user or task. However, the term
information extractionwas in time generalized to a
related task that we distinguish &sld segmenta-
tion. In this task, a document is regarded as a se-
qguence of pertinent fields, and the goal is to segment
the document into fields, and to label the fields. For
example, bibliographic citations, such as the one in
Figure 1(a), exhibit clear field structure, with fields
such asauthor, title, anddate Classified advertise-
ments, such as the one in Figure 1(b), also exhibit
field structure, if less rigidly: an ad consists of de-
scriptions of attributes of an item or offer, and a set
of ads for similar items share the same attributes. In
these cases, the fields present a salient, intrinsic form
of linguistic structure, and it is reasonable to hope
hat field segmentation models could be learned in

- an unsupervised fashion.
useful applications enabled by current natural lan- P

guage processing technology. However, unlike gen- In this paper, we investigate unsupervised learn-
eral tools like parsers or taggers, which generaliziag of field segmentation models in two domains:
reasonably beyond their training domains, extractiobibliographic citations and classified advertisements
systems must be entirely retrained for each applfer apartment rentals. General, unconstrained induc-
cation. As an example, consider the task of turntion of HMMs using the EM algorithm fails to detect
ing a set of diverse classified advertisements into gseful field structure in either domain. However, we
queryable database; each type of ad would requitkemonstrate that small amounts of prior knowledge
tailored training data for a supervised system. Apean be used to greatly improve the learned model. In
proaches which required little or no training dateboth domains, we found that unsupervised methods
would therefore provide substantial resource savingsan attain accuracies with 400 unlabeled examples
and extend the practicality of extraction systems. comparable to those attained by supervised methods

The terminformation extractionwas introduced on 50 labeled examples, and that semi-supervised
in the MUC evaluations for the task of finding shortmethods can make good use of small amounts of la-
pieces of relevant information within a broader texbeled data.



(a) AUTH  AUTH AUTH DATE DATE DATE DATE TTL TTL TTL TTL

Pearl J. ( 1988 ) . Probabilistic  Reasoning in Intelligent
TTL TTL TTL TTL TTL TTL TTL  PUBL PUBL PUBL
Systems Networks  of Plausible Inference . Morgan Kaufmann

(b) SIZE SIZE  SIZE SIZE SIZE FEAT FEAT FEAT FEAT FEAT FEAT
Spacious 1 Bedroom  apt . newly remodeled gated , new
FEAT FEAT  FEAT  FEAT FEAT NBRHD NBRHD  NBRHD NBRHD  NBRHD  NBRHD
appliance , new carpet , near public  transportion close to
NBRHD  NBRHD NBRHD RENT RENT RENT CONTACT
580 freeway $ 500.00 Deposit (510)655-0106

(c) RBE , PRP VBD RB NNP NNP
No , it was nt Black Monday

Figure 1: Examples of three domains for HMM learning: thdibgraphic citation fields in (a) and classified advertisatador
apartment rentals shown in (b) exhibit field structure. Casttthese to part-of-speech tagging in (c) which does not.
2 Hidden Markov Models addresses were collapsed to dedicated tokens, and

_ all remaining tokens were converted to lowercase.
Hidden Markov models (HMMs) are commonly yniess otherwise noted, the emission models use

used to represent a wide range of linguistic ph"s‘imple addh smoothing, where. was0.001 for su-
nomena in text, including morphology, parts-0f-yenised techniques, ard for unsupervised tech-
speech (POS), named entity mentions, and eVeliques.
topic changes in discourse. An HMM consists of
a set of states, a set of observations (in our casey patasetsand Evaluation
words or tokens)i/, a transition model specify-
ing P(s¢[s;—1), the probability of transitioning from The bibliographic citations data is described in
states;_; to states;, and an emission model specify-McCallum et al. (1999), and is distributed at
ing P(w|s) the probability of emitting wordv while  http://www.cs.umass.edu/~mccalluni consists of
in states. For a good tutorial on general HMM tech-500 hand-annotated citations, each taken from the
nigues, see Rabiner (1989). reference section of a different computer science re-

For all of the unsupervised learning experimentsearch paper. The citations are annotated with 13
we fit an HMM with the same number of hiddenfields, includingauthor, title, date journal, and so
states as gold labels to an unannotated training s@t. The average citation has 35 tokens in 5.5 fields.
using EM! To compute hidden state expectationd\e split this data, using its natural order, into a 300-
efficiently, we use the Forward-Backward algorithmdocument training set, a 100-document development
in the standard way. Emission models are initializedet, and a 100-document test set.
to almost-uniform probability distributions, where The classified advertisements data set is
a small amount of noise is added to break initiashovel, and consists of 8,767 classified ad-
symmetry. Transition model initialization varies byvertisements for apartment rentals in the San
experiment. We run the EM algorithm to conver-Francisco Bay Area downloaded in June 2004
gence. Finally, we use the Viterbi algorithm withfrom the Craigslist website. It is distributed at
the learned parameters to label the test data. http://www.stanford.edu/~grenager/ 302 of the

All baselines and experiments use the same tolkds have been labeled with 12 fields, including
enization, normalization, and smoothing techniquesijze rent, neighborhood features and so on.
which were not extensively investigated. TokenizaThe average ad has 119 tokens in 8.7 fields. The
tion was performed in the style of the Penn Treeannotated data is divided into a 102-document
bank, and tokens were normalized in various waystaining set, a 100-document development set,
numbers, dates, phone numbers, URLs, and emaihd a 100-document test set. The remaining 8465
_— documents form an unannotated training set.

1EM is a greedy hill-climbing algorithm designed for this

purpose, but itis not the only option; one could also usedioor 1N bOt_h cases, all system development and param-
nate ascent methods or sampling methods. eter tuning was performed on the development set,
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Figure 2: Matrix representations of the target transitibmcture in two field structured domains: (a) classified atisements

(b) bibliographic citations. Columns and rows are indexgdhe same sequence of fields. Also shown is (c) a submatriteof t
transition structure for a part-of-speech tagging taslalllnases the column labels are the same as the row labels.

and the test set was only used once, for running f4 Unsupervised Learning

nal experiments. Supervised learning experiments

train on documents selected randomly from the ar€onsider the general problem of learning an HMM
notated training set and test on the complete test sétbm an unlabeled data set. Even abstracting away
Unsupervised learning experiments also test on tHem concrete search methods and objective func-
complete test set, but create a training set by firsions, the diversity and simultaneity of linguistic
adding documents from the test set (without anncstructure is already worrying; in Figure 1 compare
tation), then adding documents from the annotatetthe field structure in (a) and (b) to the parts-of-
training set (without annotation), and finally addingspeech in (c). If strong sequential correlations exist
documents from the unannotated training set. Thua multiple scales, any fixed search procedure will
if an unsupervised training set is larger than the testetect and model at most one of these levels of struc-
set, it fully contains the test set. ture, not necessarily the level desired at the moment.
rse, as experience with part-of-speech and gram-
r learning has shown, induction systems are quite
able of producing some uninterpretable mix of

To evaluate our models, we first learn a set OXXO
model parameters, and then use the parameterizg
m_odel to label the sequence of tokens in the test da\tigrious levels and kinds of structure.
with the model’'s hidden states. We then compare ) i i
the similarity of the guessed sequence to the human,—Ther?fore’ if one is to preferentially leam one
annotated sequence of gold labels, and compute A%[]d of inherent structur_e_over another, there must
curacy on a per-token basisin evaluation of su- be some way of constralnl_ng the process. We cou_ld
pervised methods, the model states and gold Iabé}gpe that field structure is the strongest effect in

are the same. For models learned in a fully unsupe?—lélss'f'_ed ads, V\_’h”e p_arlts-of-speﬁch is the strongﬁst
vised fashion, we map each model state in a gree ect in newswire articles (or whatever we wou

fashion to the gold label to which it most often cor-I1Y 10 leamn parts-of-speech from). However, it is

responds in the gold data. There is a worry meard to |_ma}g|ne r:ov_v one CdOlIJId blje_ach the Iopall
this kind of greedy mapping: it increasingly inflatesqrammat'ca correlations and long- llstance toplc_a
the results as the number of hidden states grows. 1:8rrglatlons frgm our classified ads; they are stil
keep the accuracies meaningful, all of our modelgngIISh text with part-of-speech pattems. One ap-

have exactly the same number of hidden states B&oach is to vary the objective function so that the
gold labels, and so the comparison is valid search prefers models which detect the structures

which we have in mind. This is the primary way
supervised methods work, with the loss function rel-
ativized to training label patterns. However, for un-
2This evaluation method is used by McCallum et al. (1999guUpervised learning, the primary candidate for an
but otherwise is not very standard. Compared to other evalighjective function is the data likelihood, and we
ation methods for information extraction systems, it letxla , .
don’t have another suggestion here. Another ap-

lower penalty for boundary errors, and allows long fieldoals ) o X s
contribute more to accuracy than short ones. proach is to inject some prior knowledge into the



search procedure by carefully choosing the starting 1 T —
point; indeed smart initialization has been critical % -
to success in many previous unsupervised learning 4 B
experiments. The central idea of this paper is that g g - -
we can instead restrict the entire search domain by g ] EEEE
constraining the model class to reflect the desired 9 o B -
structure in the data, thereby directing the search to- 10 B ECE =
: S U T EEEEEL T
ward models of interest. We do this in several ways, 12 1T =EE O
which are described in the following sections. (a) Classified Advertisements
41 Basdines > EHFFFERREHEE
To situate our results, we provide three different 431 —1—1 S8
baselines (see Table 1). First is the most-frequent- g H B ]
field accuracy, achieved by labeling all tokens with 7 =
the same single label which is then mapped to the 8 -
most frequent field. This gives an accuracyt6f4% 10 5 E :
on the advertisements data a2d9% on the cita- %% _ T

tions data. The second baseline method is to pre- (b) Citations
segment the unlabeled data using a crude heuristic . . . 3
based on punctuation, and then to cluster the resuﬁgure 3: Matrix representations of typical transition ratsd
. . T N . earned by initializing the transition model uniformly.

ing segments using a simple Naive Bayes mixture lized randoml h 4 training d
model with the Expectation-Maximization (EM) al- tialized ran orln y. r;[Ot © unann_ota(tje trammg | atgl.
gorithm. This approach achieves an accuracy &IOI Sljjr_prl_smg y,ht_ ﬁuncolnstrlglne _e;ppr:oac? _eads
62.4% on the advertisements data, atids% on the © Predictions which poorly align with the desire
citations data. field segmentation: with 400 unannotated training

As a final baseline, we trained a supervised ﬁrstc_ioc_uments, the accuracy is JL_‘Q'_S% for the ad-
vertisements andld.7% for the citations: better than

order HMM from the annotated training data using(h inal baseline but far f h iced
maximum likelihood estimation. With 100 training € singie state_ aseline but ar rom t € supervise
eline. To illustrate what is (and isn’t) being

examples, supervised models achieve an accuracyt%‘;fS _ .
74.4% on the advertisements data, &5% on the Iearn_ed, compare typlc_al t_ranS|t|on models I_earned
citations data. With 300 examples, supervised metlrf-y th's method, _s_hown in Figure 3, to the maximum-
ods achieve accuracies &4.4 on the citations data. “,ke“hOOd trar_15|t|c_)n models for the target annota-
The learning curves of the supervised training eﬂ#ns’ l_SkhOV\r’]n In Figure 2d lCIIea;]rIy,I they 3re|nt ar;yd
periments for different amounts of training data aré"ng ke the target Modets. the leared classifie

shown in Figure 4. Note that other authors havgdvertlsements matrix has some but not all of the

achieved much higher accuracy on the the citatioﬂeSired diagonal structure, and the learned citations

dataset using HMMs trained with supervision: M matrix has almost no mass on the diagonal, and ap-

Callum et al. (1999) report accuracies as high Rears to be modeling smaller scale structure.
92.9% by using more complex models and millions4.3  Djagonal Transition Models

of words of BibTeX training data. To adjust our procedure to learn larger-scale pat-

4.2 Unconstrained HMM Learning terns, we can constrain the parametric form of the

. . transition model to be
From the supervised baseline above we know that

there is some first-order HMM ové$| states which o+ (l‘gi’) if sp =841
P(St|8t_1) =

captures the field structure we're interested in, and (1-0)
we would like to find such a model without super- 151
vision. As a first attempt, we try fitting an uncon-where|S| is the number of states, amdis a global
strained HMM, where the transition function is ini-free parameter specifying the self-loop probability:

otherwise
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(a) Classified advertisements Figure 5: Unsupervised accuracy as a function of the exgdecte
mean field length- for the classified advertisements dataset.
e Each model was trained with 500 documents and tested on the
development set. Results are averaged over 50 runs.

better model$. On the other hand, model accuracy
Unsup is not very sensitive to the exact choice ®f as
= Se shown in Figure 5 for the classified advertisements
05 task (the result for the citations task has a similar
0_4| I shape). For the remaining experiments on the adver-
D 15%;‘:]?”;5;’;(22250 Iy Y Gl tisements data, we use= 0.9, and for those on the
citations data, we use = 0.5.

o
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(b) Bibliographic citations 4.4 Hierarchical Mixture Emission Models

Figure 4: Learning curves for supervised learning and ueisup Consider the highest-probability state emissions

vised learning with a diagonal transition matrix on (a) slisd . -
advertisements, and (b) bibliographic citations. Resarkésav- learned by the diagonal model, shown in Figure 6(a).

eraged over 50 runs. In addition to its characteristic content words, each

state also emits punctuation and English function

the probability of a state tra_nsmonlng to itself. (N_qteWor ds devoid of content. In fact, state 3 seems to
that the expected mean field length for transitio

. i . . . ave specialized entirely in generating such tokens.
functions of this form |sﬁ.) This constraint pro- P ying g

i tabl ; . & with 40 his can become a problem when labeling decisions
vides a hotable periormance improvement. Wi re made on the basis of the function words rather

unannotated training documents the accuracy jum% :
¢ 48.8% 10 70.0% dverti i qf an the content words. It seems possible, then,
rom £e.670 10 {1070 Tor advertisements and from ., removing function words from the field-specific

49.7% 10 66.3% forcﬂatyons. The complet_e Iegrnlng emission models could yield an improvement in la-
curves for models of this form are shown in Figure 4,__,.
beling accuracy.

We have tested training on more unannotated data,One way to incorporate this knowledge into the

the slgpe of the learning curve is leveling out, _banodeI is to delete stopwords, which, while perhaps
by training on8000 unannotated ads, accuracy im-

2 L not elegant, has proven quite effective in the past.
proves significantly td2.4%. On the citations task, g P d P

¢ imateBB% b hieved A better founded way of making certain words un-

an accuracy ot approxima eﬁﬁ o can be achieved o qilable to the model is to emit those words from

either using supervised training A annotated ci- . . :

tations. or unsubervised rainNing USIAA0 UNANNG all states with equal probability. This can be accom-
. 3 P 9 P plished with the following simple hierarchical mix-

tated citations:

. ) ) ture emission model
Although o can easily be reestimated with EM

(even on a per-field basis), doing so does not yield Py (w|s) = aP.(w) + (1 — a)P(w|s)

3We also tested training on 5000 additional unannotated civhereP.. is the common word distribution, andis
tations collected from papers found on the Internet. Unofort
nately the addition of this data didn't help accuracy. Thistp “While it may be surprising that disallowing reestimation of
ably results from the fact that the datasets were colleatwd f the transition function is helpful here, the same has been ob
different sources, at different times. served in acoustic modeling (Rabiner and Juang, 1993).



State | 10 Most Common Words does not yield improvements on the citations data.

1 . $ no ! month deposit , pets rent avajl-
able
2 , . room and with in Targe Tiving kitchen 45 Boundary Models
3 - athe s and for thibStg ,in — Another source of error concerns field boundaries.
4 Eﬁ?gﬁ%ﬁum] , bedroom bath / - . In many cases, fields are more or less correct, but the
5 .. and a in - quiet with unit building boundaries are off by a few tokens, even when punc-
6 iN-UMs[]T;';/'E] [PHONE] [DAY] call tuation or syntax make it clear to a human reader
where the exact boundary should be. One way to ad-
(a) dress this is to model the fact that in this data fields
Sate T T0Mog Common Words often end with one of asmall sgt of bour_1dary tokens,
1 [NUM2] bedroom [NUM1] bath bed- such as punctuation and new lines, which are shared
rooms large sq car ft garage across states.
2 th deposit pets | t avail- . : .
ﬁt?lg ;,Tg: secirr)i(t);l pets fease rent aval To accomplish thls_, we enriched the Markov pro-
3 kitchen room new , with Tiving Targe cess so that each field is now modeled by two
floors hardwood fireplace _fi — — - + +
4 [PHONE] call please at or for [TIME] tg states, a non finad™ € S ) and a flnals SIEAS
[DAY] contact The transition model for final states is the same as
5 san street at ave st # [NUM:DDD] fran- before, but the transition model for non-final states
cisco ca [NUM:DDDD] .
6 of the yard with unit private back & has two new global free parameteis:the probabil-
building floor ity of staying within the field, ang, the probability

Comm. | *CR*. , and - the in a / is with : of for

o of transitioning to the final state given that we are

staying in the field. The transition function for non-
final states is then

(b)

Figure 6: Selected state emissions from a typical modehézhr

from unsupervised data using the constrained transition-fu (1 — #)()\ + (15__:\)) if s/ =s—
tion: (a) with a flat emission model, and (b) with a hierarehic (1-3) 1571 o,
emission model. P(s'|s™) = N+ W) if s/ =st

o 1-\ : -\ =
a new global free parameter. In such a model, before % if s € S7\s
a state emits a token it flips a coin, and with probabil- 0 otherwise.

ity « it allows the common word distribution to gen-
erate the token, and with probability—«) it gener- Note that it can bypass the final state, and transi-
ates the token from its state-specific emission mod#pn directly to other non-final states with probabil-
(see Vaithyanathan and Dom (2000) and Toutanov#& (1 — A), which models the fact that not all field
et al. (2001) for more on such models). We tune@ccurrences end with a boundary token. The transi-
a on the development set and found that a range §pn function for non-final states is then

values work equally well. We used a value(o$ in

1-0o . _
the following experiments. o+ % if 5" =s
We ran two experiments on the advertisements P(s'[s™) = (\13_*I) if ' €5 \s™
data, both using the fixed transition model described 0 otherwise.

in Section 4.3 and the hierarchical emission model.

First, we initialized the emission model &, to a Note that this has the form of the standard diagonal
general-purpose list of stopwords, and did not reegunction. The reason for the self-loop from the fi-
timate it. This improved the average accuracy fronmal state back to the non-final state is to allow for
70.0% to 70.9%. Second, we learned the emissiorfield internal punctuation. We tuned the free param-
model of P, using EM reestimation. Although this eters on the development set, and found ¢hat 0.5
method did not yield a significant improvement inand\ = 0.995 work well for the advertisements do-
accuracy, it learns sensible common words: Fignain, andsc = 0.3 and A = 0.9 work well for the
ure 6(b) shows a typical emission model learneditations domain. In all cases it works well to set
with this technique. Unfortunately, this techniquex = 1 — A. Emissions from non-final states are as



Ads | Citations 0.0
Baseline 46.4 27.9
Segment and cluster | 62.4 46.5 o
Supervised 74.4 725
Unsup. (learned trans) | 48.8 49.7 3 0.7 _ 5 +g
Unsup. (diagonal trans)| 70.0 66.3 g PSR 10
+ Hierarchical (learned)| 70.1 39.1 Sos ~ A =15
+ Hierarchical (given) | 70.9 62.1 e
+ Boundary (learned) | 70.4 64.3 05 |
+ Boundary (given) 71.9 68.2 |
+ Hier. + Bnd. (learned)| 71.0 — 0.4 4 \ \ \ \
+ Hier. + Bnd. (given) 72.7 _ 0 50 100 150 200 250 300

Unsupervised Training Set Size

Table 1: Summary of results. For each experiment, we report

percentage accuracy on the test set. Supervised expesimepiy re 7: Learning curves for semi-supervised learninghen t
use 100 training documents, and unsupervised experimeets Wiations task. A separate curve is drawn for each number of

400 training documents. Because unsupervised technigq&es annotated documents. All results are averaged over 50 runs.
stochastic, those results are averaged over 50 runs, ded- dif

ences greater than 1.0% are significant at p=0.05% or better a3nnotated documents to the expected counts com-
cording to the t-test. The last 6 rows are not cumulative. . . .\
puted in the E-step. We estimate the transition
before (hierarchical or not depending on the expertunction using maximum likelihood from the an-
ment), while all final states share a boundary emisiotated documents only, and do not reestimate it.
sion model. Note that the boundary emissions ar8emi-supervised results for the citations domain are
not smoothed like the field emissions. shown in Figure 7. Adding 5 annotated citations
We tested both supplying the boundary token digfields no improvement in performance, but adding
tributions and learning them with reestimation dur20 annotated citations to 300 unannotated citations
ing EM. In experiments on the advertisements dataoosts performance greatly frof%.2% to 71.3%.
we found that learning the boundary emission modéNe also tested the utility of this approach in the clas-
gives an insignificant raise from0.0% to 70.4%, sified advertisement domain, and found that it did
while specifying the list of allowed boundary tokensnot improve accuracy. We believe that this is be-
gives a significant increase ™ .9%. When com- cause the transition information provided by the su-
bined with the given hierarchical emission modepervised data is very useful for the citations data,
from the previous section, accuracy rises#7%, which has regular transition structure, but is not as
our best unsupervised result on the advertisemeniseful for the advertisements data, which does not.
data with 400 training examples. In experiments on
the citations data we found that learning boundar§ Previous Work
emission model hurts accuracy, but that given the set

of boundary tokens it boosts accuracy significantly?™ 900d amount of prior research can be cast as
increasing it from66.3% to 68.2%. supervised learning of field segmentation models,

using various model families and applied to var-
ious domains. McCallum et al. (1999) were the
first to compare a number of supervised methods
So far, we have largely focused on incorporatindgor learning HMMs for parsing bibliographic cita-
prior knowledge in rather general and implicit waystions. The authors explicitly claim that the domain
As a final experiment we tested the effect of addingvould be suitable for unsupervised learning, but
a small amount of supervision: augmenting the largihey do not present experimental results. McCallum
amount of unannotated data we use for unsupeet al. (2000) applied supervised learning of Maxi-
vised learning with a small amount of annotateanum Entropy Markov Models (MEMMS) to the do-
data. There are many possible techniques for semmain of parsing Frequently Asked Question (FAQ)
supervised learning; we tested a particularly simplists into their component field structure. More re-
one. We treat the annotated labels as observed vatently, Peng and McCallum (2004) applied super-
ables, and when computing sufficient statistics in theised learning of Conditional Random Field (CRF)
M-step of EM we add the observed counts from theequence models to the problem of parsing the head-

5 Semi-supervised Learning



ers of research papers. hierarchical mixture emission models and boundary
There has also been some previous work on umRodels, produce additional increases in accuracy.

supervised learning of field segmentation models ifinally, we also showed that semi-supervised meth-

particular domains. Pasula et al. (2002) performeds with a modest amount of labeled data can some-

limited unsupervised segmentation of bibliographi¢imes be effectively used to get similar good resullts,

citations as a small part of a larger probabilisticdepending on the nature of the problem.

model of identity uncertainty. However, their sys- While there are enough resources for the citation

tem does not explicitly learn a field segmentatiortask that much better numbers than ours can be and

model for the citations, and encodes a large amouh@ave been obtained (with more knowledge and re-

of hand-supplied information about name forms, absource intensive methods), in domains like classi-

breviation schemes, and so on. More recently, Barziied ads for lost pets or used bicycles unsupervised

lay and Lee (2004) definedontent modelswhich learning may be the only practical option. In these

can be viewed as field segmentation models occu¢ases, we find it heartening that the present systems

ring at the level of discourse. They perform undo as well as they do, even without field-specific

supervised learning of these models from sets d#rior knowledge.

news articles which describe similar events. Th

fieldsin that case are the topics discussed in thos% Acknowledgements
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