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ABSTRACT

Finding pages on the Web that are similar to a query page
(Related Pages) is an important component of modern search
engines. A variety of strategies have been proposed for an-
swering Related Pages queries, but comparative evaluation
by user studies is expensive, especially when large strategy
spaces must be searched (e.g., when tuning parameters). We
present a technique for automatically evaluating strategies
using Web hierarchies, such as Open Directory, in place of
user feedback. We apply this evaluation methodology to
a mix of document representation strategies, including the
use of text, anchor-text, and links. We discuss the relative
advantages and disadvantages of the various approaches ex-
amined. Finally, we describe how to efficiently construct a
similarity index out of our chosen strategies, and provide
sample results from our index.
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1. INTRODUCTION

The goal of Web-page similarity search is to allow users
to find Web pages similar to a query page [12]. In partic-
ular, given a query document, a similarity-search algorithm
should provide a ranked listing of documents similar to that
document.

Given a small number of similarity-search strategies, one
might imagine comparing their relative quality with user
feedback. However, user studies can have significant cost in
both time and resources. Moreover, if, instead of comparing
a small number of options, we are interested in compar-
ing parametrized methods with large parameter spaces, the
number of strategies can quickly exceed what can be eval-
uated using user studies. In this situation, it is extremely
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desirable to automate strategy comparisons and parameter
selection.

The “best” parameters are those that result in the most
accurate ranked similarity listings for arbitrary query doc-
uments. In this paper, we develop an automated evalua-
tion methodology to determine the optimal document rep-
resentation strategy. In particular, we view manually con-
structed directories such as Yahoo! [26] and the Open Di-
rectory Project (ODP) [21] as a kind of precompiled user
study. Our evaluation methodology uses the notion of doc-
ument similarity that is implicitly encoded in these hier-
archical directories to induce “correct”, ground truth order-
ings of documents by similarity, given some query document.
Then, using a statistical measure ([13]), we compare simi-
larity rankings obtained from different parameter settings of
our algorithm to the correct rankings. Our underlying as-
sumption is that parameter settings that yield higher values
of this measure correspond to parameters that will produce
better results.

To demonstrate our evaluation methodology, we applied
it to a reasonably sized set of parameter settings (includ-
ing choices for document representation and term weighting
schemes) and determined which of them is most effective for
similarity search on the Web.

There are many possible ways to represent a document
for the purpose of supporting effective similarity search. The
following briefly describes the representation axes we consid-
ered for use with the evaluation methodology just described.

Three approaches to selecting the terms to include in the
vector (or equivalently, multiset) representing a Web page u
follow:

1. Words appearing in u (a content-based approach)

2. Document identifiers (e.g. urls) for each document v
that links to u (a link-based approach)

3. Words appearing inside or near an anchor in v, when
the anchor links to u (an anchor-based approach)

The usual content-based approach ignores the available
hyperlink data and is susceptible to spam. In particular,
it relies solely on the information provided by the page’s
author, ignoring the opinions of the authors of other Web
pages [3]. The link-based approach, investigated in [12],
suffers from the shortcoming that pages with few inlinks
will not have sufficient citation data, either to be allowed in
queries or to appear as results of queries. This problem is es-
pecially pronounced when attempting to discover similarity
relations for new pages that have not yet been cited suffi-



ciently. As we will see in Section 5, under a link-based ap-
proach, the vectors for most documents (even related ones)
are in fact orthogonal to each other.

The third approach, which relies on text near anchors,
referred to as the anchor-window [9], appears most use-
ful for the Web similarity-search task. Indeed, the use of
anchor-windows has been previously considered for a vari-
ety of other Web IR tasks [2, 1, 9, 11]. The anchor-window
often constitutes a hand-built summary of the target doc-
ument [1], collecting both explicit hand-summarization and
implicit hand-classification present in referring documents.

We expect that when aggregating over allinlinks, the fre-
quency of relevant terms will dominate the frequency of ir-
relevant ones. Thus, the resulting distribution is expected
to be a signature that is a reliable, concise representation
of the document. Because each anchor-window contributes
several terms, the anchor-based strategy requires fewer cita-
tions than the link-based strategy to prevent interdocument
orthogonality. However, as a result of reducing orthogonal-
ity, the anchor-based strategy is nontrivial to implement ef-
ficiently [14]. We discuss later how a previously established
high-dimensional similarity-search technique based on hash-
ing can be used to efficiently implement the anchor-based
strategy.

These three general strategies for document representa-
tion involve additional specific considerations, such as term
weighting and width of anchor-windows, which we discuss
further in Section 3.

Note that there are many additional parameters that could
be considered, such as weighting schemes for font sizes, font
types, titles, etc. Our goal was not to search the parame-
ter space exhaustively. Rather, we chose a reasonable set
of parameters to present our evaluation methodology and
to obtain insight into the qualitative effects of these basic
parameters.

Once the best parameters, including choice of document
representation and term weighting schemes, have been de-
termined using the evaluation methodology, we must scale
the similarity measure to build a similarity index for the Web
as a whole. We develop an indexing approach relying on the
Min-hashing technique [10, 5] and construct a similarity-
search index for roughly 75 million urls to demonstrate the
scalability of our approach. Because each stage of our algo-
rithm is trivially parallelizable, our indexing approach can
scale to the few billion accessible documents currently on
the Web.!

2. EVALUATION METHODOLOGY

The quality of the rankings returned by our system is
determined by the similarity metric and document features
used. Previous work [12] has relied on user studies to as-
sess query response quality. However, user studies are time-
consuming, costly, and not well-suited to research that in-
volves the comparison of many parameters. We instead use
an automated method of evaluation that uses the orderings
implicit in human-built hierarchical directories to improve
the quality of our system’s rankings.

In the clustering literature, numerous methods of auto-
matic evaluation have been proposed [17]. Steinback et
al. [25] divide these methods into two broad classes. Internal

ICommercial search engines generally have several hundreds or
even thousands of machines at their disposal.

quality measures, such as average pairwise document simi-
larity, indicate the quality of a proposed cluster set based
purely on the internal cluster geometry and statistics, with-
out reference to any ground truth. Ezternal quality mea-
sures, such as entropy measures, test the accordance of a
cluster set with a ground truth. As we are primarily in-
vestigating various feature selection methods and similarity
metrics themselves in our work, we restrict our attention to
external measures.

The overall outline of our evaluation method is as follows.
We use a hierarchical directory to induce sets of correct,
ground truth similarity orderings. Then, we compare the
orderings produced by a similarity measure using a particu-
lar set of parameters to these correct partial orderings, using
a statistical measure outlined below. We claim that param-
eter settings for our similarity measure that yield higher
values of this statistical measure correspond to parameters
that will produce better results from the standpoint of a
user of the system.

2.1 Finding a Ground Truth Ordering

Unfortunately, there is no available ground truth in the
form of either exact document-document similarity values
or correct similarity search results.

PROBLEM 1. SIMILARDOCUMENT (notion of similar-
ity): Formalize the notion of similarity between Web docu-
ments using an external quality measure.

There is a great deal of ordering information implicit in the
hierarchical Web directories mentioned above. For example,
a document in the recreation/aviation/un-powered class
is on average more similar to other documents in that same
class than those outside of that class. Furthermore, that
document is likely to be more similar to other documents in
other recreation/aviation classes than those entirely out-
side of that region of the tree. Intuitively, the most similar
documents to that source are the other documents in the
source’s class, followed by those in sibling classes, and so
on.

There are certainly cases where location in the hierarchy
does not accurately reflect document similarity. Consider
documents in recreation/autos, which are almost certainly
more similar to those in shopping/autos than to those in
recreation/smoking. In our sample, these cases do not af-
fect our evaluation criteria since we average over the statis-
tics of many documents.

To formalize the notion of distance from a source docu-
ment to another document in the hierarchy we define famsilial
distance.

DEFINITION 1. Let the familial distance df(s,d) from a
source document s to another document d in a class hierar-
chy be the distance from s’s class to the most specific class
dominating both s and d.?

In our system, however, we have collapsed the directory
below a fixed depth of three and ignored the (relatively few)
documents above that depth. Therefore, there are only four
possible values for familial distance, as depicted in Figure 1.
We name these distances as follows:

Distance 0: Same — Documents are in the same class.

2We treated the hierarchy as a tree, ignoring the “soft-links” de-
noted with an “@” suffix
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Figure 1: Mapping a hierarchy onto a partial order-
ing, given a source document.

Distance 1: Siblings — Documents are in sibling classes.

Distance 2: Cousins — Documents are in classes which are
first cousins.

Distance 3: Unrelated — The lowest common ancestor of
the documents classes is the root.

Given a source document, we wish to use familial distances
to other documents to construct a partial similarity ordering
over those documents. Our general principle is:

On average, the true similarity of documents to
a source document decreases monotonically with
the familial distance from that document.

Given this principle, and our definition of familial distance,
for any source document in a hierarchical directory we can
derive a partial ordering of all other documents in the direc-
tory. Note that we do not give any numerical interpretation
to these familial distance values. We only depend on the
above stated monotonicity principle: a source document is
on average more similar to a same-class document than to
a sibling-class document, and is on average more similar to
a sibling-class document than a cousin-class document, and
SO om.

DEFINITION 2. Let the familial ordering <ds(s) of all
documents with respect to a source document s be: <d; ()=

{(a,0)[ ds(s,a) <d;(s,b)}

This ordering is very weak in that for a given source, most
pairs of documents are not comparable. The majority of the
distinctions that are made, however, are among documents
that are very similar to the source and documents that are
much less similar. The very notion of a correct total sim-
ilarity ordering is somewhat suspect, as beyond a certain
point, pages are simply unrelated. Our familial ordering
makes no distinctions between the documents in the most
distant category, which forms the bulk of the documents in
the repository.

Of course our principle that true similarity decreases mono-
tonically with familial distance does not always hold. How-
ever it is reasonable to expect that, on average, a ranking
system® that accords better with familial ordering will be
better than one that accords less closely.

30f course the ranking system cannot make use of the directory
itself for this statement to hold.

2.2 Comparing Orderings

At this point, we have derived a partial ordering from a
given hierarchical directory and query (source) document s,
that belongs in the hierarchy. We then wish to use this par-
tial ordering to evaluate the correctness of an (almost) total
ordering produced by our system.* Perhaps the most com-
mon method of comparing two rankings is the Spearman
rank correlation coefficient. This measure is best suited
to comparing rankings with few or no ties, and its value
corresponds to a Pearson p coefficient [24]. There are two
main problems with using the Spearman correlation coeffi-
cient for the present work. First, as mentioned, there are a
tremendous number of ties in one of the rankings (namely
the ground truth ranking), and second, since we are more
concerned with certain regions of the rankings than oth-
ers (e.g., the top), we would like a natural way to measure
directly how many of the “important” ranking choices are
being made correctly. Given these goals, a more natural
measure is the Kruskal-Goodman I' [13].

DEFINITION 3. For orderings <o and <p, I'(<q,<b) is
2 X Pr[<q,<s agree on (z,y) | <a, <p order (z,y)] —1

Intuitively, there are a certain number of document pairs,
and a given ordering only makes judgments about some of
those pairs. When comparing two orderings, we look only at
the pairs of documents that both orderings make a judgment
about. A value of 1 is perfect accord, 0 is the expected
value of a random ordering, and -1 indicates perfect reversed
accord. We claim that if two rankings <, and <, differ in
their I' values with respect to a ground truth <, then the
ordering with the higher I" will be the better ranking.

2.3 Regionsof the Orderings

Thus, given a directory, a query document s, and a sim-
ilarity measure sim, we can construct two orderings (over
documents in the directory): the ground truth familial or-
dering <4, (s), and the ordering induced by our similarity
measure < ;m(s)- We can then calculate the corresponding
T" value. This value gives us a measure of the quality of the
ranking for that query document with respect to that sim-
ilarity measure and directory. However, we need to give a
sense of how good our rankings are across all query docu-
ments. In principle, we can directly extend the I statistic as
follows. We iterate s over all documents, aggregating all the
concordant and discordant pairs, and dividing by the total
number of pairs.

In order to more precisely evaluate our results, however,
we calculated three partial-T' values that emphasized differ-
ent regions of the ordering. Each partial-I" is based on the
fraction of correct comparable pairs of a certain type. Our
types are:

Siblings-I': Calculated from only pairs of documents (d1, d2)
where d; was from the same class as the source docu-
ment and d» was from a sibling class.

Cousins-I': Calculated from only pairs of documents (d1, d2)
where d; was from the same class as the source docu-
ment and d2 was from a cousin class.

40ur ordering produces ties when two documents d; and d2 have
exactly the same similarity to the source document s. When this
happens, it is nearly always because s is orthogonal to both di
and d» (similarity 0 to both).



Source document | http://www.aabga.org
Source title American Assoc. of Botanical Gardens and Arboreta
Source category /home/gardens/clubs_and_associations

Settings: window size = 32, stem, dist and term weighting

I = 0.53
Rank Sim Category

1 0.16 /home/gardens/clubs_and_associations
2 0.15 /home/gardens/clubs_and_associations
5 0.13 /home/gardens/clubs_and_associations

10 0.11 /home/gardens/plants

20 0.10 /home/gardens/clubs_and_associations

50 0.07 /home/gardens/plants

100 0.06 /home/apartment_living/gardening

Settings: window size = 0, no stem, no term weighting

I =0.30
Rank Sim Category
1 0.17 /reference/libraries/independent_libraries
2 0.15 /home/gardens/clubs_and_associations
5 0.14 business/industries/construction_and_maintenance
10 0.14 /business/industries/agriculture_and _forestry
20 0.13 /recreation/travel/reservations
50 0.13 /recreation/travel/reservations
100 0.13 business/industries/construction_and_maintenance

Figure 2: Orderings obtained from two different pa-
rameter settings with respect to the same source
document. For contrast, we give the best and the
worst settings. For each document shown, we give
the rank, the similarity to the source document, and
the category (we omit the url of the document).

Unrelated-T': Calculated from only pairs of documents
(d1,d2) where di was from the same class as the source
document and dz was from an unrelated class.

These partial-I' values allowed us to inspect how vari-
ous similarity measures performed on various regions of the
rankings. For example, sibling-I" performance indicates how
well fine distinctions are being made near the top of the fa-
milial ranking, while unrelated-I" performance measures how
well coarser distinctions are being made. Unrelated-I" being
unusually low in relation to sibling-I' is also a good indi-
cator of situations when the top of the list is high-quality
from a precision standpoint but many similar documents
have been ranked very low and therefore omitted from the
top of the list (almost always because the features were too
sparse, and documents that were actually similar appeared
to be orthogonal).

In Figure 2, we show an example that reflects our as-
sumption that larger values of the I' statistic correspond to
parameter settings that yield better results.

3. DOCUMENT REPRESENTATION

In this section we will discuss the specific document rep-
resentation and term weighting options we chose to evaluate
using the technique outlined above. Let the Web document
u be represented by a bag

B, = {(w}uf;): R (wﬁvf:)}

where w, are terms used in representing u (e.g., terms found
in the content and anchor-windows of u, or links to ), and
fu are corresponding weights. It now remains to discuss
which words should be placed in a document’s bag, and with
what weight.

3.1 ChoosingTerms

For both the content and anchor-based approaches, we
chose to remove all HTML comments, Javascript code, tags

(except ’alt’ text), and non-alphabetic characters. A stop-
word list containing roughly 800 terms was also applied.

For the anchor-based approach, we must also decide how
many words to the left and right of an anchor A,, (the
anchor linking from page v to page u) should be included in
B,. We experimented with three strategies for this decision.
In all cases, the anchor-text itself of A,, is included, as well
as the title of document u. The three strategies follow:

Basic: We choose some fixed window size W, and always
include W words to the left, and W words to the right,
of A,,°. Specifically, we use W € {0, 4, 8,16, 32}.

SYNTACTIC: We use sentence, paragraph, and HTML-region-
detection techniques to dynamically bound the region
around A,, that gets included in B,. The primary
document features that are capable of triggering a win-
dow cut-off are paragraph boundaries, table cell bound-
aries, list item boundaries, and hard breaks which fol-
low sentence boundaries. This technique resulted
in very narrow windows that averaged close to only 3
words in either direction.

TopricAL: We use a simple technique for guessing topic bound-
aries at which to bound the region that gets included.
The primary features that trigger this bounding are
heading beginnings, list ends, and table ends. A par-
ticularly common case handled by these windows was
that of documents composed of several regions, each
beginning with a descriptive header and consisting of a
list of urls on the topic of that header. Regions found
by the TOPICAL heuristics averaged about 21 words in
size to either side of the anchor.

3.2 StemmingTerms

We explored the effect of three different stemming varia-
tions:

NosTEM: The term is left as is. If it appears in the stoplist,
it is dropped.

STEM: The term is stemmed using Porter’s well known stem-
ming algorithm [22] to remove word endings. If the
stemmed version of the term appears in the stemmed
version of our stoplist, it is dropped.

STOPSTEM: The term is stemmed as above, for the purposes
of checking whether the term stem is in the stoplist.
If it is, the term is dropped, otherwise the original
unstemmed term is added to the bag.

The STOPSTEM variant is beneficial if it is the case that the
usefulness of a term can be determined by the properties of
its stem more accurately than by the properties of the term
itself.

3.3 Term Weighting

A further consideration in generating document bags is
how a term’s frequency should be scaled. A clear benefit of
the TF.IDF family of weighting functions is that they at-
tenuate the weight of terms with high document frequency.
These monotonic term weighting schemes, however, amplify
the weight of terms with very low document frequency. This
amplification is in fact good for ad-hoc queries, where a rare

5Stopwords do not get counted when determining the window
cutoff.



term in the query should be given the most importance. In
the case where we are judging document similarities, rare
terms are much less useful as they are often typos, rare
names, or other nontopical terms that adversely affect the
similarity measure. Therefore, we also experimented with
nonmonotonic term-weighting schemes that attenuate both
high and low document-frequency terms. The idea that mid-
frequency terms have the greatest “resolving power” is not
new [23, 20]. We call such schemes nonmonotonic document
frequency (NMDF) functions.

Another component of term weighting that we consider,
and which has a substantial impact on our quality metric, is
distance weighting. When using an anchor-based approach
of a given window size, instead of treating all terms near an
anchor A, equally, we can weight them based on their dis-
tance from the anchor (with anchor-words themselves given
distance 0). As we will see in Section 5, the use of a distance-
based attenuation function in conjunction with large anchor-
windows significantly improves results under our evaluation
measure.

4. DOCUMENT SIMILARITY METRIC

The metric we use for measuring the similarity of docu-
ment bags is the Jaccard coefficient. The Jaccard coefficient
of two sets A and B is defined as

|AN B

simj (A, B) = 14U B|

In the previous section we explained how we represent Web
documents using bags (i.e. multisets). For the purposes of
this paper we extend Jaccard from sets to bags by apply-
ing bag union and bag intersection. This is done by taking
the max and min multiplicity of terms, for the union and
intersection operations, respectively.

The reasons that we focus on the Jaccard measure rather
than the classical cosine measure are mainly scalability con-
siderations. For scaling our similarity-search technique to
massive document datasets we rely on the Min-Hashing tech-
nique. The main idea here is to hash the Web documents
such that the documents that are similar, according to our
similarity measure, are mapped to the same bucket with a
probability equal to the similarity between them. Creating
such a hash function for the cosine measure is to our knowl-
edge an open problem. On the other hand, creating such
hashes is possible for the Jaccard measure (see [5]).

We used our evaluation methodology to verify that the
Jaccard coefficient and the cosine measure yield comparable
results.® Further evidence for the intuitive appeal of our
measure is provided in [19], where the Jaccard coefficient
outperforms all competitor measures for the task of defining
similarities between words. Note that the bulk of the work
presented here does not depend on whether Jaccard or cosine
is used; only in Section 7 do we require the use of the Jaccard
coefficient.

5. EXPERIMENT AL RESULTS OF
PARAMETER EVALUATION

For evaluating the various strategies discussed in Sec-
tion 3, we employ the methodology described in Section 2.
We sampled Open Directory [21] to get 300 pairs of clusters

SWe omit the description of these experiments as it is not the
focus of our work.

Sibling-T

Figure 3: Document representations. Larger fixed
anchor windows always gave better results, but top-
ical dynamic windows acheived similar results with
shorter average window size.

from the third level in the hierarchy, as depicted previously
in Figure 1.7 As our source of data, we used a Web crawl
from the Stanford WebBase containing 42 million pages [15].
Of the urls in the sample clusters, 51,469 of them were linked
to by some document in our crawl, and could thus be used
by our anchor-based approaches. These test-set urls were
linked to by close to 1 million pages in our repository, all
of which were used to support the anchor based strategy
we studied.® This section describes the evaluation of the
strategies suggested in Section 3.

We verified that all three of our I' measures yield, with
very few exceptions, the same relative order of parameter
settings. In a sense, this agreement is an indication of the
robustness of our I' measures. Here we report the results
only for the sibling-I" statistic. The graphs for the cousins-T'
and unrelated-I" measures behave similarly.

For some of the graphs shown in this section the difference
of T" scores between different parameter settings might seem
quite small, i.e. second decimal digit. Notice, however, that
in each graph we explore the effect of a single “parameter di-
mension” independently, so when we add up the effect on all
“parameter dimensions” the difference becomes substantial.

5.1 Results: ChoosingTerms

Sibling-I' values when bags are generated using various
anchor-window sizes, using TOPICAL and SYNTACTIC win-
dow bounding, using purely links, and using purely page
contents, are given in Figure 3.

The results for an anchor-based approach using large win-
dows provides the best results according to our evaluation
criteria. This may seem counterintuitive; by taking small
windows around the anchor, we would expect fewer spuri-
ous words to be present in a document’s bag, providing a
more concise representation. Further experiments revealed
why, in fact, larger windows provide benefit. Figure 4 shows
the fraction of document pairs within the same Open Direc-
tory cluster that are orthogonal (i.e., no common words) un-

7Any urls present below the third level were collapsed into their
third level ancestor category.

80DP pages themselves were of course excluded from the data set
to avoid bias. Furthermore, the high orthogonality figures for the
link-based approach, shown in Figure 4, show that partial ODP
mirrors could not have had a significant impact on our results.
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Figure 4: Intracluster Orthogonality for various an-
chor window types. Small windows and pure links
resulted in document bags which were largely or-
thogonal, making similarity hard to determine.

der a given representation. We see that with smaller window
sizes, many documents that should be considered similar are
in fact orthogonal. In this case, no amount of reweighting
or scaling can improve results; the representations simply do
not provide enough accessible similarity information about
these orthogonal pairs. We also see that, under the con-
tent and link approaches, documents in the same cluster are
largely orthogonal. Under the link-based approach, most of
the documents within a cluster are pairwise orthogonal, re-
vealing a serious limitation of a purely link-based approach.
Incoming links can be thought of as being opaque descrip-
tors. If two pages have many inlinks, but the intersection of
their inlinks is empty, we can say very little about these two
pages.® It may be that they discuss the same topic, but be-
cause they are new, they are never cocited. In the case of the
anchor-window-based approach, the chance that the bags
for the two pages are orthogonal is much lower. Each inlink,
instead of being represented by a single opaque url, is repre-
sented by the descriptive terms that are the constituents of
the inlink. Note that the pure link based approach shown is
very similar to the Cocitation Algorithm of [12].'°

We also experimented with dynamically sized SYNTACTIC
and ToPICAL windows, as described in Section 3. These win-
dow types behave roughly according to their average win-
dow size, both in I' values and orthogonality. Surprisingly,
although the dynamic-window heuristics appeared to be ef-
fective in isolating the desired regions, any increase in region
quality was overwhelmed by the trend of larger windows pro-
viding better results.!!

In addition to varying window size, we can also choose to
include terms of multiple types (anchor, content, or links,
as described in Section 3) in our document representation.
Figure 5 shows that by combining content and anchor-based
bags, we can improve the sibling-T score’?. The intuition for

9Using the SVD we could potentially glean some information in a
pure[ lil}lk approach despite orthogonality, assuming enough link-
age [12].

10Furthermore we verified that the Cocitation Algorithm as de-
scribed in [12] yields similar I" scores to the scores for the ‘links’
strategy shown above

U However, the gap was substantially closed for high inlink pages.
12 All values in Figure 5 were generated with the distance-based
term weighting scheme to be described.
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this variation is that if a particular document has very few
incoming links then the document’s contents will dominate
the bags. Otherwise, if the document has many incoming
links the anchor-window-based terms will dominate. In this
way, the document’s bag will automatically depend on as
much information as is available.

5.2 Results: Term Weighting

In the previous section, we saw that the anchor-based
approach with large windows performs the best. Our ini-
tial intuition, however, that smaller windows would pro-
vide a more concise representation is not completely without
merit. In fact, we can improve performance substantially
under our evaluation criteria by weighting terms based on
their distance from the anchor. We prevent ourselves from
falling into the trap of making similar documents appear or-
thogonal (small windows), while at the same time, not giv-
ing spurious terms too much weight (large windows). Fig-
ure 6 shows the results when term weights are scaled by
logz(WCﬁ(t,AM))-

The results for frequency based weighting, shown in Fig-
ure 7, suggest that attenuating terms with low document
frequency, in addition to attenuating terms with high doc-
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(NMDF) weighting.

ument frequency (as is usually done), can increase perfor-
mance. Let tf be a term’s frequency in the bag, and df be
the term’s overall document frequency. Then in Figure 7,
log refers to weighting with Tlotng(W‘ sqrt refers to weight-

ing with \j—Ldf. NMDF refers to weighting with the log-scale

1 log(df)—p )2
2 -

gaussian tf x e~ (see Figure 8).

5.3 Results: Stemming

We now investigate the effects of our three stemming ap-
proaches. Figure 9 shows the sibling-I" values for the Nos-
TEM, STOPSTEM, and STEM parameter settings. We see that
STOPSTEM improves the I' value, and that STEM provides
an additional (although much less statistically significant'3)
improvement. As mentioned in Section 3.2, the effect of
STOPSTEM over NOSTEM is to increase the effective reach of
the stopword list. Words that are not themselves detected
as stopwords, yet share a stem with another word that was
detected as a stopword, will be removed. The small addi-
tional impact of STEM over STOPSTEM is due to collapsing
word variants into a single term.

13The NOSTEM — STOPSTEM and STEM — STOPSTEM average

differences are of the same approximate magnitude, however the
pairwise variance of the STEM-STOPTEM is extremely high in com-
parison to the other pairwise variances.
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Figure 9: Stemming Variants: stemming gave the
best results.

6. SCALING TO LARGE REPOSITORIES

We assume that we have selected the parameters that
maximize the quality of our similarity measure as explained
in Section 2. We now discuss how to efficiently find similar
documents from the Web as a whole.

DEFINITION 4. Two documents are a-similar if the Jac-
card coefficient of their bags is greater than «.

PROBLEM 2. SIMILARDOCUMENT (efficiency consider-
ations): Preprocess a repository of the Web W so that for
each query Web-document q in W all Web documents in W
that are a-similar to q can be found efficiently.

In this section, we develop a scalable algorithm, called IN-
DEXALLSIMILAR to solve the above problem for a realistic
Web repository size.

In tackling Problem 2, there is a tradeoff between the
work required during the preprocessing stage and the work
required at query time to find the documents a-similar to
q. We have explored two approaches. Note that since ¢ is
chosen from W, all queries are known in advance. Using
this property, we showed in previous work ([14]) how to ef-
ficiently precompute and store the answers for all possible
queries. In this case, the preprocessing stage is compute-
intensive, while the query processing is a trivial disk lookup.
An alternative strategy, which we discuss in detail in this
section, builds a specialized index during preprocessing, but
delays the similarity computation until query time. As we
will describe, the index is compact, and can be generated
very efficiently, allowing us to scale to large repositories with
modest hardware resources. Furthermore, the computation
required at query time is reasonable.

A schematic view of the INDEXALLSIMILAR algorithm is
shown in Figure 10. In the next two sections, we explain
INDEXALLSIMILAR as a two stage algorithm. In the first
stage we generate bags for each Web document in the reposi-
tory. In the second stage, we generate a vector of signatures,
known as Min-hash signatures, for each bag, and index them
to allow efficient retrieval both of document ids given signa-
tures, and the signatures given document ids.

6.1 BagGeneration

As we explained in the previous sections, the bag of each
document contains words (i) from the content text of the
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Figure 10: Schematic view of our approach.

document and (1) from anchor-windows of other documents
that point to it. Our bag generation algorithm scans through
the Web repository and produces bag fragments for each doc-
ument. For each document there is at most one content bag
fragment and possibly many anchor bag fragments. After all
bag fragments are generated, we sort and collapse them to
form bags for the urls, apply our NMDF scaling as discussed
in Section 3.3, and finally normalize the frequencies to sum
to constant.

6.2 Generation of the Document Similarity
Index

For the description of the Document Similarity Index (DST)
generation algorithm, we assume that each document is rep-
resented by a bag of words B = {(wi, f1),-.., (wk, fx)},
where w are the words found in the content and anchor text
of the document, and f are the corresponding normalized
frequencies (after scaling with the NMDF function).

There exists a family # of hash functions (see [7]) such
that for each pair of documents uw, v we have Pr[h(u) =
h(v)] = simy(u,v), where the hash function h is chosen at
random from the family % and simy(u,v) is the Jaccard
similarity between the two documents’ bags. The family H
is defined by imposing a random order on the set of all words
and then representing each url by the lowest rank (accord-
ing to that random order) element from B,,. In practice, it is
quite inefficient to generate fully random permutation of all
words. Therefore, Broder et al. [7] use a family of random
linear functions of the form h(x) = ax + b mod p. We use
the same approach (see Broder et al. [6] and Indyk [16] for
the theoretical background of this technique).

Based on the above property, we can compute for each bag
a vector of Min-hash signatures (MH-signatures) such that
the same value of the i-th MH-signature of two documents
indicates similar documents. In particular, if we generate a
vector mh, of m MH-signatures for each document u, the
expected fraction of the positions in which the two docu-
ments share the same MH-signatures is equal to the Jaccard
similarity of the document bags.

We generate two data structures on disk. The first, H,
consecutively stores mh, for each document u (i.e., the m
4-byte MH-signatures for each document). Since our doc-
ument ids are consecutively assigned, fetching these signa-
tures for any document, given the document id, requires
exactly 1 disk seek to the appropriate offset in H, followed
by a sequential read of m 4-byte signatures. The second
structure, I, is generated by inverting the first. For each
position j in an MH-vector, and each MH-signature h that

Algorithm: PROCESSQUERY

Input: Query document ¢

Output: Similar documents

Let mhy = H[g] /* Fetch the MH-vector for q */
For each j from 1 to m /* Iterate over mh, */

/* For documents with the same j’th MH-signature as q */

For each doc, € I[j][mhg[]]]
stm[doc,] + +
Sort the set of docids {doc;} by their sim scores sim[doc;]
Output {[doc;, sim[docﬂ“% > a}

Figure 11: Query Processing

appears in position j in some MH-vector, I[f][h] is a list con-
taining id’s for every document u such that the mh.[j] = h.
The algorithm for retrieving the ranked list of documents
a-similar to the query document g, using the indexes H and
I, is given in Figure 11.

When constructing the indexes H and I, the choice of m
needed to ensure w.h.p. that documents that are a-similar
to the query document are retrieved by PROCESSQUERY de-
pends solely on «; in particular, it is shown in [7] that the
choice of m is independent of the number of documents, as
well as the size of the lexicon. Since we found in previous
experiments that documents within an Open Directory cat-
egory have similarity of at least 0.15, we chose a = 0.15. We
can safely choose m = 80 for this value of o [10].*

7. EXPERIMENT AL RESULTS

We employed the strategies that produced the best I' val-
ues (see Section 5) in conjunction with the scalable algo-
rithm we described above (see Section 6) to run an exper-
iment on a sizable web repository. In particular we used
size-32 anchor-windows with distance and frequency term
weighting, stemming, and with content terms included. We
provide a description of our dataset and the behavior of our
algorithms, as well as a few examples from the results we
obtained.

7.1 Efficiency Results

The latest Stanford WebBase repository contains roughly
120 million pages, from a crawl performed in January 2001.
For our large scale experiment, we used a 45 million page
subset, which generated bags for 75 million urls. After
merging all bag fragments, we generated 80 MH-signatures
(m = 80) each 4 bytes long for each of the 75 million docu-
ment bags.

Three machines, each AMD-K6 550MHz, were used to
process the web repository in parallel to produce the bag
fragments. The subsequent steps (merging of fragments,
MH-signature generation, and query processing) took place
on a dual Pentium-IIT 933 MHz with 2 GB of main memory.
The timing results of the various stages and index sizes are
given in figure 12. The query processing step is dominated
by the cost of accessing I, the smaller of the on-disk indexes.
To improve performance, we filtered I to remove urls of low
indegree (3 or fewer inlinks). Note that these urls remain
in H, so that all urls can appear as queries; some simply

14We chose a and m heuristically; the properties of the Web as
a whole differ from those of Open Directory. Given additional
resources, decreasing a and increasing m would be appropriate.



Algorithm step Time
Generation of bag fragments 24 hours
Merging of anchor-bag fragments | 8 hours

MH-signature generation 22 hours

Query Processing < 3 seconds
Type of data Space
Web repository (45M pages,compressed) | 100 GB
Merged bags 42 GB
MH-signatures (H) 24 GB
Inverted MH-signatures (filtered) (I) 5 GB

Figure 12: Timing results and space usage

will not appear in results. Of course at a slight increase in
query time (or given more resources), I need not be filtered
in this way. Also note that if I is maintained wholly in
main-memory (by partitioning it across several machines,
for instance), the query processing time drops to a fraction
of a second.

7.2 Quality of Retrieved Documents

Accurate comparisons with existing search engines are dif-
ficult, since one needs to make sure both systems use the
same web document collection. We have found however,
that the “Related Pages” functionality of commercial search
engines often return navigationally, as opposed to topically,
similar results. For instance, www.msn. com is by some crite-
ria similar to moneycentral .msn.com. They are both part of
Microsoft MSN; however the former would not be a very use-
ful result for someone looking for other financial sites. We
claim that the use of our evaluation methodology has led us
to the use of strategies that reflect the notion of “similarity”
embodied in the popular ODP directory. For illustration, we
have provided some sample queries in figure 13. In figure 14
we have given the top 10 words (by weight) in the bags for
these query urls.'®

8. RELATED WORK

Most relevant to our work are algorithms for the “Re-
lated Pages” functionality provided by several major search
engines. Unfortunately, the details of these algorithms are
not publicly available. Dean et al. [12] propose algorithms,
which we discussed in Sections 1 and 5.1, for finding related
pages based on the connectivity of the Web only and not
on the text of pages. The idea of using hyperlink text for
document representation has been exploited in the past to
attack a variety of IR problems [1, 3, 8, 9, 11, 18]. The
novelty of our paper, however, consists in the fact that we
do not make any a priori assumption about what are the
best features for document representation. Rather, we de-
velop an evaluation methodology that allows us to select
the best features from among a set of different candidates.
Approaches algorithmically related to the ones presented in
Section 6 have been used in [7, 4], although for the different
problem of identifying mirror pages.
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MSN Money
moneycentral.msn.com

Weather.com
www.weather.com

MSN Money
www.moneycentral.com

CNN.com - Weather
www.cnn.com/WEATHER

Money Magazine
www.pathfinder.com/money

Welcome to the Weather Underground
www.princeton.edu/Webweather/ww.html

Welcome to Moneyextra
www.moneyworld.co.uk

Rain or Shine
www.rainorshine.com

Money UM Weather

Www.money.com cirrus.sprl.umich.edu/wxnet

ETrade ‘Weather for Active Lives
www.etrade.com www.intellicast.com/weather/

Money Club ‘WeatherPost

www.moneyclub.com www.weatherpost.com

Morningstar - ... successful investing Full-service weather company
www.morningstar.net www.wni.com

The Money Page — ... Guide to Investment Welcome to The Weather Underground

WWW.moneypage.com

www.wunderground.com

Reuters MoneyNet
www.moneynet.com

Yahoo! Weather - Indianapolis Forecast
weather.yahoo.com /forecast/...

MutualFunds
www.mfmag.com

USAToday.com
www.usatoday.com/weather

CNN Money
www.cnnfn.com

MP3.com: free mp3 downloads...
www.mp3.com

Financial markets, commodities, news
www.bloomberg.com

International Music Network - About Us
imnworld.com/about.html

Investors Business Daily
www.investors.com

EMusic — World’s Most Popular MP3 Service!
www.emusic.com

Welcome to the new Barron’s online
www.barrons.com

CMJ: New Music First
Www.mp3now.com

Financial Times
www.usa.ft.com

EMusic — World’s Most Popular MP3 Service!
www.goodnoise.com

CNN Money Lycos Music — Downloads
cnnfn.cnn.com mp3.lycos.com

CNBC on MSN Money Wizard Audiogalaxy
www.cnbc.com www.audiogalaxy.com
Financial Information Link Library Listen

www.mbnet.mb.ca/ russell

www.listen.com

‘Wallstreet Journal Home Page
update.wsj.com

LAUNCH.com - Discover New Music...
www.launch.com

Money Magazine
www.pathfinder.com/money

Nullsoft Winamp
www.winamp.com

Quote.com
www.quote.com

Welcome to Gracenote
www.cddb.com

The Source for Java(TM) Technology
java.sun.com

CD Now
www.cdnow.com

The Source for Java(TM) Technology
www.javasoft.com

CD Universe - Your Online Music Store
www.cduniverse.com

developerWorks: Java technology The Orchard - ... music, artists, bands
www.ibm.com/java www.theorchard.com

The IT Industry Portal Columbia House — Home Page
www.gamelan.com www.columbiahouse.com

DevEdge Online - JavaScript Developer Central Every CD

developer.netscape.com/tech/javascript/

www.everycd.com

Microsoft Visual J++ Home Page
www.microsoft.com /visualj

CDconnection.com
www.cdconnection.com

JavaScript World — Welcome!
www.jsworld.com

Music Boulevard
www.musicblvd.com

Java Boutique
www.j-g.com/java

Music: CDs, records and tapes, oh my!
WWW.gemm.com

JavaWorld.com
www.javaworld.com

CD World
cdworld.com

Sun Microsystems
WWW.sun.ru

Broadcast Music, Inc.
www.bmi.com

JavaLobby Homepage
www.javalobby.org

MP3.com: free mp3 downloads...
www.mp3.com

Figure 13: Sample queries and results

URL I

Top Terms in Bag (Decreasing Order by Weight)

moneycentral.msn.com

money, finance, msn, website, moneycentral, stock, employment, microsoft, business, investor

www.weather.com

weather, channel, forecasts, fbc, enter, travel, seek, best, national, usa

www.cnnfn.com

finance, business, cnn, cnnfn, stock, market, street, money, wall, journal

www.mp3.com

music, audio, player, artist, napster, radio, band, million, century, song

java.sun.com

java, jdk, technology, microsystems, api, applet, spacer, platform, language, website

www.cdnow.com

music, cdnow, amazon, records, books, sports, best, entertainment, favorite, audio

Figure 14: Top 10 words from sample bags




